Youth Participation in Agriculture and Poverty Reduction in Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Study area, and Data
2.2. Analytical Framework and Estimation Techniques
2.2.1. Propensity Score Matching (PSM)
2.2.2. Heckman Two-Stage Model
2.3. Poverty Measurement
3. Results and Discussion
3.1. Socioeconomic Characteristics of the Respondents
3.2. Test of Mean Differences in Poverty Indicators
3.3. Poverty Indices
Determinants of Poverty
3.4. Impact of Youth Participation in Agriculture on Income and Poverty—PSM
3.5. Factors Influencing Youth Participation in Agriculture and Its Effect on Income—Heckman Two-Stage Model
3.6. Factors Affecting Income: Heckman Second-Step
4. Summary, Conclusions, and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beegle, K.; Christiaensen, L.; Dabalen, A.; Gaddis, I. Poverty in a Rising Africa; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- United Nations (UN). Youth population trends and sustainable development. Popul. Facts Work. 2015, 2015. [Google Scholar]
- Kazeem, Y. Nigeria Has Become the Poverty Capital of the World. 2008. Available online: https://qz.com/africa/1313380/nigerias-has-the-highest-rate-of-extreme-poverty-globally/ (accessed on 22 February 2021).
- Bellow, J.; Miguel, E. War and local collective action in Sierra Leone. J. Public Econ. 2009, 93, 1144–1157. [Google Scholar] [CrossRef]
- African Union. African Youth Charter. 2006. Available online: fromhttp://africa-youth.org/sites/default/files/african_youth_charter.pdf (accessed on 12 September 2019).
- Olanrewaju, O.; Osabohien, R.; Fasakin, J. The Anchor Borrowers Programme and youth rice farmers in Northern Nigeria. Agric. Financ. Rev. 2021, 81, 222–236. [Google Scholar] [CrossRef]
- Yami, M.; Feleke, S.; Abdoulaye, T.; Alene, A.D.; Bamba, Z.; Manyong, V. African Rural Youth Engagement in Agribusiness: Achievements, Limitations, and Lessons. Sustainability 2019, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Adesugba, M.; Mavrotas, J. Youth Employment, Agricultural Transformation, and Rural Labor Dynamics in Nigeria; IFPRI Discussison Paper No. 01579; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- Haggblade, S.; Chapoto, A.; Drame-Yayé, A.; Hendriks, S.; Kabwe, S.; Minde, I.; Mugisha, J.; Terblanche, S. Motivating and preparing African youth for successful careers in agribusiness. J. Agribus. Dev. Emerg. Econ. 2015, 5, 170–189. [Google Scholar] [CrossRef]
- Nations Bureau of Statistics—NBS. Delta, 2nd Least Poor State in Nigeria—NBS, Vanguard Newspaper. 2020. Available online: https://www.vanguardngr.com/2020/05/delta-2nd-least-poor-state-in-nigeria-nbs/ (accessed on 4 May 2020).
- Garba, A.S. Refocusing education system towards entrepreneurship development in Nigeria: A tool for poverty eradication. Eur. J. Soc. Sci. 2010, 15, 140–150. [Google Scholar]
- CBN. Financial Inclusion Newsletter, 1, A. Quarterly Publication of the Financial Inclusion Secretariat. 2016. Available online: https://www.cbn.gov.ng/FinInc/FinIncNewsletter.asp (accessed on 22 February 2021).
- Fawole, W.; Ozkan, B. Examining the willingness of youths to participate in agriculture to halt the rising rate of unemployment in Southwestern Nigeria. J. Econ. Stud. 2019, 46, 578–590. [Google Scholar] [CrossRef]
- Lyocks, J.S.W.; Tanimu, J.; Dauji, Z.L. Growth and yield parameters of ginger as influenced by varying populations of maize intercrop. J. Agric. Crop. Res. 2013, 1, 24–29. [Google Scholar]
- Libaisi, K.J.; Marinda, A.P.; Wakhungu, W.J. Common Interest Youth Groups and Their Contribution to Food Security Among Small Holder Farm Households in Western Kenya. Future Agric. 2012. Retrieved February, 2016, 2021 from Future Agricultures. Available online: http://www.futureagricultures.org/publications/search-publications (accessed on 22 February 2021).
- Sakketa, T.G.; Gerber, N. Rural Shadow Wages and Youth Agricultural Labor Supply in Ethiopia: Evidence from Farm Panel Data. In Change at Home, in the Labor Market, and On the Job (Research in Labor Economics); Polachek, S.W., Tatsiramos, K., Eds.; Emerald Publishing Limited: Bingley, UK, 2020; Volume 48, pp. 61–105. [Google Scholar] [CrossRef]
- Becerril, J.; Abdulai, A. The impact of Improved Maize Varieties on Poverty in Mexico: A Propensity Score-Approach. World Dev. 2009, 38, 1024–1035. [Google Scholar] [CrossRef]
- Bacha, D.; Namara, R.E.; Bogale, A.; Tesfaye, A. Impact of small-scale irrigation on household poverty: Empirical evidence from the Ambo district in Ethiopia. Irrig. Drain. 2011, 60, 1–10. [Google Scholar] [CrossRef]
- Cochrane, W.; Rubin, D. Controlling bias in observational studies. Sankyha 1973, 35, 417–446. [Google Scholar]
- Rubin, D.B. The Use of Matched Sampling and Regression Adjustment to Remove Bias in Observational Studies. Biometrics 1973, 29, 185–203. [Google Scholar] [CrossRef]
- Rubin, D.B. Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies. J. Am. Stat. Assoc. 1979, 74, 318–328. [Google Scholar]
- Bassi, L.J. Estimating the Effect of Training Programs with Non-Random Selection. Rev. Econ. Stat. 1984, 66, 36–43. [Google Scholar] [CrossRef]
- Rosenbaum, R.P.; Rubin, B.D. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 1985, 39, 33–38. [Google Scholar]
- Friedlander, D.; Greenberg, H.D.; Robins, K.P. Evaluating government training programs for the economically disadvantaged. J. Econ. Lit. 1997, 35, 1809–1855. [Google Scholar]
- Heckman, J. Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations. J. Hum. Resour. 1997, 32, 441–462. [Google Scholar] [CrossRef]
- Heckman, J.; Ichimura, H.; Smith, J.; Todd, P. Characterizing Selection Bias Using Experimental Data. Econometrica 1998, 66, 1017–1098. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity Score-Matching Methods for Nonexperimental Causal Studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Frölich, M. Finite-Sample Properties of Propensity-Score Matching and Weighting Estimators. Rev. Econ. Stat. 2004, 86, 77–90. [Google Scholar] [CrossRef]
- Smith, J.A.; Todd, P.E. Does matching overcome LaLonde’s critique of nonexperimental estimators? J. Econom. 2005, 125, 305–353. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.S. Theories of economic integration: A survey of the economic and political literature. Int. J. Econ. Manag. Soc. Sci. 2013, 2, 133–155. [Google Scholar]
- Morgan, S.L.; Harding, D.J. Matching estimators of causal effects: Prospects and pitfalls in theory and practice. Sociol. Methods Res. 2006, 35, 3–60. [Google Scholar] [CrossRef]
- Adeoti, A. Factors Influencing Irrigation Technology Adoption and its Impact on Household Poverty in Ghana. J. Agric. Dev. Trop. Subtrop. 2008, 109, 51–63. [Google Scholar]
- Sinyolo, S.; Mudhara, M.; Wale, E. The impact of smallholder irrigation on household welfare: The case of Tugela Ferry irrigation scheme in KwaZulu-Natal 2009. S. Afr. Water SA 2014, 40, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.; Kassouf, A.L. Deriving conditional and unconditional marginal effects in log earnings equations estimated by Heckman’s procedure. Appl. Econ. 2005, 37, 1303–1311. [Google Scholar] [CrossRef]
- Siziba, M. Strategies on Women Entrepreneurship Survival: A Case Study of Women Entrepreneurs in Zimbabwe between 2007–2009. JWEE 2010, 3–4, 71–79. [Google Scholar]
- Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Sen, A. Poverty: An Ordinal Approach to Measurement. Econom. J. Econom. Soc. 1976, 44, 219–231. [Google Scholar] [CrossRef]
- Foster, J.; Greer, J.; Thorbecke, E. The Foster–Greer–Thorbecke (FGT) poverty measures: 25 years later. J. Econ. Inequal. 2010, 8, 491–524. [Google Scholar] [CrossRef]
- Foster, J.; Greer, J.; Thorbecke, E. A Class of Decomposable Poverty Measures. Econometrica 1984, 52, 761–766. [Google Scholar] [CrossRef]
- Foster, J.E.; Shorrocks, A.F. Poverty Orderings. Econom. J. Econom. Soc. 1988, 56, 173–177. [Google Scholar] [CrossRef]
- Lubrano, M. The Econometrics of inequality and Poverty. Lecture 3, Welfare Functions, Inequality, and Poverty. September 2016. Available online: http://132.206.230.228/dominance/milu3.pdf (accessed on 25 February 2021).
- Grootaert, C. The Determinants of Poverty in Cote d’Ivoire in the 1980s. J. Afr. Econ. 1997, 6, 169–196. [Google Scholar] [CrossRef]
- Crouch, M.; McKenzie, H. The logic of small samples in interview-based qualitative research. Soc. Sci. Inf. 2006, 45, 483–499. [Google Scholar] [CrossRef]
- Anyanwu, J.C.; Erhijakpor, A.E. Do international remittances affect poverty in Africa? Afr. Dev. Rev. 2010, 22, 51–91. [Google Scholar] [CrossRef]
- Oyekale, A.S.; Adeoti, A.I.; Ogunnupe, T.O. Sources of income inequality and poverty in rural and urban Nigeria. In Proceedings of the 3rd Annual Workshop of Poverty and Economic Policy (PEP) Network, Dakar, Senegal, 11–20 June 2004. [Google Scholar]
Variable | Description | Mean | Standard Deviation |
---|---|---|---|
Youth in agriculture | Dummy variable for respondents between 15 and 35 years of age participating in agriculture/agribusiness as a primary occupation, 0 if otherwise | 0.53 | 0.49 |
Age | Age of the respondents in years | 29.42 | 4.55 |
Gender | A dummy variable for the gender of the respondent. 1 if the respondent is male, 0 if otherwise | 0.76 | 0.43 |
Ekiti State | Dummy variable for the respondent that is from Ekiti State. 1 if the respondent is from Ekiti State, 0 if otherwise | ||
Household size | Total number of members of the household | 4.11 | 2.42 |
Formal education | A dummy variable that takes 1 if the youth has a formal education, 0 if otherwise. | 0.74 | 0.44 |
Years of schooling | Total number of years of schooling | 10.37 | 3.93 |
Attended training | A dummy variable that takes 1 if the respondent has attended at least one training, 0 if otherwise | 0.16 | 0.37 |
Marital status | Dummy variable for the marital status of the respondent. 1 if the respondent is married, 0 otherwise | 0.58 | 0.49 |
Land acquisition by inheritance | Dummy variable for the mode of land acquisition. 1 by inheritance and 0 otherwise | 0.52 | 0.49 |
The main reason for participating in agriculture | Dummy variable to capture the main reason for choosing to participate in agriculture 1 if the main reason is unemployment, and 0 otherwise | 0.46 | 0.49 |
The total size of farmland owned | The total area of land owned by the respondent in hectares | 5.99 | 4.99 |
Determined to stay in agriculture | Dummy variable to capture the youth determination to remain in agriculture if given other opportunities. 1 if the youth is willing to remain in agriculture, and 0 if not willing | 0.67 | 0.47 |
The total monetary value of household assets | The total monetary value of all household assets owned by the respondent | 141,372.20 | 156,677.50 |
The total monetary value of productive assets | The total monetary value of all the productive assets owned by the respondent | 131,304.70 | 144,533.40 |
Daily labor wage rate gender | The daily wage rate of hired labor in Naira | 1314.25 | 2287.44 |
Per capita annual food expenditure | The per capita annual expenditure on food in Naira | 81,370.32 | 75,532.20 |
Cost of land | The average cost of land purchased for farming in Naira | 141,375.00 | 158,377.10 |
Non-farm income | The average non-farm income in Naira | 13,137.46 | 17,869.24 |
Variables | Frequency | Percentage | Mean |
---|---|---|---|
Youth in Agriculture as a Primary Occupation No Yes | 323 360 | 47.29 52.71 | - |
Age (Years) 15–25 26–35 | 138 545 | 25.32 79.79 | 29.42 |
Gender Female Male | 166 517 | 24.30 75.70 | - |
Marital Status Single Married | 287 396 | 42.02 57.98 | - |
Household Size 0–5 6–9 10–18 | 508 165 10 | 74.38 24.16 1.46 | - |
Education Level No School Primary Secondary Tertiary Others | 175 121 270 114 3 | 25.62 17.72 39.53 16.69 0.44 | - |
Land Acquisition Mode Gift Inherited Land purchase Others | 126 355 183 78 | 18.45 51.98 26.79 11.42 | - |
Attended Training Yes No | 110 571 | 16.15 83.85 | - |
Primary Occupation Agriculture Civil servant Artisan Trading Others | 360 65 93 138 26 | 52.79 9.53 13.64 20.23 3.81 | - |
Secondary Occupation Agriculture Civil servant Artisan Trading Others | 406 37 86 149 5 | 59.44 5.42 12.59 21.82 0.73 | - |
Types of Agribusiness Input marketer Output marketer Transporter Processor Others | 36 142 98 320 87 | 5.27 20.79 14.35 46.85 4.83 | - |
Market Access No Yes | 598 85 | 87.55 12.45 | - |
Reason for Participating in Agriculture Unemployment Passion/interest Others | 314 348 16 | 46.31 51.33 2.36 | - |
Farming Types Aquaculture Crop Livestock Horticulture Others | 96 369 202 86 29 | 14.06 54.03 29.58 12.59 4.25 | - |
Variable | Total N = 683 | Treated Group N = 360 | Control Group N = 323 | Mean Difference | t-Test |
---|---|---|---|---|---|
Per capita average household income (Naira) | 105,543.60 | 116,988.80 | 93,088.43 | 23900.39 | 3.06 *** |
Agricultural income (Naira) | 56,270.40 | 61,102.74 | 50884.52 | 10218.22 | 3.14 ** |
Non-farm income | 13,137.46 | 12,400.35 | 1,3956.72 | 1,556.37 | 1.14 |
Income from processing | 3302.43 | 3539.64 | 3038.79 | 500.85 | 0.4584 |
Per capita annual food expenditure (Naira) | 81,370.32 | 75,529.70 | 87,726.29 | 12,196.58 | |
Total farmland owned | 5.91 | 6.82 | 4.91 | 1.91 | 5.07 *** |
Total farmland cultivated | 4.11 | 4.62 | 3.54 | 1.07 | 5.05 *** |
Monetary value of total household assets (Naira) | 141,372.20 | 140,231.20 | 142,634.80 | 2403.59 | 0.19 |
Per capita monetary value of total household assets (Naira) | 41,626.21 | 35,924.53 | 47,781.00 | 11,856.46 | 2.41 ** |
Monetary value of productive assets (Naira) | 131,304.70 | 143,834.90 | 117,339.20 | 26,495.70 | 2.40 ** |
Per capita monetary value of productive assets (Naira) | 43,724.69 | 41,682.88 | 45,946.65 | 4263.76 | 0.64 |
Years of schooling | 10.37 | 10.29 | 10.43 | 0.14 | 0.40 |
Access to market (%) | 12.00 | 15.00 | 9.00 | 5.00 | 1.91 |
Poverty Indices | Total Sample N = 683 | Treated N = 360 | Control N = 323 |
---|---|---|---|
Poverty headcount (P0) | 0.4038 | 0.3964 | 0.4118 |
Poverty depth (P1) | 0.1547 | 0.1509 | 0.1589 |
Poverty severity (P2) | 0.0827 | 0.0.0805 | 0.0850 |
Variable | Coefficient | Std. Error | Z-Value | p-Value |
---|---|---|---|---|
Youth in agriculture (1 = primary occupation is agriculture) | −0.597 *** | 0.229 | −2.6 | 0.009 |
Married (1 = yes) | 0.147 | 0.311 | 0.47 | 0.635 |
Inherited land (1 = yes) | 0.404 * | 0.218 | 1.85 | 0.064 |
Gender (1 = male) | 0.441 * | 0.253 | 1.74 | 0.081 |
Total farmland owned (ha) | 0.005 | 0.028 | 0.19 | 0.849 |
Determination (1 = yes) | −0.640 *** | 0.239 | −2.67 | 0.008 |
log of total household asset value (₦) | −0.288 *** | 0.099 | −2.89 | 0.004 |
log of productive asset value (₦) | 0.0226 | 0.089 | 0.25 | 0.799 |
Daily labor wage rate (₦) | −0.000 | 0.000 | −0.32 | 0.747 |
EKITI State (1 = yes) | −0.654 ** | 0.286 | −2.28 | 0.022 |
Age of respondents (year) | 0.559 * | 0.288 | 1.94 | 0.053 |
Square of respondents’ age | −0.009 * | 0.005 | −1.74 | 0.083 |
Formal education (1 = yes) | 0.065 | 0.284 | 0.23 | 0.819 |
Household size (number) | 0.463 *** | 0.069 | 6.73 | 0.000 |
Market access (1 = yes) | −0.942 *** | 0.341 | −2.76 | 0.006 |
Attended training (1 = yes) | 0.375 | 0.302 | 1.24 | 0.215 |
Non-farm income (₦) | −5.21E−06 | 0.000 | −1.07 | 0.284 |
Total livestock unit | 0.135 *** | 0.046 | 2.95 | 0.003 |
Income from agriculture only (₦) | −0.000 *** | 0.000 | −4.03 | 0.000 |
Constant | −7.295 * | 4.425 | −1.65 | 0.099 |
Number Log Likelihood LR Chi2 (19) Prob > Chi2 Pseudo R2 | 572 −287.012 202.06 0.000 0.2604 |
Variable | Sample | Treated | Control | Difference | Std. Err | T-Stat |
---|---|---|---|---|---|---|
Nearest Neighbor Matching | ||||||
Per Capita Income (₦) | Unmatched | 120,779.526 | 88,641.649 | 32,137.876 | 8423.385 | 3.82 *** |
ATT | 120,779.526 | 89,478.301 | 31,301.224 | 13,651.691 | 2.29 ** | |
ATU | 88,641.649 | 111,023.796 | 22,382.146 | |||
ATE | 27,231.999 | |||||
Kernel-Based Matching | ||||||
Per Capita Income (₦) | Unmatched | 120,779.526 | 88,641.649 | 32,137.876 | 8423.385 | 3.82 *** |
ATT | 120,779.526 | 88,629.000 | 32,150.526 | 11,855.588 | 2.71 ** | |
ATU | 88,641.649 | 122,754.864 | 34,113.215 | - | - | |
ATE | 33,045.979 |
Variable | Sample | Treated | Control | Difference | Std. Err | T-Stat |
---|---|---|---|---|---|---|
Nearest Neighbor Matching | ||||||
Poverty reduction | Unmatched | 0.3664 | 0.5306 | −0.1642 | 0.0425 | −3.86 *** |
ATT | 0.3664 | 0.5342 | −0.1678 | 0.0789 | −2.13 ** | |
ATU | 0.5306 | 0.4939 | −0.0367 | |||
ATE | −0.1080 | |||||
Kernel-Based Matching | ||||||
Poverty reduction | Unmatched | 0.3664 | 0.5306 | −0.1642 | 0.0425 | −3.86 *** |
ATT | 0.3664 | 0.5319 | −0.1654 | 0.0632 | −2.62 ** | |
ATU | 0.5306 | 0.3873 | −0.1433 | |||
ATE | −0.1533 |
Variable | Coefficient | Standard Error | Z-Value | p-Value |
---|---|---|---|---|
Marital status (1 = married) | −0.297 * | 0.179 | −1.66 | 0.097 |
Inherited land (1 = yes) | −0.612 *** | 0.175 | −3.5 | 0.000 |
Gender (1 = male) | 0.515 ** | 0.181 | 2.84 | 0.005 |
Attended training (1 = yes) | −0.206 | 0.236 | −0.87 | 0.383 |
Access to market (1 = yes) | 0.498 | 0.373 | 1.34 | 0.181 |
Log of per capita annual food expenditure (₦) | −0.400 *** | 0.096 | −4.18 | 0.000 |
Wage labor rate (N) | −0.000 | 0.000 | −0.06 | 0.948 |
Formal education (1 = yes) | −0.375 * | 0.196 | −1.92 | 0.055 |
Log of productive asset value (₦) | −0.009 | 0.069 | −0.13 | 0.896 |
Total livestock unit | 0.025 | 0.032 | 0.76 | 0.448 |
Non-farm income (₦) | −0.000 | 0.000 | −1.05 | 0.293 |
Total farmland owned (ha) | 0.032 | 0.020 | 1.58 | 0.114 |
Determination (1 = yes) | 3.850 *** | 0.395 | 9.75 | 0.000 |
EKITI State (1 = yes) | −0.803 *** | 0.206 | −3.9 | 0.000 |
Constant | 2.241 | 1.370 | 1.63 | 0.102 |
Wald chi2 (13) | 131.66 | |||
Prob > chi2 | 0.000 |
Variable | Coefficient | Standard Error | Z-Value | p-Value |
---|---|---|---|---|
Marital status (1 = married) | −0.129 | 0.217 | −0.6 | 0.552 |
Gender (1 = male) | 0.084 | 0.238 | 0.35 | 0.725 |
Formal education (1 = yes) | −0.242 | 0.231 | −1.05 | 0.295 |
Labor wage rate (₦) | 0.000 *** | 0.000 | 2.91 | 0.004 |
Log of productive asset value (₦) | 0.129 | 0.082 | 1.58 | 0.115 |
Total farmland owned (ha) | 0.089 *** | 0.025 | 3.54 | 0.000 |
Inherited land (1 = yes) | −0.411 * | 0.238 | −1.73 | 0.084 |
Log of per capita annual food expenditure (₦) | −0.366 *** | 0.123 | −2.97 | 0.003 |
Attended training (1 = yes) | −0.229 | 0.351 | −0.65 | 0.514 |
Access to market (1 = yes) | 0.192 | 0.337 | 0.57 | 0.569 |
Non-farm income (₦) | 0.000 | 0.000 | 0.07 | 0.943 |
Total livestock unit | −0.329 *** | 0.038 | −8.67 | 0.000 |
EKITI State (1 = yes) | −0.802 *** | 0.296 | −2.71 | 0.007 |
Constant | 13.925 *** | 1.547 | 9.00 | 0.000 |
Lambda | 0.808 * | 0.475 | 1.70 | 0.089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osabohien, R.; Wiredu, A.N.; Nguezet, P.M.D.; Mignouna, D.B.; Abdoulaye, T.; Manyong, V.; Bamba, Z.; Awotide, B.A. Youth Participation in Agriculture and Poverty Reduction in Nigeria. Sustainability 2021, 13, 7795. https://doi.org/10.3390/su13147795
Osabohien R, Wiredu AN, Nguezet PMD, Mignouna DB, Abdoulaye T, Manyong V, Bamba Z, Awotide BA. Youth Participation in Agriculture and Poverty Reduction in Nigeria. Sustainability. 2021; 13(14):7795. https://doi.org/10.3390/su13147795
Chicago/Turabian StyleOsabohien, Romanus, Alexander Nimo Wiredu, Paul Matin Dontsop Nguezet, Djana Babatima Mignouna, Tahirou Abdoulaye, Victor Manyong, Zoumana Bamba, and Bola Amoke Awotide. 2021. "Youth Participation in Agriculture and Poverty Reduction in Nigeria" Sustainability 13, no. 14: 7795. https://doi.org/10.3390/su13147795
APA StyleOsabohien, R., Wiredu, A. N., Nguezet, P. M. D., Mignouna, D. B., Abdoulaye, T., Manyong, V., Bamba, Z., & Awotide, B. A. (2021). Youth Participation in Agriculture and Poverty Reduction in Nigeria. Sustainability, 13(14), 7795. https://doi.org/10.3390/su13147795