Environmental Impacts of Milking Cows in Latvia
Abstract
:1. Introduction
2. Materials and Methods
- Gross GWP— GHG emissions from cattle (feed production, enteric fermentation, and manure), excluding carbon sequestration, expressed in kg CO2 equivalents (CO2e);
- Acidification terrestrial—NOx, NH3, or SO2 related emissions expressed in kg SO2 equivalents (SO2e);
- Marine eutrophication—emissions of nitrogen to water and soil expressed in kg N equivalents (Ne);
- Freshwater eutrophication—emissions of phosphorus to water and soil expressed in kg P equivalents (Pe);
- Land use—dairy products being at the top of the food pyramid play important role in the competition for arable land through feed production and grazing areas, and thus have a significant impact on terrestrial species via change of land cover and the actual use of the new land expressed in m2 of crop equivalents (cropeq.) [26];
- Water use—the use of water (m3) in such a way that it is evaporated, incorporated into products, transferred to other watersheds, or disposed into the sea [26];
- Fossil resource scarcity—the dairy supply chain is still heavily reliant on fossil fuel use in feed production, transport, as well as on-farm activities. Fossil resource scarcity (kg oileq.) is defined as the ratio between the energy content of the fossil resource x and the energy content of crude oil, and is based on the higher heating value of each fossil resource (crude oil, natural gas, hard coal, brown coal, and peat) [26].
- -
- DMa is the annual consumption of dry matter;
- -
- The methane conversion factor (Ym) value of 6.5 is realized at a digestibility of 65% (according to the IPCC 2006 guidelines at Tier 2 level);
- -
- The factor 55.65—the energy content of methane (MJ/kg CH4).
- -
- The factor 18.45—Energy intensity of feed (MJ/kg DM).
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mu, W.; van Middelaar, C.; Bloemhof, J.; Engel, B.; de Boer, I. Benchmarking the environmental performance of specialized milk production systems: Selection of a set of indicators. Ecol. Indic. 2017, 72, 91–98. [Google Scholar] [CrossRef]
- Gerber, P.; Vellinga, T.; Opio, C.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from the Dairy Sector, A Life Cycle Assessment; FAO Food and Agriculture Organisation of the United Nations. Animal Production and Health Division: Rome, Italy, 2010. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; del Corral, J.; Solís, D.; Pérez, J.A. Does Intensification Improve the Economic Efficiency of Dairy Farms? J. Dairy Sci. 2008, 91, 3693–3698. [Google Scholar] [CrossRef] [PubMed]
- Pilvere, I.; Nipers, A.; Krievina, A. Analysis of the factors affecting cost efficiency in the dairy industry in Latvia. Econ. Sci. Rural. Dev. Conf. Proc. 2016, 41, 251–258. [Google Scholar]
- CSB. Grouping of Farms of All Kinds by the Number of Cattle and Dairy Cows at End of Year (LLG240); Central Statistical Bureau of Latvia: Rīga, Latvia, 2019. [Google Scholar]
- Pilvere, I.; Nipers, A.; Krievina, A.; Upite, I. Development prospects of milk production in various size farm groups in Latvia. In Proceedings of the 19th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 20–22 May 2020. [Google Scholar]
- Aubron, C.; Cochet, H.; Brunschwig, G.; Moulin, C.-H. Labor and its productivity in Andean dairy farming systems: A comparative approach. Hum. Ecol. 2009, 37, 407–419. [Google Scholar] [CrossRef]
- Bernard, J.; Le Gal, P.-Y.; Triomphe, B.; Hostiou, N.; Moulin, C.-H. Involvement of small-scale dairy farms in an industrial supply chain: When production standards meet farm diversity. Animal 2011, 5, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Verhees, F.; Malak-Rawlikowska, A.; Stalgiene, A.; Kuipers, A.; Klopčič, M. Dairy farmers’ business strategies in Central and Eastern Europe based on evidence from Lithuania, Poland and Slovenia. Ital. J. Anim. Sci. 2018, 17, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Nordborg, M.; Davis, J.; Cederberg, C.; Woodhouse, A. Freshwater ecotoxicity impacts from pesticide use in animal and vegetable foods produced in Sweden. Sci. Total Environ. 2017, 581, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Osītis, U. Govju ēdināšana (Cow Feeding); Latvian Agricultural Advisory and Training Centre: Ozolnieki, Latvia, 2002; p. 45. [Google Scholar]
- Nipers, A.; Pilvere, I.; Valdovska, A.; Proskina, L. Assessment of key aspects of technologies and cow farming for milk production in Latvia. In Proceedings of the 15th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 25–27 May 2016; pp. 175–181. [Google Scholar]
- ADC. Pārraudzības Rezultāti Ganāmpulkos 2017/2018 Pārraudzības Gadā (Monitoring Results of Herds in 2017/2018); Agricultural Data Center: Rīga, Latvia, 2019. [Google Scholar]
- Crosson, P.; Shalloo, L.; O’brien, D.; Lanigan, G.; Foley, P.; Boland, T.; Kenny, D. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim. Feed Sci. Technol. 2011, 166, 29–45. [Google Scholar] [CrossRef]
- Bell, M.; Wall, E.; Russell, G.; Simm, G.; Stott, A. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. J. Dairy Sci. 2011, 94, 3662–3678. [Google Scholar] [CrossRef]
- Casey, J.; Holden, N. The relationship between greenhouse gas emissions and the intensity of milk production in Ireland. J. Environ. Qual. 2005, 34, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Audsley, E.; Wilkinson, M. What is the potential for reducing national greenhouse gas emissions from crop and livestock production systems? J. Clean. Prod. 2014, 73, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.-J.; Humphreys, J.; Holden, N. Life cycle assessment of milk production from commercial dairy farms: The influence of management tactics. J. Dairy Sci. 2013, 96, 4112–4124. [Google Scholar] [CrossRef]
- 20. IDF. Common carbon footprint approach for dairy: The IDF guide to standard lifecycle assessment methodology for the dairy sector. Bull. Int. Dairy Fed. 2010, 445, 1–46.
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- MEPRD. Latvia’s National Inventory Report Submission under UNFCCC and the Kyoto Protocol Common Reporting Formats (CRF) 1990–2017; Ministry of Environmental Protection and Regional Development: Riga, Latvia, 2019. [Google Scholar]
- Degola, L.; Cielava, L.; Trūpa, A.; Aplociņa, E. Feed rations in different size dairy farms. In Proceedings of the Zinātniski praktiskā konference “Līdzvarota Lauksaimniecība”, Jelgava, Latvia, 25–26 February 2016; pp. 161–168. [Google Scholar]
- Lauku, T. Racionālu Piena Lopkopības Ražošanas Modeļu Rokasgrāmata (Handbook of Rational Dairy Production Models). Available online: http://www.laukutikls.lv/racionalu-piena-lopkopibas-razosanas-modelu-rokasgramata (accessed on 16 July 2020).
- EDA. Product Environmental Footprint Category Rules for Dairy Products; European Dairy Association: Bruxelles, Belgium, 2018. [Google Scholar]
- Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; Hollander, A.; Zijp, M.; Van Zelm, R. ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Priekulis, J.; Āboltiņš, A. Calculation methodology for cattle manure management systems based on the 2006 IPCC guideline. In Nordic View to Sustainable Rural Development, Proceedings of the 25th NJF Congress, Riga, Latvia, 16–18 June 2015; NJF Latvia: Riga, Latvia, 2015; pp. 274–280. [Google Scholar]
- Gil, J. Carbon footprint of Brazilian soy. Nat. Food 2020, 1, 323. [Google Scholar] [CrossRef]
- Nemecek, T.; Schmid, A.; Alig, M.; Schnebli, K.; Vaihinger, M. Variability of the global warming potential and energy demand of Swiss cheese. In Proceedings of the SETAC Europe 17th LCA Case Studies Symposium, Budapest, Hungary, 28 February–1 March 2011. [Google Scholar]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Knapp, J.; Laur, G.; Vadas, P.; Weiss, W.; Tricarico, J. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Thomassen, M.A.; van Calker, K.J.; Smits, M.C.; Iepema, G.L.; de Boer, I.J. Life cycle assessment of conventional and organic milk production in the Netherlands. Agric. Syst. 2008, 96, 95–107. [Google Scholar] [CrossRef]
- Mc Geough, E.; Little, S.; Janzen, H.; McAllister, T.; McGinn, S.; Beauchemin, K. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study. J. Dairy Sci. 2012, 95, 5164–5175. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Höchtl, F.; Spek, T. Traditional land-use and nature conservation in European rural landscapes. Environ. Sci. Policy 2006, 9, 317–321. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; De Boer, I.; Bernués, A.; Vellinga, T.V. Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. Agric. Syst. 2013, 116, 60–68. [Google Scholar] [CrossRef]
- Edwards-Jones, G.; Plassmann, K.; Harris, I. Carbon footprinting of lamb and beef production systems: Insights from an empirical analysis of farms in Wales, UK. J. Agric. Sci. 2009, 147, 707–719. [Google Scholar] [CrossRef]
- Chang, J.; Ciais, P.; Gasser, T.; Smith, P.; Herrero, M.; Havlík, P.; Obersteiner, M.; Guenet, B.; Goll, D.; Li, W. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 2020, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- FAO Stat. Food and Agriculture Organisation of the UN (FAO) Statistics Database: Production, Trade, Supply; FAO: Rome, Italy, 2019. [Google Scholar]
- Eriksson, M.; Ghosh, R.; Hansson, E.; Basnet, S.; Lagerkvist, C.-J. Environmental consequences of introducing genetically modified soy feed in Sweden. J. Clean. Prod. 2018, 176, 46–53. [Google Scholar] [CrossRef]
- Borras Jr, S.M.; Kay, C.; Gómez, S.; Wilkinson, J. Land grabbing and global capitalist accumulation: Key features in Latin America. Can. J. Dev. Stud./Rev. Can. D’études Du Développement 2012, 33, 402–416. [Google Scholar] [CrossRef]
- Crenna, E.; Sinkko, T.; Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 2019, 227, 378–391. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.; de Boer, I.; Schrijver, A.P.; van Zanten, H. Regenerative agriculture–the soil is the base. Glob. Food Secur. 2020, 26, 100404. [Google Scholar] [CrossRef]
Factors | Dairy Farm (1–9) | Dairy Farm (10–50) | Dairy Farm (51–100) | Dairy Farm (101–200) | Dairy Farm (>200) | Total/Average | Sources |
---|---|---|---|---|---|---|---|
Number of farms | 14,463 | 2295 | 306 | 131 | 91 | 17,286 | CSB [6] |
Number of cows | 33,717 | 45,514 | 20,758 | 17,605 | 36,430 | 154,024 | CSB [6] |
The average number of cows on the farm | 2 | 20 | 68 | 134 | 400 | Calculated | |
% of total (farms) | 84% | 13% | 2% | 1% | 1% | Calculated | |
% of total (cows) | 22% | 30% | 13% | 11% | 24% | Calculated | |
Average milk yield kg/cow/day | 19.5 | 20.1 | 23.3 | 27.1 | 29.4 | Calculated from ADC [14] | |
Average milk yield kg/cow/year | 5961 | 6139 | 7116 | 8269 | 8979 | 7147 | ADC [14] |
Average fat content (%) | 4.17 | 4.17 | 4.18 | 4.13 | 4.04 | 4.07 | Calculated from ADC [14] |
Average protein content (%) | 3.26 | 3.25 | 3.3 | 3.33 | 3.36 | 3.32 | Calculated from ADC [14] |
Total milk yield (kg/year) | 201.0 | 279.4 | 147.7 | 145.6 | 327.1 | 1 101 | Calculated |
% of total milk yield | 18% | 25% | 13% | 13% | 30% | Calculated | |
Fat and protein corrected milk (FPCM) (kg/cow/year) | 6066 | 6242 | 7272 | 8419 | 9064 | 7218 | Calculated |
Dairy Farm (1–9) | Dairy Farm (10–50) | Dairy Farm (51–100) | Dairy Farm (101–200) | Dairy Farm (>200) | |
---|---|---|---|---|---|
Grass | 8.1 | 3.3 | 2.5 | 1.8 | 2.6 |
Haylage/grass silage | 5.3 | 7.1 | 6.7 | 5.2 | 6.6 |
Alfalfa silage | 9.6 | 8.4 | 8.3 | 6.1 | 4.7 |
Straw | 1.2 | 0.6 | 0.4 | 0.8 | 0.7 |
Corn silage | - | 1.1 | 1.2 | 2.8 | 4.2 |
Fodder oat | 0.9 | 1 | 1 | 1.1 | 1.2 |
Fodder pea | 2 | 2.1 | 2.2 | 2.5 | 2.7 |
Mixed roots | 1.8 | 1 | - | - | - |
Molasses | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 |
Expeller and meal | 0.5 | 0.8 | 1 | 1.6 | 1.4 |
Dairy Farm (1–9) | Dairy Farm (10–50) | Dairy Farm (51–100) | Dairy Farm (101–200) | Dairy Farm (>200) | |
---|---|---|---|---|---|
Daily DM consumption, kg | 16.7 | 20.9 | 23.5 | 22.3 | 24.6 |
Crude protein, g | 2388 | 2743 | 2528 | 2745 | 3259 |
Crude fats, g | 594 | 537 | 668 | 701 | 724 |
Crude fiber, kg | 5.6 | 5.8 | 4.5 | 7.0 | 5.5 |
Nitrogen free extract, kg | 10.3 | 10.5 | 9.9 | 11.0 | 13.1 |
Dairy Farm (1–9) | Dairy Farm (10–50) | Dairy Farm (51–100) | Dairy Farm (101–200) | Dairy Farm (>200) | |
---|---|---|---|---|---|
Electricity consumption, kWh/cow | 246 | 289 | 421 | 487 | 524 |
Heat consumption, MJ/cow | - | 179 | 417 | 483 | 520 |
Impact Category | Unit | Dairy Farm (1–9) | Dairy Farm (10–50) | Dairy Farm (51–100) | Dairy Farm (101–200) | Dairy Farm (>200) | Coefficient of Variation |
---|---|---|---|---|---|---|---|
GWP | kg CO2e | 0.88 | 1.02 | 1.09 | 0.93 | 0.84 | 10% |
Terrestrial acidification | kg SO2e | 0.015 | 0.016 | 0.016 | 0.014 | 0.013 | 8% |
Freshwater eutrophication | kg Pe | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0001 | 22% |
Marine eutrophication | kg Ne | 0.0018 | 0.0025 | 0.0037 | 0.0027 | 0.0018 | 28% |
Freshwater ecotoxicity | kg 1,4 Di-chloro-benzene (DCBeq.) | 0.0061 | 0.0073 | 0.0068 | 0.0057 | 0.0042 | 18% |
Land use | m2 cropeq. | 1.71 | 1.42 | 1.35 | 1.03 | 0.76 | 26% |
Fossil resource scarcity | kg oileq. | 0.054 | 0.060 | 0.062 | 0.051 | 0.039 | 15% |
Water use | m3 | 0.099 | 0.049 | 0.040 | 0.030 | 0.028 | 53% |
Impact Category | Units | Dairy Farm (1–9) | Dairy Farm (10–50) | Dairy Farm (51–100) | Dairy Farm (101–200) | Dairy Farm (>200) | Average/Total |
---|---|---|---|---|---|---|---|
GWP—Total | 1000 t CO2e | 176.0 | 284.4 | 160.6 | 134.7 | 275.7 | 1031 |
GWP per cow | kg CO2e | 5219 | 6248 | 7736 | 7654 | 7568 | 6696 |
Land use—Total | million m2 | 342.8 | 396.1 | 200.1 | 150.2 | 248.2 | 1 337 |
Land use per cow | m2 | 10,167 | 8703 | 9640 | 8532 | 6812 | 8683 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brizga, J.; Kurppa, S.; Heusala, H. Environmental Impacts of Milking Cows in Latvia. Sustainability 2021, 13, 784. https://doi.org/10.3390/su13020784
Brizga J, Kurppa S, Heusala H. Environmental Impacts of Milking Cows in Latvia. Sustainability. 2021; 13(2):784. https://doi.org/10.3390/su13020784
Chicago/Turabian StyleBrizga, Janis, Sirpa Kurppa, and Hannele Heusala. 2021. "Environmental Impacts of Milking Cows in Latvia" Sustainability 13, no. 2: 784. https://doi.org/10.3390/su13020784
APA StyleBrizga, J., Kurppa, S., & Heusala, H. (2021). Environmental Impacts of Milking Cows in Latvia. Sustainability, 13(2), 784. https://doi.org/10.3390/su13020784