A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions and Frame of the Analysis
2.2. Search Strategy
- The study conducted has at least one experiment/modelling approach where the authors studied at least one factor/property and tested the effect of this factor/property by comparing different values of it and directly mentioning the influence of factor/property on the hydrological/thermal performance of green roof and their influence index.
- Studies were excluded if they lacked any relevant information, either missing or ambiguous, as per the understanding of the author. Any other publication lacking primary data and/or explicit method descriptions were also excluded.
2.3. Data Extraction
3. Results
3.1. Characteristics of the Included Studies
3.2. Total Number of External Factors and Internal Properties (Considered vs. Studied)
3.3. Influence of External Factors
3.4. Influence of Internal Properties
3.5. Factor–Performance Relations Influence
3.6. Property–Performance–Relations Influence
4. Discussion
4.1. Identification of Levers to Enhance the Performances of Green Roof
4.2. Filling the Gaps: The Exploration of the Unstudied Relations
4.3. Promotion of Deeper and Innovative Experimental Approaches for Research on Green Roof Performances
4.4. From Mono to Transdisciplinary Research about Green Roofs
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Initial Factors Considered | |
Class | Characteristics |
Rain | intensity |
frequency | |
duration | |
hydrometeor | |
Temperature | air temperature |
average | |
minimum | |
maximum | |
Heat fluxes | solar radiation |
conductive flux from the building | |
infrared radiation | |
latent heat | |
sensible flux | |
storage flux | |
Building surface | evenness |
slope | |
total surface | |
height of the building | |
architecture | |
roughness (surrounding buildings) | |
nature of the covering material | |
Wind | speed |
orientation | |
Atmospheric and weather conditions | air humidity |
fine particles deposition | |
cloudiness | |
pollutants concentration | |
greenhouse gases | |
Initial Properties Considered | |
Class | Characteristics |
Nature | composition |
manufacturer | |
date of fabrication | |
date of implementation | |
Physical | depth |
surface state | |
horizonation/layering | |
porosity | |
granulometry | |
bulk density | |
solid density | |
structure | |
aggregate stability | |
Pore-size distribution | |
Hydric | retention curve |
water-holding capacity | |
wilting point | |
saturation point | |
hydraulic conductivity | |
preferential flow | |
van Genuchten parameters | |
Chemical | organic carbon |
nitrogen | |
pH | |
CEC | |
available phosphorus | |
mineralogy | |
chemical conductivity | |
Thermic | thermal conductivity |
thermal capacity | |
Biological | germination capacity |
microbial diversity | |
microbial abundancy | |
Living organisms (vegetation, animals, microorganisms) | organic matter addition (e.g., faeces deposition) |
organic matter transformation | |
burrowing activities | |
leaf area | |
biological diversity | |
biological abundancy |
Appendix B
1. | A. Graceson, M. Hare, J. Monaghan, and N. Hall, “The water retention capabilities of growing media for green roofs,” Ecological Engineering, vol. 61, pp. 328–334, Dec. 2013, doi:10.1016/j.ecoleng.2013.09.030. |
2. | W. Liu, Q. Feng, W. Chen, W. Wei, and R. C. Deo, “The influence of structural factors on stormwater runoff retention of extensive green roofs: new evidence from scale-based models and real experiments,” Journal of Hydrology, vol. 569, pp. 230–238, Feb. 2019, doi:10.1016/j.jhydrol.2018.11.066. |
3. | Liu and Chui, “Evaluation of Green Roof Performance in Mitigating the Impact of Extreme Storms,” Water, vol. 11, no. 4, p. 815, Apr. 2019, doi:10.3390/w11040815. |
4. | S. Poë, V. Stovin, and C. Berretta, “Parameters influencing the regeneration of a green roof’s retention capacity via evapotranspiration,” Journal of Hydrology, vol. 523, pp. 356–367, Apr. 2015, doi:10.1016/j.jhydrol.2015.02.002. |
5. | M. E. Sia, “Evapotranspiration from extensive green roofs: influence of climatological conditions, vegetation type, and substrate depth,” p. 88. |
6. | R. Bouzouidja, G. Rousseau, V. Galzin, R. Claverie, D. Lacroix, and G. Séré, “Green roof ageing or Isolatic Technosol’s pedogenesis?,” Journal of Soils and Sediments, vol. 18, no. 2, pp. 418–425, Feb. 2018, doi:10.1007/s11368-016-1513-3. |
7. | S. De-Ville, M. Menon, X. Jia, G. Reed, and V. Stovin, “The impact of green roof ageing on substrate characteristics and hydrological performance,” Journal of Hydrology, vol. 547, pp. 332–344, Apr. 2017, doi:10.1016/j.jhydrol.2017.02.006. |
8. | S. De-Ville, M. Menon, X. Jia, and V. Stovin, “A Longitudinal Microcosm Study on the Effects of Ageing on Potential Green Roof Hydrological Performance,” Water, vol. 10, no. 6, p. 784, Jun. 2018, doi:10.3390/w10060784. |
9. | Z. Peng, C. Smith, and V. Stovin, “The importance of unsaturated hydraulic conductivity measurements for green roof detention modelling,” Journal of Hydrology, vol. 590, p. 125273, Nov. 2020, doi:10.1016/j.jhydrol.2020.125273. |
10. | V. Stovin, S. Poë, S. De-Ville, and C. Berretta, “The influence of substrate and vegetation configuration on green roof hydrological performance,” Ecological Engineering, vol. 85, pp. 159–172, Dec. 2015, doi:10.1016/j.ecoleng.2015.09.076. |
11. | M. H. N. Yio, V. Stovin, J. Werdin, and G. Vesuviano, “Experimental analysis of green roof substrate detention characteristics,” Water Science and Technology, vol. 68, no. 7, pp. 1477–1486, Oct. 2013, doi:10.2166/wst.2013.381. |
12. | A. Nagase and N. Dunnett, “Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure,” Landscape and Urban Planning, vol. 104, no. 3–4, pp. 356–363, Mar. 2012, doi:10.1016/j.landurbplan.2011.11.001. |
13. | T. Susca, S. R. Gaffin, and G. R. Dell’Osso, “Positive effects of vegetation: Urban heat island and green roofs,” Environmental Pollution, vol. 159, no. 8–9, pp. 2119–2126, Aug. 2011, doi:10.1016/j.envpol.2011.03.007. |
14. | A. Albatayneh, D. Alterman, A. Page, and B. Moghtaderi, “Renewable Energy Systems to Enhance Buildings Thermal Performance and Decrease Construction Costs,” Energy Procedia, vol. 152, pp. 312–317, Oct. 2018, doi:10.1016/j.egypro.2018.09.138. |
15. | E. Axelrad, “in Environmental Health Sciences,” p. 38, 2019. |
16. | N. D. VanWoert, D. B. Rowe, J. A. Andresen, C. L. Rugh, R. T. Fernandez, and L. Xiao, “Green Roof Stormwater Retention,” Journal of Environment Quality, vol. 34, no. 3, p. 1036, 2005, doi:10.2134/jeq2004.0364. |
17. | J. Mentens, D. Raes, and M. Hermy, “Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century?,” Landscape and Urban Planning, vol. 77, no. 3, pp. 217–226, Aug. 2006, doi:10.1016/j.landurbplan.2005.02.010. |
18. | F. Viola, M. Hellies, and R. Deidda, “Retention performance of green roofs in representative climates worldwide,” Journal of Hydrology, vol. 553, pp. 763–772, Oct. 2017, doi:10.1016/j.jhydrol.2017.08.033. |
19. | T. Savi et al., “Does shallow substrate improve water status of plants growing on green roofs? Testing the paradox in two sub-Mediterranean shrubs,” Ecological Engineering, vol. 84, pp. 292–300, Nov. 2015, doi:10.1016/j.ecoleng.2015.09.036. |
20. | C. F. Fang, “Rainwater retention capacity of green roofs in subtropical monsoonal climatic regions: a case study of Taiwan,” Pisa, Italy, Jun. 2010, pp. 239–249, doi:10.2495/DN100211. |
21. | M. A. Monterusso, D. B. Rowe, C. L. Rugh, and D. K. Russell, “RUNOFF WATER QUANTITY AND QUALITY FROM GREEN ROOF SYSTEMS,” Acta Horticulturae, no. 639, pp. 369–376, Jun. 2004, doi:10.17660/ActaHortic.2004.639.49. |
22. | F. L. Duley and C. E. Domingo, “Effect of Grass on Intake of Water,” p. 19, 1949. |
23. | T. L. Carter and T. C. Rasmussen, “HYDROLOGIC BEHAVIOR OF VEGETATED ROOFS,” JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, p. 14. |
24. | I. Schultz, D. J. Sailor, and O. Starry, “Effects of substrate depth and precipitation characteristics on stormwater retention by two green roofs in Portland OR,” Journal of Hydrology: Regional Studies, vol. 18, pp. 110–118, Aug. 2018, doi:10.1016/j.ejrh.2018.06.008. |
25. | S. Li, H. Qin, Y. Peng, and S. T. Khu, “Modelling the combined effects of runoff reduction and increase in evapotranspiration for green roofs with a storage layer,” Ecological Engineering, vol. 127, pp. 302–311, Feb. 2019, doi:10.1016/j.ecoleng.2018.12.003. |
26. | E. Fassman and R. Simcock, “Moisture Measurements as Performance Criteria for Extensive Living Roof Substrates,” Journal of Environmental Engineering, vol. 138, no. 8, pp. 841–851, Aug. 2012, doi:10.1061/(ASCE)EE.1943-7870.0000532. |
27. | H. J. Ladani, J.-R. Park, Y.-S. Jang, and H.-S. Shin, “Hydrological Performance Assessment for Green Roof with Various Substrate Depths and Compositions,” KSCE Journal of Civil Engineering, Feb. 2019, doi:10.1007/s12205-019-0270-4. |
28. | Y. He, H. Yu, P. Chen, and M. Zhao, “Thermal performance evaluation of a new type of green roof system,” Energy Procedia, vol. 152, pp. 384–389, Oct. 2018, doi:10.1016/j.egypro.2018.09.161. |
29. | M. Dominique, R. H. Tiana, R. T. Fanomezana, and A. A. Ludovic, “Thermal Behavior of Green Roof in Reunion Island: Contribution Towards a Net Zero Building,” Energy Procedia, vol. 57, pp. 1908–1921, 2014, doi:10.1016/j.egypro.2014.10.055. |
30. | G. Kokogiannakis, A. Tietje, and J. Darkwa, “The role of Green Roofs on Reducing Heating and Cooling Loads: A Database across Chinese Climates,” Procedia Environmental Sciences, vol. 11, pp. 604–610, 2011, doi:10.1016/j.proenv.2011.12.094. |
31. | G. Heidarinejad and A. Esmaili, “Numerical simulation of the dual effect of green roof thermal performance,” Energy Conversion and Management, vol. 106, pp. 1418–1425, Dec. 2015, doi:10.1016/j.enconman.2015.10.020. |
32. | K. L. Getter, D. B. Rowe, and J. A. Andresen, “Quantifying the effect of slope on extensive green roof stormwater retention,” Ecological Engineering, vol. 31, no. 4, pp. 225–231, Dec. 2007, doi:10.1016/j.ecoleng.2007.06.004. |
33. | K. L. Getter, D. B. Rowe, G. P. Robertson, B. M. Cregg, and J. A. Andresen, “Carbon Sequestration Potential of Extensive Green Roofs,” Environmental Science & Technology, vol. 43, no. 19, pp. 7564–7570, Oct. 2009, doi:10.1021/es901539x. |
34. | K. L. Getter, D. B. Rowe, J. A. Andresen, and I. S. Wichman, “Seasonal heat flux properties of an extensive green roof in a Midwestern U.S. climate,” Energy and Buildings, vol. 43, no. 12, pp. 3548–3557, Dec. 2011, doi:10.1016/j.enbuild.2011.09.018. |
35. | E. P. DelBarrio, “Analysis of the green roofs cooling potential in buildings,” p. 15. |
36. | I. Jaffal, S.-E. Ouldboukhitine, and R. Belarbi, “A comprehensive study of the impact of green roofs on building energy performance,” Renewable Energy, vol. 43, pp. 157–164, Jul. 2012, doi:10.1016/j.renene.2011.12.004. |
37. | M. Tang and X. Zheng, “Experimental study of the thermal performance of an extensive green roof on sunny summer days,” Applied Energy, vol. 242, pp. 1010–1021, May 2019, doi:10.1016/j.apenergy.2019.03.153. |
38. | S. Onmura, M. Matsumoto, and S. Hokoi, “Study on evaporative cooling effect of roof lawn gardens,” Energy and Buildings, vol. 33, no. 7, pp. 653–666, Sep. 2001, doi:10.1016/S0378-7788(00)00134-1. |
39. | A. Khabaz, “Construction and design requirements of green buildings’ roofs in Saudi Arabia depending on thermal conductivity principle,” Construction and Building Materials, vol. 186, pp. 1119–1131, Oct. 2018, doi:10.1016/j.conbuildmat.2018.07.234. |
40. | A. O. Eriksson, “Water Runoff Properties for Expanded Clay LWA in Green Roofs,” p. 98. |
41. | L. S. H. Lee and C. Y. Jim, “Thermal-cooling performance of subtropical green roof with deep substrate and woodland vegetation,” Ecological Engineering, vol. 119, pp. 8–18, Aug. 2018, doi:10.1016/j.ecoleng.2018.05.014. |
42. | H. F. Castleton, V. Stovin, S. B. M. Beck, and J. B. Davison, “Green roofs; building energy savings and the potential for retrofit,” Energy and Buildings, vol. 42, no. 10, pp. 1582–1591, Oct. 2010, doi:10.1016/j.enbuild.2010.05.004. |
43. | D. Armson, P. Stringer, and A. R. Ennos, “The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK,” Urban Forestry & Urban Greening, vol. 12, no. 3, pp. 282–286, Jan. 2013, doi:10.1016/j.ufug.2013.04.001. |
44. | Z. Zhang, C. Szota, T. D. Fletcher, N. S. G. Williams, and C. Farrell, “Green roof storage capacity can be more important than evapotranspiration for retention performance,” Journal of Environmental Management, vol. 232, pp. 404–412, Feb. 2019, doi:10.1016/j.jenvman.2018.11.070. |
45. | A. Talebi, S. Bagg, B. E. Sleep, and D. M. O’Carroll, “Water retention performance of green roof technology: A comparison of canadian climates,” Ecological Engineering, vol. 126, pp. 1–15, Jan. 2019, doi:10.1016/j.ecoleng.2018.10.006. |
46. | B. Johannessen, T. Muthanna, and B. Braskerud, “Detention and Retention Behavior of Four Extensive Green Roofs in Three Nordic Climate Zones,” Water, vol. 10, no. 6, p. 671, May 2018, doi:10.3390/w10060671. |
47. | X. Wang, Y. Tian, and X. Zhao, “The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality,” Science of The Total Environment, vol. 592, pp. 465–476, Aug. 2017, doi:10.1016/j.scitotenv.2017.03.124. |
48. | C. Michels, S. Güths, D. L. Marinoski, and R. Lamberts, “Development of an experimental test rig for the evaluation of the thermal performance of building roofs,” Energy and Buildings, vol. 180, pp. 32–41, Dec. 2018, doi:10.1016/j.enbuild.2018.09.023. |
49. | E. E. Koks, H. de, and E. Koome, “Comparing Extreme Rainfall and Large-Scale Flooding Induced Inundation Risk—Evidence from a Dutch Case-Study,” in Studies on Water Management Issues, M. Kumarasamy, Ed. InTech, 2012, doi:10.5772/30378. |
50. | P. Y. Groisman, R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, “Trends in Intense Precipitation in the Climate Record,” Journal of Climate, vol. 18, no. 9, pp. 1326–1350, May 2005, doi:10.1175/JCLI3339.1. |
51. | Y. Gong et al., “Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff,” Science of The Total Environment, vol. 732, p. 139248, Aug. 2020, doi:10.1016/j.scitotenv.2020.139248. |
52. | M. Eksi and D. B. Rowe, “EFFECT OF SUBSTRATE DEPTH AND TYPE ON PLANT GROWTH FOR EXTENSIVE GREEN ROOFS IN A MEDITERRANEAN CLIMATE,” Journal of Green Building, vol. 14, no. 2, pp. 29–44, Mar. 2019, doi:10.3992/1943-4618.14.2.29. |
53. | Y. Dusza, “Toitures végétalisées et services écosystémiques: favoriser la multifonctionnalité via les interactions sols-plantes et la diversité végétale,” p. 209. |
54. | Z. Zeng et al., “Climate mitigation from vegetation biophysical feedbacks during the past three decades,” Nature Climate Change, vol. 7, no. 6, pp. 432–436, Jun. 2017, doi:10.1038/nclimate3299. |
55. | A. K. K. Lau, E. Salleh, C. H. Lim, and M. Y. Sulaiman, “Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia,” International Journal of Sustainable Built Environment, vol. 5, no. 2, pp. 387–399, Dec. 2016, doi:10.1016/j.ijsbe.2016.04.004. |
56. | Q. Meng, Y. Zhang, and L. Zhang, “Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel,” p. 6, 2006. |
57. | V. Sandoval et al., “Impact of the Properties of a Green Roof Substrate on its Hydraulic and Thermal Behavior,” Energy Procedia, vol. 78, pp. 1177–1182, Nov. 2015, doi:10.1016/j.egypro.2015.11.097. |
58. | P. Du, S. K. Arndt, and C. Farrell, “Is plant survival on green roofs related to their drought response, water use or climate of origin?,” Science of The Total Environment, vol. 667, pp. 25–32, Jun. 2019, doi:10.1016/j.scitotenv.2019.02.349. |
59. | M. Zhao, P. C. Tabares-Velasco, J. Srebric, S. Komarneni, and R. Berghage, “Effects of plant and substrate selection on thermal performance of green roofs during the summer,” Building and Environment, vol. 78, pp. 199–211, Aug. 2014, doi:10.1016/j.buildenv.2014.02.011. |
60. | J. Cao, S. Hu, Q. Dong, L. Liu, and Z. Wang, “Green roof cooling contributed by plant species with different photosynthetic strategies,” Energy and Buildings, vol. 195, pp. 45–50, Jul. 2019, doi:10.1016/j.enbuild.2019.04.046. |
61. | H. Rakotondramiarana, T. Ranaivoarisoa, and D. Morau, “Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar,” Buildings, vol. 5, no. 2, pp. 497–520, May 2015, doi:10.3390/buildings5020497. |
62. | N. H. Wong, Y. Chen, C. L. Ong, and A. Sia, “Investigation of thermal beneÿts of rooftop garden in the tropical environment,” Building and Environment, p. 10, 2003. |
63. | S. Nadia, S. Noureddine, N. Hichem, and D. Djamila, “Experimental Study of Thermal Performance and the Contribution of Plant-Covered Walls to the Thermal Behavior of Building,” Energy Procedia, vol. 36, pp. 995–1001, 2013, doi:10.1016/j.egypro.2013.07.113. |
64. | M. Porcaro, M. Ruiz de Adana, F. Comino, A. Peña, E. Martín-Consuegra, and T. Vanwalleghem, “Long term experimental analysis of thermal performance of extensive green roofs with different substrates in Mediterranean climate,” Energy and Buildings, vol. 197, pp. 18–33, Aug. 2019, doi:10.1016/j.enbuild.2019.05.041. |
65. | S. Parizotto and R. Lamberts, “Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil,” Energy and Buildings, vol. 43, no. 7, pp. 1712–1722, Jul. 2011, doi:10.1016/j.enbuild.2011.03.014. |
66. | A. Fitchett, P. Govender, and P. Vallabh, “An exploration of green roofs for indoor and exterior temperature regulation in the South African interior,” Environment, Development and Sustainability, vol. 22, no. 6, pp. 5025–5044, Aug. 2020, doi:10.1007/s10668-019-00413-5. |
67. | G. Pęczkowski, T. Kowalczyk, K. Szawernoga, W. Orzepowski, R. Żmuda, and R. Pokładek, “Hydrological Performance and Runoff Water Quality of Experimental Green Roofs,” Water, vol. 10, no. 9, p. 1185, Sep. 2018, doi:10.3390/w10091185. |
68. | C. Xu, Z. Liu, G. Cai, and J. Zhan, “Experimental Study on the Retention and Interception Effect of an Extensive Green Roof (GR) with a Substrate Layer Modified with Kaolin,” Water, vol. 12, no. 8, p. 2151, Jul. 2020, doi:10.3390/w12082151. |
69. | R. M. Lazzarin, F. Castellotti, and F. Busato, “Experimental measurements and numerical modelling of a green roof,” Energy and Buildings, vol. 37, no. 12, pp. 1260–1267, Dec. 2005, doi:10.1016/j.enbuild.2005.02.001. |
70. | H. He and C. Y. Jim, “Simulation of thermodynamic transmission in green roof ecosystem,” Ecological Modelling, vol. 221, no. 24, pp. 2949–2958, Dec. 2010, doi:10.1016/j.ecolmodel.2010.09.002. |
71. | N. Meili et al., “An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0),” Geoscientific Model Development, vol. 13, no. 1, pp. 335–362, Jan. 2020, doi:10.5194/gmd-13-335-2020. |
72. | N. Gerzhova, J. Côté, P. Blanchet, C. Dagenais, and S. Ménard, “A Conceptual Framework for Modelling the Thermal Conductivity of Dry Green Roof Substrates,” p. 27. |
73. | A. Vasl, H. Shalom, G. J. Kadas, and L. Blaustein, “Sedum —Annual plant interactions on green roofs: Facilitation, competition and exclusion,” Ecological Engineering, vol. 108, pp. 318–329, Nov. 2017, doi:10.1016/j.ecoleng.2017.07.034. |
74. | R. Bouzouidja, G. Séré, R. Claverie, S. Ouvrard, L. Nuttens, and D. Lacroix, “Green roof aging: Quantifying the impact of substrate evolution on hydraulic performances at the lab-scale,” Journal of Hydrology, vol. 564, pp. 416–423, Sep. 2018, doi:10.1016/j.jhydrol.2018.07.032. |
75. | S. E. Gill, J. F. Handley, A. R. Ennos, and S. Pauleit, “Adapting Cities for Climate Change: The Role of the Green Infrastructure,” Built Environment, vol. 33, no. 1, pp. 115–133, Mar. 2007, doi:10.2148/benv.33.1.115. |
76. | G. Ercolani, E. A. Chiaradia, C. Gandolfi, F. Castelli, and D. Masseroni, “Evaluating performances of green roofs for stormwater runoff mitigation in a high flood risk urban catchment,” Journal of Hydrology, vol. 566, pp. 830–845, Nov. 2018, doi:10.1016/j.jhydrol.2018.09.050. |
77. | E. L. Villarreal and L. Bengtsson, “Response of a Sedum green-roof to individual rain events,” Ecological Engineering, vol. 25, no. 1, pp. 1–7, Jul. 2005, doi:10.1016/j.ecoleng.2004.11.008. |
78. | D. D. Carpenter and P. Kaluvakolanu, “Effect of Roof Surface Type on Storm-Water Runoff from Full-Scale Roofs in a Temperate Climate,” Journal of Irrigation and Drainage Engineering, vol. 137, no. 3, pp. 161–169, Mar. 2011, doi:10.1061/(ASCE)IR.1943-4774.0000185. |
79. | B. Y. Schindler, L. Blaustein, A. Vasl, G. J. Kadas, and M. Seifan, “Cooling effect of Sedum sediforme and annual plants on green roofs in a Mediterranean climate,” Urban Forestry & Urban Greening, vol. 38, pp. 392–396, Feb. 2019, doi:10.1016/j.ufug.2019.01.020. |
80. | C. Y. Jim, “Effect of vegetation biomass structure on thermal performance of tropical green roof,” Landscape and Ecological Engineering, vol. 8, no. 2, pp. 173–187, Jul. 2012, doi:10.1007/s11355-011-0161-4. |
81. | M. Mobilia and A. Longobardi, “Impact of rainfall properties on the performance of hydrological models for green roofs simulation,” Water Science and Technology, vol. 81, no. 7, pp. 1375–1387, Apr. 2020, doi:10.2166/wst.2020.210. |
82. | X. Haowen et al., “Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D,” Water Supply, vol. 20, no. 1, pp. 130–139, Feb. 2020, doi:10.2166/ws.2019.140. |
83. | L. Liu, L. Sun, J. Niu, and W. J. Riley, “Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City,” Water, vol. 12, no. 8, p. 2082, Jul. 2020, doi:10.3390/w12082082. |
84. | J. Schade, S. Lidelöw, and J. Lönnqvist, “The thermal performance of a green roof on a highly insulated building in a sub-arctic climate,” Energy and Buildings, vol. 241, p. 110961, Jun. 2021, doi:10.1016/j.enbuild.2021.110961. |
85. | K. X. Soulis, N. Ntoulas, P. A. Nektarios, and G. Kargas, “Runoff reduction from extensive green roofs having different substrate depth and plant cover,” Ecological Engineering, vol. 102, pp. 80–89, May 2017, doi:10.1016/j.ecoleng.2017.01.031. |
86. | R. Castiglia Feitosa and S. Wilkinson, “Modelling green roof stormwater response for different soil depths,” Landscape and Urban Planning, vol. 153, pp. 170–179, Sep. 2016, doi:10.1016/j.landurbplan.2016.05.007. |
87. | P. Bevilacqua, D. Mazzeo, and N. Arcuri, “Thermal inertia assessment of an experimental extensive green roof in summer conditions,” Building and Environment, vol. 131, pp. 264–276, Mar. 2018, doi:10.1016/j.buildenv.2017.11.033. |
88. | M. Sněhota, J. Hanzlíková, M. Sobotková, and P. Moravcik, “Water and thermal regime of extensive green roof test beds planted with sedum cuttings and sedum carpets,” Journal of Soils and Sediments, Sep. 2020, doi:10.1007/s11368-020-02778-x. |
89. | M. Maiolo, B. Pirouz, R. Bruno, S. A. Palermo, N. Arcuri, and P. Piro, “The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate,” Sustainability, vol. 12, no. 1, p. 359, Jan. 2020, doi:10.3390/su12010359. |
90. | L. Yao, Z. Wu, Y. Wang, S. Sun, W. Wei, and Y. Xu, “Does the spatial location of green roofs affects runoff mitigation in small urbanized catchments?,” Journal of Environmental Management, vol. 268, p. 110707, Aug. 2020, doi:10.1016/j.jenvman.2020.110707. |
91. | E. Cristiano, S. Urru, S. Farris, D. Ruggiu, R. Deidda, and F. Viola, “Analysis of potential benefits on flood mitigation of a CAM green roof in Mediterranean urban areas,” Building and Environment, vol. 183, p. 107179, Oct. 2020, doi:10.1016/j.buildenv.2020.107179. |
92. | Y. He, H. Yu, A. Ozaki, and N. Dong, “Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area,” Journal of Cleaner Production, vol. 267, p. 122205, Sep. 2020, doi:10.1016/j.jclepro.2020.122205. |
93. | M. Ebadati and M. A. Ehyaei, “Reduction of energy consumption in residential buildings with green roofs in three different climates of Iran,” Advances in Building Energy Research, vol. 14, no. 1, pp. 66–93, Jan. 2020, doi:10.1080/17512549.2018.1489894. |
94. | S. Huang, A. Garg, G. Mei, D. Huang, R. B. Chandra, and S. G. Sadasiv, “Experimental study on the hydrological performance of green roofs in the application of novel biochar,” Hydrological Processes, vol. 34, no. 23, pp. 4512–4525, Nov. 2020, doi:10.1002/hyp.13881. |
95. | A. Ragab and A. Abdelrady, “Impact of Green Roofs on Energy Demand for Cooling in Egyptian Buildings,” Sustainability, vol. 12, no. 14, p. 5729, Jul. 2020, doi:10.3390/su12145729. |
96. | V. Skala et al., “Hydrological and thermal regime of a thin green roof system evaluated by physically-based model,” Urban Forestry & Urban Greening, vol. 48, p. 126582, Feb. 2020, doi:10.1016/j.ufug.2020.126582. |
97. | A. Naranjo, A. Colonia, J. Mesa, and A. Maury-Ramírez, “Evaluation of Semi-Intensive Green Roofs with Drainage Layers Made Out of Recycled and Reused Materials,” Coatings, vol. 10, no. 6, p. 525, May 2020, doi:10.3390/coatings10060525. |
98. | L. Cirrincione et al., “Green Roofs as Effective Tools for Improving the Indoor Comfort Levels of Buildings—An Application to a Case Study in Sicily,” Applied Sciences, vol. 10, no. 3, p. 893, Jan. 2020, doi:10.3390/app10030893. |
99. | R. Castiglia Feitosa and S. J. Wilkinson, “Attenuating heat stress through green roof and green wall retrofit,” Building and Environment, vol. 140, pp. 11–22, Aug. 2018, doi:10.1016/j.buildenv.2018.05.034. |
100. | A. Gagliano, F. Nocera, M. Detommaso, and G. Evola, “Thermal Behavior of an Extensive Green Roof: Numerical Simulations and Experimental Investigations,” IJHT, vol. 34, no. S2, pp. S226–S234, Oct. 2016, doi:10.18280/ijht.34S206. |
References
- Lazzarin, R.M.; Castellotti, F.; Busato, F. Experimental measurements and numerical modelling of a green roof. Energy Build. 2005, 37, 1260–1267. [Google Scholar] [CrossRef]
- Vergriete, Y.; Labrecque, M. Analyse Préliminaire de L’aménagement du Site du Garage Municipal de Ville de Laval. Available online: http://docplayer.fr/6155270-Etude-des-biotopes-urbains-et-periurbains-de-la-cmm.html (accessed on 5 August 2021).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Richtlinie für die Planung, Ausführung und Pflege von Dachbegrünungen: Dachbegrünungsrichtlinie; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau: Bonn, Germany, 2008; pp. 3–118. ISBN 978-3-940122-08-7.
- Breuning, J.; Yanders, A.C. Introduction to the FLL Guidelines for the Planning, Construction and Maintenance of Green Roofing. In Green Roofing Guideline; Green Roof Service LLC: Baltimore, MD, USA, 2008; p. 9. [Google Scholar]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Castleton, H.; Stovin, V.; Beck, S.; Davison, J. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Jaffal, I.; Ouldboukhitine, S.-E.; Belarbi, R. A comprehensive study of the impact of green roofs on building energy performance. Renew. Energy 2012, 43, 157–164. [Google Scholar] [CrossRef]
- Battista, G.; Pastore, E.M.; Mauri, L.; Basilicata, C. Green Roof Effects in a Case Study of Rome (Italy). Energy Procedia 2016, 101, 1058–1063. [Google Scholar] [CrossRef]
- Rakotondramiarana, H.T.; Ranaivoarisoa, T.F.; Morau, D. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar. Builds 2015, 5, 497–520. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, E.L.; Bengtsson, L. Response of a Sedum green-roof to individual rain events. Ecol. Eng. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Fassman, E.; Simcock, R. Moisture Measurements as Performance Criteria for Extensive Living Roof Substrates. J. Environ. Eng. 2012, 138, 841–851. [Google Scholar] [CrossRef]
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414–415, 148–161. [Google Scholar] [CrossRef]
- Sims, A.W.; Robinson, C.E.; Smart, C.C.; Voogt, J.; Hay, G.J.; Lundholm, J.T.; Powers, B.; O’Carroll, D.M. Retention performance of green roofs in three different climate regions. J. Hydrol. 2016, 542, 115–124. [Google Scholar] [CrossRef]
- Bouzouidja, R.; Rousseau, G.; Galzin, V.; Claverie, R.; Lacroix, D.; Séré, G. Green roof ageing or Isolatic Technosol’s pedogenesis? J. Soils Sediments 2018, 18, 418–425. [Google Scholar] [CrossRef] [Green Version]
- De-Ville, S.; Menon, M.; Jia, X.; Stovin, V. A Longitudinal Microcosm Study on the Effects of Ageing on Potential Green Roof Hydrological Performance. Water 2018, 10, 784. [Google Scholar] [CrossRef] [Green Version]
- Jelinkova, V.; Dohnal, M.; Sacha, J. Thermal and water regime studied in a thin soil layer of green roof systems at early stage of pedogenesis. J. Soils Sediments 2016, 16, 2568–2579. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Matsler, A.M. Temporal Evolution of Green Stormwater Infrastructure Strategies in Three US Cities. Front. Built Environ. 2018, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Bouzouidja, R.; Séré, G.; Claverie, R.; Ouvrard, S.; Nuttens, L.; Lacroix, D. Green roof aging: Quantifying the impact of substrate evolution on hydraulic performances at the lab-scale. J. Hydrol. 2018, 564, 416–423. [Google Scholar] [CrossRef]
- Kutilek, M.; Jendele, L. The structural porosity in soil hydraulic functions—A review. Soil Water Res. 2008, 3, S7–S20. [Google Scholar] [CrossRef] [Green Version]
- De-Ville, S.; Menon, M.; Jia, X.; Reed, G.; Stovin, V. The impact of green roof ageing on substrate characteristics and hydrological performance. J. Hydrol. 2017, 547, 332–344. [Google Scholar] [CrossRef]
- Suszanowicz, D.; Więcek, A.K. The Impact of Green Roofs on the Parameters of the Environment in Urban Areas—Review. Atmosphere 2019, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lin, Z.; Zhang, S.; Ge, D. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations. J. Environ. Manag. 2021, 291, 112682. [Google Scholar] [CrossRef] [PubMed]
- Schade, J.; Lidelöw, S.; Lönnqvist, J. The thermal performance of a green roof on a highly insulated building in a sub-arctic climate. Energy Build. 2021, 241, 110961. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, F.; Yin, H.; Middel, A.; Liu, H.; Wang, D.; Sun, T.; Lensky, I. Outdoor thermal performance of green roofs across multiple time scales: A case study in subtropical China. Sustain. Cities Soc. 2021, 70, 102909. [Google Scholar] [CrossRef]
- Hashemi, S.S.G.; Bin Mahmud, H.; Ashraf, M.A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar] [CrossRef]
- Andenæs, E.; Kvande, T.; Muthanna, T.M.; Lohne, J. Performance of Blue-Green Roofs in Cold Climates: A Scoping Review. Buildings 2018, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Stovin, V.; Poë, S.; De-Ville, S.; Berretta, C. The influence of substrate and vegetation configuration on green roof hydrological performance. Ecol. Eng. 2015, 85, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Pendleton, R.L.; Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology. Geogr. Rev. 1945, 35, 336. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R.C. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Liu, W.; Engel, B.A.; Chen, W.; Wei, W.; Wang, Y.; Feng, Q. Quantifying the contributions of structural factors on runoff water quality from green roofs and optimizing assembled combinations using Taguchi method. J. Hydrol. 2021, 593, 125864. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, J.; Fang, X.; Yin, D.; Xie, P.; Nie, L. Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff. Sci. Total Environ. 2020, 732, 139248. [Google Scholar] [CrossRef] [PubMed]
- Ladani, H.J.; Park, J.R.; Jang, Y.-S.; Shin, H.-S. Hydrological Performance Assessment for Green Roof with Various Substrate Depths and Compositions. KSCE J. Civ. Eng. 2019, 23, 1860–1871. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Andresen, J.A. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Baryła, A.; Karczmarczyk, A.; Brandyk, A.; Bus, A. The influence of a green roof drainage layer on retention capacity and leakage quality. Water Sci. Technol. 2018, 77, 2886–2895. [Google Scholar] [CrossRef] [Green Version]
- Eksi, M.; Rowe, D.B. Effect of substrate depth and type on plant growth for extensive green roofs in a mediterranean climate. J. Green Build. 2019, 14, 29–44. [Google Scholar] [CrossRef]
- Yio, M.; Stovin, V.; Werdin, J.; Vesuviano, G. Experimental analysis of green roof substrate detention characteristics. Water Sci. Technol. 2013, 68, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Ouellet, F.; Charron, J.F. Cold Acclimation and Freezing Tolerance in Plants; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Graceson, A.; Hare, M.; Monaghan, J.; Hall, N. The water retention capabilities of growing media for green roofs. Ecol. Eng. 2013, 61, 328–334. [Google Scholar] [CrossRef]
- Del Barrio, E.P. Analysis of the green roofs cooling potential in buildings. Energy Build. 1998, 27, 179–193. [Google Scholar] [CrossRef]
- Schrader, S.; Böning, M. Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans. Pedobiologia 2006, 50, 347–356. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Lin, H.-T. Thermal performance of different planting substrates and irrigation frequencies in extensive tropical rooftop greeneries. Build. Environ. 2011, 46, 345–355. [Google Scholar] [CrossRef]
- Johannessen, B.G.; Muthanna, T.M.; Braskerud, B.C. Detention and Retention Behavior of Four Extensive Green Roofs in Three Nordic Climate Zones. Water 2018, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Viola, F.; Hellies, M.; Deidda, R. Retention performance of green roofs in representative climates worldwide. J. Hydrol. 2017, 553, 763–772. [Google Scholar] [CrossRef] [Green Version]
- González-Méndez, B.; Chávez-García, E. Re-thinking the Technosol design for greenery systems: Challenges for the provision of ecosystem services in semiarid and arid cities. J. Arid. Environ. 2020, 179, 104191. [Google Scholar] [CrossRef]
- Sandoval, V.; Suárez, F.; Vera, S.; Pinto, C.; Victorero, F.; Bonilla, C.; Gironás, J.; Bustamante, W.; Rojas, V.; Pastén, P. Impact of the Properties of a Green Roof Substrate on its Hydraulic and Thermal Behavior. Energy Procedia 2015, 78, 1177–1182. [Google Scholar] [CrossRef] [Green Version]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [Google Scholar] [CrossRef]
- Cheik, S.; Bottinelli, N.; Minh, T.T.; Doan, T.T.; Jouquet, P. Quantification of Three Dimensional Characteristics of Macrofauna Macropores and Their Effects on Soil Hydraulic Conductivity in Northern Vietnam. Front. Environ. Sci. 2019, 7, 31. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Zhang, Z.; Szota, C.; Fletcher, T.D.; Williams, N.S.; Farrell, C. Green roof storage capacity can be more important than evapotranspiration for retention performance. J. Environ. Manag. 2019, 232, 404–412. [Google Scholar] [CrossRef]
- Soulis, K.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Schindler, B.Y.; Blaustein, L.; Vasl, A.; Kadas, G.J.; Seifan, M. Cooling effect of Sedum sediforme and annual plants on green roofs in a Mediterranean climate. Urban For. Urban Green. 2019, 38, 392–396. [Google Scholar] [CrossRef]
- Quezada-García, S.; Espinosa-Paredes, G.; Polo-Labarrios, M.; Espinosa-Martínez, E.; Escobedo-Izquierdo, M. Green roof heat and mass transfer mathematical models: A review. Build. Environ. 2020, 170, 106634. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M.; De Simone, M.; Maiolo, M.; Bevilacqua, P.; Arcuri, N. Energy and Hydraulic Performance of a Vegetated Roof in Sub-Mediterranean Climate. Sustainability 2018, 10, 3473. [Google Scholar] [CrossRef] [Green Version]
- Conn, R.; Werdin, J.; Rayner, J.; Farrell, C. Green roof substrate physical properties differ between standard laboratory tests due to differences in compaction. J. Environ. Manag. 2020, 261, 110206. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.; Hamilton, T.; Uebel-Niemeier, C.; Hopfensperger, K.; Buffam, I. Nitrogen cycling players and processes in green roof ecosystems. Appl. Soil Ecol. 2018, 132, 114–125. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
Hydrological Performances | Thermal Performances |
---|---|
Retention | Insulation |
Detention | Energy demand |
Reduction of surface temperature | |
Inner building temperature |
Factors | |
---|---|
Rain characteristics | Rain intensity |
Rain frequency | |
Rain duration | |
Atmospheric conditions | Air humidity |
Wind speed | |
Temperature characteristics and heat fluxes | Average temperature |
Maximum temperature | |
Solar radiation | |
Latent heat | |
Building characteristics | Building slope |
Building height | |
Nature of covering material |
Properties | |
---|---|
Age of the green roof | Date of implementation |
Global substrate characteristics | Substrate composition |
Substrate depth | |
Horizonation/layering | |
Substrate’s physical characteristics | Porosity |
Granulometry | |
Bulk density | |
Solid density | |
Water holding capacity | |
Hydraulic conductivity | |
Substrate’s thermal characteristics | Thermal resistance |
Solar reflectivity | |
Vegetation characteristics | Percentage of vegetation |
Nature of vegetation | |
Leaf area index | |
Diversity of plant species | |
Biological activity | Soil fauna |
Soil micro organisms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanumesh, M.; Claverie, R.; Séré, G. A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances. Sustainability 2021, 13, 10017. https://doi.org/10.3390/su131810017
Hanumesh M, Claverie R, Séré G. A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances. Sustainability. 2021; 13(18):10017. https://doi.org/10.3390/su131810017
Chicago/Turabian StyleHanumesh, Mithun, Rémy Claverie, and Geoffroy Séré. 2021. "A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances" Sustainability 13, no. 18: 10017. https://doi.org/10.3390/su131810017
APA StyleHanumesh, M., Claverie, R., & Séré, G. (2021). A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances. Sustainability, 13(18), 10017. https://doi.org/10.3390/su131810017