Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = airport stormwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1827 KiB  
Review
Stormwater Pollution of Non-Urban Areas—A Review
by Antonia Potreck and Jens Tränckner
Water 2025, 17(11), 1704; https://doi.org/10.3390/w17111704 - 4 Jun 2025
Viewed by 558
Abstract
Stormwater runoff from areas with specific industrial, agricultural or logistic land use comprises a significant source of water pollution, yet research on its specific composition remains limited compared to urban stormwater pollution. This review synthesizes findings from different studies to analyze sampling methods, [...] Read more.
Stormwater runoff from areas with specific industrial, agricultural or logistic land use comprises a significant source of water pollution, yet research on its specific composition remains limited compared to urban stormwater pollution. This review synthesizes findings from different studies to analyze sampling methods, types of pollution parameters and their associated concentration ranges across various non-urban land use types, including industrial and commercial zones, transportation infrastructure (ports, airports, highways, railways) and agricultural areas. Studies differed in sample strategy, investigated phase (water, sediment) and analyzed chemical parameters. The latter can be grouped into sum parameters (e.g., total suspended solids (TSS), chemical oxygen demand (COD)), metals (e.g., nickel, copper, zinc, lead), nutrients (e.g., nitrogen, phosphorus), organic micropollutants (e.g., polycyclic aromatic hydrocarbons (PAH), perfluoroalkyl acids (PFAA)) and microbial contaminants. Results indicate that pollutant loads vary widely depending on land use, with industrial and railway areas showing the highest metal contamination, while agricultural and livestock farming areas exhibit elevated nutrient and microbial concentrations. The heterogeneity of the sampling, analysis and subsequent data processing hindered the statistical condensation of data from different studies. The findings underscore the need for standardized monitoring methods and tailored stormwater treatment strategies to mitigate pollution impact effectively. Full article
(This article belongs to the Special Issue Advances in Sustainable Management of Contaminated Stormwater)
Show Figures

Figure 1

22 pages, 4084 KiB  
Review
Airport Runoff Water: State-of-the-Art and Future Perspectives
by Anna Maria Sulej-Suchomska, Danuta Szumińska, Miguel de la Guardia, Piotr Przybyłowski and Żaneta Polkowska
Sustainability 2024, 16(18), 8176; https://doi.org/10.3390/su16188176 - 19 Sep 2024
Cited by 4 | Viewed by 3022
Abstract
The increase in the quantity and variety of contaminants generated during routine airport infrastructure maintenance operations leads to a wider range of pollutants entering soil and surface waters through runoff, causing soil erosion and groundwater pollution. A significant developmental challenge is ensuring that [...] Read more.
The increase in the quantity and variety of contaminants generated during routine airport infrastructure maintenance operations leads to a wider range of pollutants entering soil and surface waters through runoff, causing soil erosion and groundwater pollution. A significant developmental challenge is ensuring that airport infrastructure meets high-quality environmental management standards. It is crucial to have effective tools for monitoring and managing the volume and quality of stormwater produced within airports and nearby coastal areas. It is necessary to develop methodologies for determining a wide range of contaminants in airport stormwater samples and assessing their toxicity to improve the accuracy of environmental status assessments. This manuscript aims to showcase the latest advancements (2010–2024 update) in developing methodologies, including green analytical techniques, for detecting a wide range of pollutants in airport runoff waters and directly assessing the toxicity levels of airport stormwater effluent. An integrated chemical and ecotoxicological approach to assessing environmental pollution in airport areas can lead to precise environmental risk assessments and well-informed management decisions for sustainable airport operations. Furthermore, this critical review highlights the latest innovations in remediation techniques and various strategies to minimize airport waste. It shifts the paradigm of soil and water pollution management towards nature-based solutions, aligning with the sustainable development goals of the 2030 Agenda. Full article
(This article belongs to the Special Issue Geological Environment Monitoring and Early Warning Systems)
Show Figures

Figure 1

26 pages, 3270 KiB  
Article
Comprehensive Analysis and Environmental Risk Assessment of Benzotriazoles in Airport Stormwater: A HS-SPME-GC × GC-TOF-MS-Based Procedure as a Tool for Sustainable Airport Runoff Water Management
by Anna Maria Sulej-Suchomska, Krystyna Koziol and Żaneta Polkowska
Sustainability 2024, 16(12), 5152; https://doi.org/10.3390/su16125152 - 17 Jun 2024
Cited by 2 | Viewed by 1686
Abstract
Despite the numerous benefits of intensive air transport development, many activities associated with the operation of airports contribute to environmental pollution. The purpose of this research was the development, optimization, and validation of a headspace–solid-phase microextraction–comprehensive two-dimensional gas chromatography–time of flight–mass spectrometry (HS-SPME-GC [...] Read more.
Despite the numerous benefits of intensive air transport development, many activities associated with the operation of airports contribute to environmental pollution. The purpose of this research was the development, optimization, and validation of a headspace–solid-phase microextraction–comprehensive two-dimensional gas chromatography–time of flight–mass spectrometry (HS-SPME-GC × GC-TOF-MS)-based procedure for determining anti-corrosive compounds in airport stormwater. Optimized HS-SPME conditions include: 45 min extraction time, 100 °C temperature, 1.0 g salt addition, and 10 min desorption time at 270 °C. The developed procedure is sensitive, selective, accurate (recoveries ≥ 80.0%), and precise (the coefficient of variation (CV) ≤ 14.9%), making it a highly suitable tool for extensive airport stormwater quality monitoring. The validated analytical protocol was successfully used to detect pollutants, including 1H-BT, 4-MeBT, 5-MeBT, and 5,6-diMe-1H-BT, in stormwater from various European airports with different flight capacities. Throughout the sampling period at the investigated airports, 1H-benzotriazole was found in the highest concentrations, ranging from below the MQL to 467 mg/L. An ecotoxicological risk assessment revealed that 69% of the sites exhibited high risk levels (Risk Quotient ≥ 1). The developed procedure and carried out environmental risk assessments of benzotriazoles in airport stormwater enable an evidence-based approach to sustainable airport stormwater management. Full article
Show Figures

Figure 1

18 pages, 927 KiB  
Article
Potential Toxic Effects of Airport Runoff Water Samples on the Environment
by Anna Maria Sulej-Suchomska, Piotr Przybyłowski and Żaneta Polkowska
Sustainability 2021, 13(13), 7490; https://doi.org/10.3390/su13137490 - 5 Jul 2021
Cited by 7 | Viewed by 5209
Abstract
Despite the positive aspects of the intensive development of aviation, airports are considered large-scale polluters. Pollution caused by runoff water (stormwater) is one of the major problems related to airport operations. The aim of this study was to characterize the potential toxic impact [...] Read more.
Despite the positive aspects of the intensive development of aviation, airports are considered large-scale polluters. Pollution caused by runoff water (stormwater) is one of the major problems related to airport operations. The aim of this study was to characterize the potential toxic impact on aquatic life from runoff water discharges from four international airports in Europe. Samples of stormwater were collected at airports with different capacities of passenger movement in four seasons of the year from 2011 to 2013. Within the ecotoxicological analyses, a battery of biotests incorporating organisms of different trophic levels (Microtox® test, Thamnotoxkit F™) were used. A relatively high number of runoff water samples collected at the investigated airports in Europe was recorded as having very high acute hazard (16.8%), acute hazard (27.7%), and slight acute hazard (18.1%) levels. The results of the research indicate that winter and autumn present a greater toxic threat than the rest of the year. The highest number of toxic samples was observed for samples collected in the de-icing area, the runway and the vicinity of airport terminals. The ecotoxicological assessment applied in this research can be used as a tool for assessing the environmental effect of airports. Full article
(This article belongs to the Special Issue Socially and Environmentally Sustainable Airline Business)
Show Figures

Figure 1

12 pages, 2352 KiB  
Article
The Kinetics of Pollutant Removal through Biofiltration from Stormwater Containing Airport De-Icing Agents
by Artur Mielcarek, Joanna Rodziewicz, Wojciech Janczukowicz and Kamila Ostrowska
Appl. Sci. 2021, 11(4), 1724; https://doi.org/10.3390/app11041724 - 15 Feb 2021
Cited by 6 | Viewed by 2476
Abstract
The present study aimed to determine the kinetics of pollutant removal in biofilters with LECA filling (used as a buffer to prevent de-icing agents from being released into the environment with stormwater runoff). It demonstrated a significant effect of temperature and a C/N [...] Read more.
The present study aimed to determine the kinetics of pollutant removal in biofilters with LECA filling (used as a buffer to prevent de-icing agents from being released into the environment with stormwater runoff). It demonstrated a significant effect of temperature and a C/N ratio on the rate of nitrification, denitrification, and organic compound removal. The nitrification rate was the highest (0.32 mg N/L·h) at 25 °C and C/N = 0.5, whereas the lowest (0.18 mg N/L·h) at 0 °C and C/N = 2.5 and 5.0. Though denitrification rate is mainly affected by the available quantity of organic substrate, it actually decreased as the C/N increased and was positively correlated with the temperature levels. Its value was found to be the highest (0.31 mg N/L·h) at 25 °C and C/N = 0.5, and the lowest (0.18 mg N/L·h) at 0 °C and C/N = 5.0. As the C/N increased, so did the content of organic compounds in the treated effluent. The lowest organic removal rates were noted for C/N = 0.5, ranging between 11.20 and 18.42 mg COD/L·h at 0 and 25 °C, respectively. The highest rates, ranging between 27.83 and 59.43 mg COD/L·h, were recorded for C/N = 0.5 at 0 and 25 °C, respectively. Full article
Show Figures

Figure 1

Back to TopTop