Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients
Abstract
1. Introduction
2. Mathematical Formulation and Analytical Solution
2.1. Instantaneous Point Injection
2.2. Continuous Point Injection
2.3. Specific Cases of Dispersion Coefficient and Velocity
2.3.1. Case 1: Spatiotemporally Dependent Dispersion Coefficients and Spatially Dependent Velocities
- (i)
- and .
- (ii)
- and .
- (iii)
- and .
- (iv)
- and .
2.3.2. Case 2: Both Dispersion Coefficient and Velocity Spatially Dependent
2.3.3. Case 3: Spatially Dependent Dispersion Coefficient with Spatiotemporally Dependent Velocity
- (i)
- . Using Equations (10) and (11), we obtain and .
- (ii)
- , and thus and .
- (iii)
- ; therefore, and .
2.3.4. Case 4: Both Dispersion Coefficient and Velocity Spatiotemporally Dependent
- (i)
- , and thus .
- (ii)
- , and thus .
- (iii)
- , and thus .
- (iv)
- , and thus .
3. Verification and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Shi, X.; Lei, T.; Yan, Y.; Zhang, F. Determination and impact factor analysis of hydrodynamic dispersion coefficient within a gravel layer using an electrolyte tracer method. Int. Soil Water Conserv. Res. 2016, 4, 87–92. [Google Scholar] [CrossRef][Green Version]
- Pérez Guerrero, J.S.; Pontedeiro, E.M.; van Genuchten, M.T.; Skaggs, T.H. Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions. Chem. Eng. J. 2013, 221, 487–491. [Google Scholar] [CrossRef]
- Chen, J.-S.; Lai, K.-H.; Liu, C.-W.; Ni, C.-F. A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions. J. Hydrol. 2012, 420–421, 191–204. [Google Scholar] [CrossRef]
- Clement, T.P. Generalized solution to multispecies transport equations coupled with a first-order reaction network. Water Resour. Res. 2001, 37, 157–163. [Google Scholar] [CrossRef]
- Clement, T.P.; Srinivasan, V. Analytical solutions for sequentially coupled one-dimensional reactive transport problems—Part I: Mathematical derivations. Adv. Water Resour. 2008, 31, 203–218. [Google Scholar] [CrossRef]
- Corniello, A.; Ducci, D.; Sellerino, M. The hydrogeological monitoring of an experimental site in Campania focused at the evaluation of the contaminants transfer from the soil. Rend. Online Soc. Geol. Ital. 2019, 47, 24–30. [Google Scholar] [CrossRef]
- Kihm, J.-H.; Hwang, G. Numerical simulation of water table drawdown due to groundwater pumping in a contaminated aquifer system at a shooting test site, Pocheon, Korea. Econ. Environ. Geol. 2021, 54, 247–257. [Google Scholar] [CrossRef]
- De Josselin de Jong, G. Longitudinal and transverse diffusion in granular deposits. Trans. Am. Geophys. Union 1958, 39, 67–74. [Google Scholar] [CrossRef]
- Serrano, S.E. The form of the dispersion equation under recharge and variable velocity, and its analytical solution. Water Resour. Res. 1992, 28, 1801–1808. [Google Scholar] [CrossRef]
- Zoppou, C.; Knight, J.H. Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients. J. Hydraul. Eng. 1997, 123, 144–148. [Google Scholar] [CrossRef]
- Singh, M.K.; Singh, V.P.; Singh, P.; Shukla, D. Analytical solution for conservative solute transport in one-dimensional homogeneous porous formations with time-dependent velocity. J. Eng. Mech. 2009, 135, 1015–1021. [Google Scholar] [CrossRef]
- Zamani, K.; Bombardelli, F.A. Analytical solutions of nonlinear and variable-parameter transport equations for verifications of numerical solvers. Environ. Fluid Mech. 2014, 14, 711–742. [Google Scholar] [CrossRef]
- Kinzelbach, W.; Ackerer, P. Modelisation de la propogation d’ un champ d’ écoulement transitoire. Hydrogeology 1986, 2, 197–206. (In French) [Google Scholar]
- Sposito, G.; Weeks, S.W. Tracer advection by steady groundwater flow in a stratified aquifer. Water Resour. Res. 1998, 34, 1051–1059. [Google Scholar] [CrossRef]
- Su, N.; Sander, G.C.; Liu, F.; Anh, V.; Barry, D.A. Similarity solutions for solute transport in fractal porous media using a time- and scale dependent dispersivity. Appl. Math. Model. 2005, 29, 852–870. [Google Scholar] [CrossRef]
- Pang, L.; Hunt, B. Solutions and verification of a scale-dependent dispersion model. J. Contam. Hydrol. 2001, 53, 21–39. [Google Scholar] [CrossRef]
- Moranda, A.; Cianci, R.; Paladino, O. Analytical solutions of one-dimensional contaminant transport in soils with source production-decay. Soil Syst. 2018, 2, 40. [Google Scholar] [CrossRef]
- Paladino, O.; Moranda, A.; Massabò, M.; Robbins, G.A. Analytical solutions of three-dimensional contaminant transport models with exponential source decay. Groundwater 2017, 56, 96–108. [Google Scholar] [CrossRef]
- Stoppiello, M.G.; Lofrano, G.; Carotenuto, M.; Viccione, G.; Guarnaccia, C.; Cascini, L. A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils. Sustainability 2020, 12, 2949. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Rehfeldt, K.R.; Gelhar, L.W. Stochastic analysis of dispersion in unsteady flow in heterogeneous aquifers. Water Resour. Res. 1992, 28, 2085–2099. [Google Scholar] [CrossRef]
- Neuman, S.P. Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour. Res. 1990, 26, 1749–1758. [Google Scholar] [CrossRef]
- Dagan, G. Solute transport in heterogeneous porous formations. J. Fluid Mech. 1984, 145, 151–177. [Google Scholar] [CrossRef]
- Dagan, G. Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour. Res. 1988, 24, 1491–1500. [Google Scholar] [CrossRef]
- Aral, M.M.; Liao, B. Analytical solutions for two–dimensional transport equations with time-dependent dispersion coefficients. J. Hydrol. Eng. 1996, 1, 20–32. [Google Scholar] [CrossRef]
- Zoua, S.; Ma, J.; Koussis, A.D. Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow. J. Hydrol. 1996, 179, 237–258. [Google Scholar] [CrossRef]
- Sposito, G.; Barry, D.A. On the Dagan model of solute transport in groundwater: Foundational aspects. Water Resour. Res. 1987, 23, 1867–1875. [Google Scholar] [CrossRef]
- Basha, H.A.; El-Habel, F.S. Analytical solution of the one-dimensional time dependent transport equation. Water Resour. Res. 1993, 29, 3209–3214. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S. On the advective-diffusive transport in porous media in the presence of time-dependent velocities. Geo. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Huang, C.-S.; Tong, C.; Hu, W.-S.; Yeh, H.-D.; Yang, T. Analysis of radially convergent tracer test in a two-zone confined aquifer with vertical dispersion effect: Asymmetrical and symmetrical transports. J. Hazard. Mater. 2019, 377, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Suk, H. Semi-analytical solution of land-derived solute transport under tidal fluctuation in a confined aquifer. J. Hydrol. 2017, 554, 517–531. [Google Scholar] [CrossRef]
- Sternberg, S.P.K.; Cushman, J.H.; Greenkorn, R.A. Laboratory observation of nonlocal dispersion. Trans. Porous Media 1996, 13, 123–151. [Google Scholar] [CrossRef]
- Zhou, R.; Zhan, H.; Chen, K.; Peng, X. Transport in a fully coupled asymmetric stratified system: Comparison of scale dependent and independent dispersion schemes. J. Hydrol. X 2018, 1, 100001. [Google Scholar] [CrossRef]
- Kumar, A.; Jaiswal, D.K.; Kumar, N. Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media. J. Hydrol. 2010, 380, 330–337. [Google Scholar] [CrossRef]
- Sanskrityayn, A.; Suk, H.; Kumar, N. Analytical solutions for solute transport in groundwater and riverine flow using Green’s function method and pertinent coordinate transformation method. J. Hydrol. 2017, 547, 517–533. [Google Scholar] [CrossRef]
- Sanskrityayn, A.; Kumar, V.; Kumar, N. Solute transport due to spatio-temporally dependent dispersion coefficient and velocity: Analytical solutions. J. Hydrol. Eng. 2018, 23, 04018009. [Google Scholar] [CrossRef]
- You, K.; Zhan, H. New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources. J. Hydrol. 2013, 487, 87–97. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Alves, W.J. Analytical Solutions of the One-Dimensional Convective Dispersive Solute Transport Equations; Technical Bulletin No. 1661; U.S. Department of Agriculture: Washington, DC, USA, 1982.
- Javandel, I.; Doughty, C.; Tsang, C.F. Groundwater Transport Hand Book of Mathematical Models. In AGU Water Resources Monograph Series 10; AGU: Washington, DC, USA, 1984. [Google Scholar]
- Pickens, J.F.; Grisak, G.E. Scale-dependent dispersion in stratified granular aquifer. Water Resour. Res. 1981, 17, 1191–1211. [Google Scholar] [CrossRef]
- Yates, S.R. An Analytical solution for one-dimensional transport in heterogeneous porous media. Water Resour. Res. 1990, 26, 2331–2338. [Google Scholar] [CrossRef]
- Gao, G.; Zhan, H.; Feng, S.; Fu, B.; Ma, Y.; Huang, G. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion. Water Resour. Res. 2010, 46, W08533. [Google Scholar] [CrossRef]
- Hunt, B. Contaminant source solutions with scale-dependent dispersivities. J. Hydrol. Eng. 1998, 3, 268–275. [Google Scholar] [CrossRef]
- Chen, J.S.; Ni, C.F.; Liang, C.P. Analytical power series solution to the two-dimensional advection-dispersion equation with distance-dependent dispersivites. Hydrol. Process. 2008, 22, 4670–4678. [Google Scholar] [CrossRef]
- Chen, J.S.; Ni, C.F.; Liang, C.P.; Chiang, C.C. Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity. J. Hydrol. 2008, 362, 142–149. [Google Scholar] [CrossRef]
- Zamani, K.; Bombardelli, F.A. One-dimensional, mass conservative, spatially-dependent transport equation: New analytical solution. In Proceedings of the 12th Pan-American Congress of Applied Mechanics, Port of Spain, Trinidad, 2–6 January 2012. [Google Scholar]
- Kumar, A.; Jaiswal, D.K.; Kumar, N. Analytical solutions of one dimensional advection diffusion equation with variable coefficients in a finite domain. J. Earth Syst. Sci. 2009, 118, 539–549. [Google Scholar] [CrossRef]
- Sanskrityayn, A.; Kumar, N. Analytical solution of advection-diffusion equation in heterogeneous infinite medium using Green’s function method. J. Earth Syst. Sci. 2016, 125, 1713–1723. [Google Scholar] [CrossRef]
- Suk, H. Developing semianalytical solutions for multispecies transport coupled with a sequential first-order reaction network under variable flow velocities and dispersion coefficients. Water Resour. Res. 2013, 49, 3044–3048. [Google Scholar] [CrossRef]
- Suk, H. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients. Adv. Water Resour. 2016, 94, 412–423. [Google Scholar] [CrossRef]
- Yeh, G.T. AT123D: Analytical Transient One-, Two-, and Three-Dimensional Simulation of Waste Transport in the Aquifer System; Environmental Sciences Division 1439 Report ORNL-5602; Oak Ridge Natl Lab: Oak Ridge, TN, USA, 1981.
- De Marsily, G. Quantitative Hydrogeology: Groundwater Hydrology for Engineers; Academic Press, Inc.: San Diego, CA, USA, 1986. [Google Scholar]
- Matheron, G.; De Marsily, G. Is transport in porous media always diffusive? A counterexample. Water Resour. Res. 1980, 16, 901–917. [Google Scholar] [CrossRef]
- Haberman, R. Elementry Applied Partial Differential Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1987. [Google Scholar]
- Beck, J.V.; Cole, K.D.; Litkouhi, B. Heat Conduction Using Green’s Functions; Hemisphere Publishing Corporation: Washington, DC, USA, 1992. [Google Scholar]
- Yeh, H.D.; Yeh, G.T. Analysis of point-source and boundary-source solutions of one-dimensional groundwater transport equation. J. Environ. Eng. 2007, 133, 1032–1041. [Google Scholar] [CrossRef][Green Version]
- Yeh, G.T.; Cheng, J.R. 2DFATMIC: User’s Manual of a Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemical Model Version 1.0. EPA/600/R-97/052; U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
Sect. | Dispersion Coefficient, D | Velocity, u | Source | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a C | b L | c T | d S | a C | b L | c T | d S | § I | † C | ||
2.3.1 | ● | ● | ● | Not existed | |||||||
● | ● | ● | Not existed | ||||||||
● | ● | ● | [28] | ||||||||
● | ● | ● | [28] | ||||||||
2.3.2 | ● | ● | ● | [36] | |||||||
● | ● | ● | [36] | ||||||||
● | ● | ● | [51] | ||||||||
● | ● | ● | [52] | ||||||||
2.3.3 | ● | ● | ● | Not existed | |||||||
● | ● | ● | Not existed | ||||||||
● | ● | ● | [29] | ||||||||
● | ● | ● | [29] | ||||||||
2.3.4 | ● | ● | ● | [36] | |||||||
● | ● | ● | [36] | ||||||||
● | ● | ● | [36] | ||||||||
● | ● | ● | [11,36] |
Figs | u0 (m/Day) | D0 (m2/Day) | x0 (m) | t (day) | a (m−1) | b (-) | m (Day−1), k (Day) | M (g/m2), C0 (g/m3) |
---|---|---|---|---|---|---|---|---|
Figure 2 | D(x,t) = D0(1 + ax)ψ(t) and u(x) = u0(1 + ax) | |||||||
0.20 | 0.25 | 0 | 25 | 0.1, 0.0001 | 1 | m = 0.05 | M = 1 | |
D(t) = D0ψ(t) and u = u0 | ||||||||
Figure 3a | 0.25 | 1.0 | 0 | 5 | 0.1, 0.0001 | 1 | k = 0,20,50 | M = 1 |
Figure 3b | 0.25 | 1.0 | 0 | 5 | 0.1, 0.0001 | 1 | k = 0,20,50 | C0 = 1 |
Figure 4 | D(x) = D0(1 + ax) and u(x) = u0(1 + ax) | |||||||
2.0 | 0.25 | 0 | 1, 3, 5 | 0.1, 0.0001 | 1 | - | M = 1 | |
Figure 5 | D = D0, u = u0 for Equation (25) and D(x) = D0 x, u(x) = u0 x for Equation (24) | |||||||
Equation (25) 1.0 Equation (24) 1.0 | 0.02 0.0001 | 0 1 | 2 2 | 0 1 | 1 0 | - - | C0 = 100 C0 = 100 | |
Figure 6a,b | D(x) = D0(1 + ax) and u(x,t) = u0(1 + ax) ψ(t) | |||||||
0.20 | 0.25 | 0 | 25 | 0.1, 0.0001 | 1 | m = 0.05 | M = 1 | |
Figure 7 | D = D0 and u(t) = u0 ψ(t) | |||||||
0.20 | 0.005 | 0 | 5, 25, 50 | 0.0001 | 1 | m = 0.01 | C0 = 1 | |
Figure 8a,b | D(x,t) = D0(1 + ax)ψ(t) and u(x,t) = u0(1 + ax) ψ(t) | |||||||
2.0 | 0.25 | 0 | 5 | 0.1, 0.0001 | 1 | m = 0.2 | M = 1 | |
D(t) = D0 ψ(t) and u(t) = u0 ψ(t) | ||||||||
Figure 9a | 0.20 | 0.01 | 0 | 5, 25, 50,100 | 0.0001 | 1 | M = 0.0008 | C0 = 1 |
Figure 9b | 0.20 | 0.01 | 0 | 5, 25, 50 | 0.0001 | - | M = 12.41 | C0 = 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanskrityayn, A.; Suk, H.; Chen, J.-S.; Park, E. Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients. Sustainability 2021, 13, 7796. https://doi.org/10.3390/su13147796
Sanskrityayn A, Suk H, Chen J-S, Park E. Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients. Sustainability. 2021; 13(14):7796. https://doi.org/10.3390/su13147796
Chicago/Turabian StyleSanskrityayn, Abhishek, Heejun Suk, Jui-Sheng Chen, and Eungyu Park. 2021. "Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients" Sustainability 13, no. 14: 7796. https://doi.org/10.3390/su13147796
APA StyleSanskrityayn, A., Suk, H., Chen, J.-S., & Park, E. (2021). Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients. Sustainability, 13(14), 7796. https://doi.org/10.3390/su13147796