Potential Toxic Effects of Airport Runoff Water Samples on the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Runoff Water Sampling, Collection and Handling
2.2. Toxicity Testing of Airport Runoff Water
3. Results
3.1. Toxicity Tests of Runoff Water Samples
3.1.1. Microtox®
3.1.2. Thamnotoxkit FTM
4. Discussion
5. Conclusions
- The creation of a solid database that can be helpful in the rapid assessment of ecological risks associated with this type of wastewater stream;
- a better understanding and estimation of the cause-and-effect relationship of the long-term effects of airport pollutants on the environment;
- an implementation of new airport infrastructure management methods (standards and procedures for reducing sources of pollution, recommended remediation techniques, waste recirculation, and the application of environmentally safe de-icing agents).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Fu, Q.; Yu, Y.; Liu, Q.; Pan, J.; Cheng, J.; Wang, Z.; Liu, L. Quantifying aircraft emissions of Shanghai Pudong International Airport with aircraft ground operational data. Environ. Pollut. 2020, 261, 114115. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Lee, D.S.; Lim, L.L.; Skowron, A.; De León, R.R. Trading off Aircraft Fuel Burn and NOx Emissions for Optimal Climate Policy. Environ. Sci. Technol. 2018, 52, 2498–2505. [Google Scholar] [CrossRef] [Green Version]
- EASA; EEA; EUROCONTROL. European Aviation Environmental Report 2019; Eurocontrol: Brussels, Belgium, 2019. [Google Scholar]
- Sulej, A.M.; Polkowska, Z.; Namiesnik, J. Analysis of Airport Runoff Waters. Crit. Rev. Anal. Chem. 2011, 41, 190–213. [Google Scholar] [CrossRef]
- Sulej, A.M.; Polkowska, Z.; Namiesnik, J. Pollutants in Airport Runoff Waters. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1691–1734. [Google Scholar] [CrossRef]
- Koryak, M.; Stafford, L.J.; Reilly, R.J.; Hoskin, R.H.; Haberman, M.H. The Impact of Airport Deicing Runoff on Water Quality and Aquatic Life in a Pennsylvania Stream. J. Freshw. Ecol. 1998, 13, 287–298. [Google Scholar] [CrossRef]
- Shi, X.; Quilty, S.M.; Long, T.; Jayakaran, A.; Fay, L.; Xu, G. Managing airport stormwater containing deicers: Challenges and opportunities. Front. Struct. Civ. Eng. 2017, 11, 35–46. [Google Scholar] [CrossRef]
- Bendtsen, K.M.; Bengtsen, E.; Saber, A.T.; Vogel, U. A Review of Health Effects Associated with Exposure to Jet Engine Emissions in and around Airports. Environ. Health 2021, 20, 1–21. [Google Scholar] [CrossRef]
- Corsi, S.R.; Geis, S.W.; Bowman, G.; Failey, G.G.; Rutter, T.D. Aquatic Toxicity of Airfield-Pavement Deicer Materials and Implications for Airport Runoff. Environ. Sci. Technol. 2009, 43, 40–46. [Google Scholar] [CrossRef]
- Sulej, A.M.; Polkowska, Z.; Wolska, L.; Cieszynska, M.; Namiesnik, J. Toxicity and chemical analyses of airport runoff waters in Poland. Environ. Sci. Process. Impacts 2014, 16, 1083–1093. [Google Scholar] [CrossRef]
- Sulej-Suchomska, A.M.; Polkowska, Z.; Kokot, Z.J.; de la Guardia, M.; Namiesnik, J. Determination of antifreeze substances in the airport runoff waters by solid-phase microextraction and gas chromatography—Mass spectrometry method. Microchem. J. 2016, 126, 466–473. [Google Scholar] [CrossRef]
- Sulej-Suchomska, A.M.; Polkowska, Z.; Przyjazny, A.; Kokot, Z.J.; Namiesnik, J. Determination of fuel combustion product in airport runoff water samples using liquid–liquid extraction with gas chromatography–spectrometry. Int. J. Environ. Sci. Technol. 2016, 13, 1475–1488. [Google Scholar] [CrossRef] [Green Version]
- Kiss, A.; Fries, E. Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany). Environ. Sci. Pollut. Res. 2009, 16, 702–710. [Google Scholar] [CrossRef]
- Ferguson, L.; Corsi, S.R.; Geis, S.W.; Anderson, G.; Joback, K.; Gold, H.; Mericas, D.; Cancilla, D.A. Formulations for Aircraft and AirfieldDeicing and Anti-Icing: AquaticToxicity and Biochemical OxygenDemand; University of South Carolina: Columbia, SC, USA, 2008. [Google Scholar]
- Jia, Y.; Ehlert, L.; Wahlskog, C.; Lundberg, A.; Maurice, C. Water quality of stormwater generated from an airport in a cold climate, function of an infiltration pond, and sampling strategy with limited resources. Environ. Monit. Assess. 2017, 190, 190. [Google Scholar] [CrossRef]
- Barash, S.; Covington, J.; Tamulonis, C. Preliminary Data Summary Airport De-icing Operations (Revised); United States Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Zhang, W.; Ye, Y.; Tong, Y.; Ou, L.; Hu, D.; Wang, X. Modeling time-dependent toxicity to aquatic organisms from pulsed exposure of PAHs in urban road runoff. Environ. Pollut. 2011, 159, 503–508. [Google Scholar] [CrossRef]
- Corsi, S.R.; Harwell, G.R.; Geis, S.W.; Bergman, D. Impacts of Aircraft Deicer and Anti-Icer Runoff on Receiving Waters from Dallas/Fort Worth International Airport, Texas, USA. Environ. Toxicol. Chem. 2006, 25, 2890–2900. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Gao, J.; Zhou, Q. Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassius auratus using oxidative stress biomarkers. Environ. Pollut. 2012, 162, 91–97. [Google Scholar] [CrossRef]
- Heintzman, L.J.; Anderson, T.A.; Carr, D.L.; McIntyre, N.E. Local and landscape influences on PAH contamination in urban stormwater. Landsc. Urban Plan. 2015, 142, 29–37. [Google Scholar] [CrossRef]
- O’Donnell, M. Management of Airport Industrial Waste; Federal Aviation Administration: Washington, DC, USA, 2008. [Google Scholar]
- Fajersztajn, L.; Guimarães, M.T.; Duim, E.; da Silva, T.; Okamura, M.N.; Brandão, S.L.B.; Ribeiro, A.E.; Naud, L.M.; O’Sullivan, S.; Saldiva, P.H.N.; et al. Health effects of pollution on the residential population near a Brazilian airport: A perspective based on literature review. J. Transp. Health 2019, 14, 100565. [Google Scholar] [CrossRef]
- Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J.E.; Rice, C.P.; Sheesley, R.; Failey, A.G.G.; Cancilla, D.A. Characterization of Aircraft Deicer and Anti-Icer Components and Toxicity in Airport Snowbanks and Snowmelt Runoff. Environ. Sci. Technol. 2006, 40, 3195–3202. [Google Scholar] [CrossRef]
- Kiss, I. The Use of Biomarkers in the Ecotoxiclogical Risk Assessment. In Exposure and Risk Assessment of Chemical Pollution: Contemporary Methodology; Simeonov, L.I., Hassanien, M.A., Eds.; Springer: Sofia, Bulgaria, 2009; pp. 233–245. [Google Scholar]
- Hogenboom, A.; Leerdam, T.; Voogt, P. Accurate Mass Screening and Identification of Emerging Contaminates in Environmental Samples by Liquid Chromatography-LTQ FT Orbitrap Mass Spectrometry; Kiwa Water Research: Nieuwegein, The Netherlands, 2008. [Google Scholar]
- Sulej, A.M.; Polkowska, Z.; Astel, A.; Namiesnik, J. Analytical procedures for the determination of fuel combustion products, anti-corrosive compounds, and de-icing compounds in airport runoff water samples. Talanta 2013, 117, 158–167. [Google Scholar] [CrossRef]
- Breedveld, G.D.; Roseth, R.; Sparrevik, M.; Hartnik, T.; Hem, L.J. Persistence of the De-Icing Additive Benzotriazole at an Abandoned Airport. Water Air Soil Pollut. 2003, 3, 91–101. [Google Scholar] [CrossRef]
- Pillard, D.; Cornell, J.S.; DuFresne, D.L.; Hernandez, M.T. Toxicity of Benzotriazole and Benzotriazole Derivatives to Three Aquatic Species. Water Res. 2001, 35, 557–560. [Google Scholar] [CrossRef]
- Grant, S.; Rekhi, N.; Prise, N.; Reeves, R. A Review of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff; Caltrans: Sacramento, CA, USA, 2003. [Google Scholar]
- Corsi, S.R.; Zitomer, D.H.; Field, J.A.; Cancilla, D.A. Nonylphenol Ethoxylates and Other Additives in Aircraft Deicers, Antiicers, and Waters Receiving Airport Runoff. Environ. Sci. Technol. 2003, 37, 4031–4037. [Google Scholar] [CrossRef]
- Paraschi, E.P.; Georgopoulos, A.; Kaldis, P. Airport Business Excellence Model: A holistic performance management system. Tour. Manag. 2019, 72, 352–372. [Google Scholar] [CrossRef]
- Nutile, S.A.; Solan, M.E. Toxicity testing of “eco-friendly” de-icing formulations using Chironomus dilutus. Environ. Pollut. 2019, 246, 408–413. [Google Scholar] [CrossRef]
- Mohiley, A.; Franzaring, J.; Calvo, O.C.; Fangmeier, A. Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds. Environ. Sci. Pollut. Res. 2015, 22, 13094–13101. [Google Scholar] [CrossRef]
- Burton, G.A.; Pitt, R.; Clark, S. The Role of Traditional and Novel Toxicity Test Methods in Assessing Stormwater and Sediment Contamination. Crit. Rev. Environ. Sci. Technol. 2000, 30, 413–447. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, F.; Wan, J.; He, J.; Li, Q.; Chen, Q.; Gao, J.; Lin, Y.; Zhang, S. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China. Environ. Sci. Pollut. Res. 2017, 24, 8541–8550. [Google Scholar] [CrossRef]
- Vasquez, M.I.; Fatta-Kassinos, D. Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environ. Sci. Pollut. Res. 2013, 20, 3516–3528. [Google Scholar] [CrossRef]
- Kent, R.A.; Andersen, D.; Caux, P.-Y.; Teed, S. Canadian Water Quality Guidelines for Glycols—An Ecotoxicological Review of Glycols and Associated Aircraft Anti-Icing and Deicing Fluids. Environ. Toxicol. 1999, 14, 481–522. [Google Scholar] [CrossRef]
- Hongxia, Y.; Jing, C.; Yuxia, C.; Huihua, S.; Zhonghai, D.; Hongjun, J. Application of toxicity identification evaluation procedures on wastewaters and sludge from a municipal sewage treatment works with industrial inputs. Ecotoxicol. Environ. Saf. 2004, 57, 426–430. [Google Scholar] [CrossRef]
- Mankiewicz-Boczek, J.; Nalecz-Jawecki, G.; Drobniewska, A.; Kaza, M.; Sumorok, B.; Izydorczyk, K.; Zalewski, M.; Sawicki, J. Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicol. Environ. Saf. 2008, 71, 830–836. [Google Scholar] [CrossRef]
- Kaza, M.; Mankiewicz-Boczek, J.; Izydorczyk, K.; Sawicki, J. Toxicity Assessment of Water Samples from Rivers in Central Poland Using a Battery of Microbiotests—A Pilot Study. Polish J. Environ. Stud. 2007, 16, 81–89. [Google Scholar]
- Calvo, O.C.; Quaglia, G.; Mohiley, A.; Cesarini, M.; Fangmeier, A. Assessing potential aquatic toxicity of airport runoff using physicochemical parameters and Lemna gibba and Aliivibrio fischeri bioassays. Environ. Sci. Pollut. Res. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Hartwell, S.I.; Jordahl, D.M.; Evans, J.E.; May, E.B. Toxicity of aircraft de-icer and anti-icer solutions to aquatic organisms. Environ. Toxicol. Chem. 1995, 14, 1375–1386. [Google Scholar] [CrossRef]
- Luter, L. Environmental Impacts of Airport Operations, Maintenance, and Expansion. In CRS Reports for Congress; CRS: Washington, DC, USA, 2008; pp. 1–19. [Google Scholar]
- United States Environmental Protection Agency (EPA). Managing Aircraft and Airfield De-Icing Operations to Prevent Contamination of Drinking Water; United States Environmental Protection Agency: Washington, DC, USA, 2010. [Google Scholar]
- Byrne, M.; Pollak, J.; Oakes, D.; Laginestra, E. Comparison of the Sub-Mitochondrial Particle Test, Microtox Andsea Urchin Fertilisation and Development Tests: Parallel Assays Withleachate. Aust. J. Ecotoxicol. 2003, 9, 19–28. [Google Scholar]
- Marina, I.; Lavorgna, A.; Nardelli, M.; Parrella, A. Toxicity Identification Evaluation of Leachates from Municipal Solid Waste Landfills: A Multispecies Approach. Chemosphere 2003, 52, 85–94. [Google Scholar]
- International Organization for Standardization. ISO 2008: Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test); International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- Persoone, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Novak, L.J.; Holtze, K.; Kent, R.A.; Jefferson, C.; Anderson, D. Acute Toxicity of Storm Water Associated with De-icing/Anti-icing Activities at Canadian Airports. Environ. Toxicol. Chem. 2000, 19, 1846–1855. [Google Scholar] [CrossRef]
- Kuczyńska, A.; Wolska, L.; Namieśnik, J. Zastosowanie Biotestów w Badaniach Środowiskowych. In Nowe Horyzonty I Wyzwania W Analityce I Monitoringu Środowiskowym; Centrum Doskonałości Analityki I Monitoringu Środowiskowego: Gdansk, Poland, 2003; pp. 668–699. [Google Scholar]
- Blaise, C. Microbiotests in aquatic ecotoxicology: Characteristics, utility, and prospects. Environ. Toxicol. Water Qual. 1991, 6, 145–155. [Google Scholar] [CrossRef]
- Melnyk, A.; Kuklińska, K.; Wolska, L.; Namiesnik, J. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill. Environ. Res. 2014, 135, 253–261. [Google Scholar] [CrossRef]
- Tsarpali, V.; Kamilari, M.; Dailianis, S. Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions. J. Hazard. Mater. 2012, 233–234, 163–171. [Google Scholar] [CrossRef]
- Iervolino, I.; Accardo, D.; Tirri, A.E.; Pio, G.; Salzano, E. Quantitative risk analysis for the Amerigo Vespucci (Florence, Italy) airport including domino effects. Saf. Sci. 2019, 113, 472–489. [Google Scholar] [CrossRef]
- Dewhurst, R.E.; Callaghan, A.; Connon, R.; Crane, M.; Mather, J.D.; Wood, R. Toxicity testing of groundwater quality. Water Environ. J. 2005, 19, 17–24. [Google Scholar] [CrossRef]
- Szklarek, S.; Stolarska, M.; Wagner, I.; Mankiewicz-Boczek, J. The microbiotest battery as an important component in the assessment of snowmelt toxicity in urban watercourses—Preliminary studies. Environ. Monit. Assess. 2015, 187, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Airports/Sampling Site | Large Airport UK | Big Airport PL | Medium Airport PL | Small Airport PL |
---|---|---|---|---|
1 | runway | influent of a river | vicinity of an airport terminal | vicinity of an airport terminal |
2 | a river in the vicinity of the airport | effluent of a river | the technical road | de-icing area |
3 | de-icing area (2) | municipal water catchment area | de-icing area | machinery stock, parking places |
4 | de-icing area (3) | CARGO water catchment area | machinery stock, parking places | runway |
5 | de-icing area (4) | airport ramp | the periphery of an airport | parking places |
6 | the road near the airport | car park | runway | the periphery of an airport |
7 | - | de-icing area | car park | car park |
8 | - | airport ramp | - | - |
Microtox® | Thamnotoxkit FTM | |||||||
---|---|---|---|---|---|---|---|---|
Sampling Date/Season | Campaign | Site No. | Threat Degree | Acute Hazard Classes | Recommended Management Actions | Threat Degree | Acute Hazard Classes | Recommended Management Actions |
2011 Autumn | I | 1 | Acute hazard | III | IA a | NA d | NA | NA |
I | 2 | No acute hazard | I | FO b | NA | NA | NA | |
I | 3 | No acute hazard | I | FO | NA | NA | NA | |
I | 4 | No acute hazard | I | FO | NA | NA | NA | |
I | 5 | No acute hazard | I | FO | NA | NA | NA | |
2012 Winter | I | 1 | No acute hazard | I | FO | NA | NA | NA |
I | 2 | Acute hazard | III | IA | NA | NA | NA | |
I | 3 | No acute hazard | I | FO | NA | NA | NA | |
I | 4 | Acute hazard | III | IA | NA | NA | NA | |
I | 5 | No acute hazard | I | FO | NA | NA | NA | |
I | 6 | No acute hazard | I | FO | NA | NA | NA | |
2012 Winter | II | 1 | No acute hazard | I | FO | NA | NA | NA |
II | 2 | Acute hazard | III | IA | NA | NA | NA | |
II | 3 | No acute hazard | I | FO | NA | NA | NA | |
II | 4 | No acute hazard | I | FO | NA | NA | NA | |
II | 5 | No acute hazard | I | FO | NA | NA | NA | |
II | 6 | No acute hazard | I | FO | NA | NA | NA | |
II | 7 | No acute hazard | I | FO | NA | NA | NA | |
II | 8 | No acute hazard | I | FO | NA | NA | NA | |
2012 Spring | I | 1 | No acute hazard | I | FO | Acute hazard | III | IA |
I | 2 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 4 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 6 | No acute hazard | I | FO | Acute hazard | III | IA | |
II | 2 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
II | 4 | No acute hazard | I | FO | Acute hazard | III | IA | |
II | 5 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
II | 6 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 4 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 6 | No acute hazard | I | FO | Acute hazard | III | IA | |
2012 Autumn | I | 1 | No acute hazard | I | FO | Slight acute hazard | II | CA |
I | 2 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 3 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 4 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
I | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 6 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
I | 7 | No acute hazard | I | FO | Acute hazard | III | IA | |
2012 Autumn | II | 1 | Slight acute hazard | II | CA c | Acute hazard | III | IA |
II | 2 | Slight acute hazard | II | CA | Very high acute hazard | V | IA | |
II | 3 | No acute hazard | I | FO | No acute hazard | I | FO | |
II | 4 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
II | 6 | Slight acute hazard | II | CA | Slight acute hazard | II | CA | |
II | 7 | Slight acute hazard | II | CA | Very high acute hazard | V | IA | |
II | 8 | No acute hazard | I | FO | Acute hazard | III | IA | |
2013 Winter | I | 1 | Acute hazard | III | IA | Very high acute hazard | V | IA |
I | 2 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 3 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 6 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 7 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 8 | Slight acute hazard | II | CA | No acute hazard | I | FO |
Microtox® | Thamnotoxkit FTM | |||||||
---|---|---|---|---|---|---|---|---|
Sampling Date/Season | Campaign | Site No. | Threat Degree | Acute Hazard Classes | Recommended Management Actions | Threat Degree | Acute Hazard Classes | Recommended Management Actions |
2012 Winter | I | 1 | No acute hazard | I | FO | NA | NA | NA |
I | 2 | No acute hazard | I | FO | NA | NA | NA | |
I | 3 | No acute hazard | I | FO | NA | NA | NA | |
I | 4 | Acute hazard | III | IA | NA | NA | NA | |
I | 5 | No acute hazard | I | FO | NA | NA | NA | |
I | 6 | No acute hazard | I | FO | NA | NA | NA | |
II | 1 | Acute hazard | III | IA | NA | NA | NA | |
II | 2 | No acute hazard | I | FO | NA | NA | NA | |
II | 3 | Slight acute hazard | II | CA | NA | NA | NA | |
II | 4 | No acute hazard | I | FO | NA | NA | NA | |
II | 5 | No acute hazard | I | FO | NA | NA | NA | |
II | 6 | No acute hazard | I | FO | NA | NA | NA | |
II | 7 | Acute hazard | III | IA | NA | NA | NA | |
2012 Spring | I | 1 | Slight acute hazard | II | CA | Very high acute hazard | V | IA |
I | 2 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 3 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 4 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 6 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 7 | NA | NA | NA | No acute hazard | I | FO | |
2012 Summer | I | 1 | No acute hazard | I | FO | No acute hazard | I | FO |
I | 3 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
I | 4 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 2 | No acute hazard | I | FO | NA | NA | NA | |
I | 4 | No acute hazard | I | FO | NA | NA | NA | |
I | 5 | No acute hazard | I | FO | NA | NA | NA | |
I | 6 | Slight acute hazard | II | CA | NA | NA | NA |
Microtox® | Thamnotoxkit FTM | |||||||
---|---|---|---|---|---|---|---|---|
Sampling Date/Season | Campaign | Site No. | Threat Degree | Acute HazardClasses | Recommended Management Actions | Threat Degree | Acute Hazard Classes | Recommended Management Actions |
2012 Winter | I | 1 | No acute hazard | I | FO | Slight acute hazard | II | CA |
I | 2 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
I | 3 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
I | 4 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
I | 6 | No acute hazard | I | FO | Very high acute hazard | V | IA | |
I | 7 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
I | 8 | Acute hazard | III | IA | No acute hazard | I | FO | |
2012 Winter | II | 1 | No acute hazard | I | FO | No acute hazard | I | FO |
II | 2 | No acute hazard | I | FO | Acute hazard | III | IA | |
II | 3 | No acute hazard | I | FO | No acute hazard | I | FO | |
II | 4 | No acute hazard | I | FO | No acute hazard | I | FO | |
II | 5 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
II | 6 | Acute hazard | III | IA | No acute hazard | I | FO | |
II | 7 | Acute hazard | III | IA | Slight acute hazard | II | CA | |
II | 8 | No acute hazard | I | FO | No acute hazard | I | FO | |
2012 Autumn | I | 1 | NA | NA | NA | Acute hazard | III | IA |
I | 2 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 4 | No acute hazard | I | FO | NA | NA | NA | |
2013 Winter | I | 1 | No acute hazard | I | FO | Acute hazard | III | IA |
I | 2 | Acute hazard | III | IA | Acute hazard | III | IA | |
I | 4 | Slight acute hazard | II | CA | Acute hazard | III | IA | |
I | 5 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
I | 6 | No acute hazard | I | FO | Acute hazard | III | IA | |
I | 7 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
I | 8 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
2013 Winter | II | 1 | No acute hazard | I | FO | Slight acute hazard | II | CA |
II | 2 | No acute hazard | I | FO | Acute hazard | III | IA | |
II | 3 | No acute hazard | I | FO | Acute hazard | III | IA | |
II | 4 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
II | 5 | No acute hazard | I | FO | No acute hazard | I | FO | |
II | 6 | No acute hazard | I | FO | Acute hazard | III | IA | |
II | 7 | Acute hazard | III | IA | Very high acute hazard | V | IA | |
II | 8 | No acute hazard | I | FO | Slight acute hazard | II | CA |
Microtox® | Thamnotoxkit FTM | |||||||
---|---|---|---|---|---|---|---|---|
Sampling Date/Season | Campaign | Site No. | Threat Degree | Acute Hazard Classes | Recommended Management Actions | Threat Degree | Acute Hazard Classes | Recommended Management Actions |
2011 Autumn | II | 2 | No acute hazard | I | FO | No acute hazard | I | FO |
2012 Winter | II | 5 | Slight acute hazard | II | CA | No acute hazard | I | FO |
III | 4 | No acute hazard | I | FO | Slight acute hazard | II | CA | |
IV | 4 | No acute hazard | I | FO | No acute hazard | I | FO | |
V | 3 | No acute hazard | I | FO | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulej-Suchomska, A.M.; Przybyłowski, P.; Polkowska, Ż. Potential Toxic Effects of Airport Runoff Water Samples on the Environment. Sustainability 2021, 13, 7490. https://doi.org/10.3390/su13137490
Sulej-Suchomska AM, Przybyłowski P, Polkowska Ż. Potential Toxic Effects of Airport Runoff Water Samples on the Environment. Sustainability. 2021; 13(13):7490. https://doi.org/10.3390/su13137490
Chicago/Turabian StyleSulej-Suchomska, Anna Maria, Piotr Przybyłowski, and Żaneta Polkowska. 2021. "Potential Toxic Effects of Airport Runoff Water Samples on the Environment" Sustainability 13, no. 13: 7490. https://doi.org/10.3390/su13137490
APA StyleSulej-Suchomska, A. M., Przybyłowski, P., & Polkowska, Ż. (2021). Potential Toxic Effects of Airport Runoff Water Samples on the Environment. Sustainability, 13(13), 7490. https://doi.org/10.3390/su13137490