Impact of Climate Change on Wine Tourism: An Approach through Social Media Data
Abstract
:1. Introduction
1.1. General Problem
1.2. Literature Review
1.3. Purpose of the Research
2. Materials and Methods
2.1. Study Areas
2.1.1. Alsace
2.1.2. Chianti
2.1.3. La Rioja
2.1.4. Langhe-Monferrato
2.1.5. Moselle
2.2. Data
2.2.1. Flickr Social Media and Wine Tourist Data
2.2.2. Climate Data
2.2.3. Joining Climate and Wine Tourist Data in a Single Dataset
2.3. Statistical Processing
2.4. Climate Change Simulation
3. Results
3.1. Exploratory Analysis of Model Dataset
3.2. The GAM Model
3.3. Future Climate Scenarios
4. Discussion
4.1. Have the Research Objectives Been Achieved?
4.2. Limitation of Study and Topics for Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, C.M.; Longo, A.M.; Mitchell, R.; Johnson, G. Wine tourism in New Zealand. In Wine Tourism around the World; Routledge: London, UK, 2009; pp. 150–174. [Google Scholar]
- Winkler, K.J.; Nicholas, K.A. More than wine: Cultural ecosystem services in vineyard landscapes in England and California. Ecol. Econ. 2016, 124, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Sottini, V.A.; Barbierato, E.; Bernetti, I.; Capecchi, I.; Fabbrizzi, S.; Menghini, S. Winescape perception and big data analysis: An assessment through social media photographs in the Chianti Classico region. Wine Econ. Policy 2019, 8, 127–140. [Google Scholar] [CrossRef]
- Getz, D.; Brown, G. Critical success factors for wine tourism regions: A demand analysis. Tour. Manag. 2006, 27, 146–158. [Google Scholar] [CrossRef]
- Galloway, G.; Mitchell, R.; Getz, D.; Crouch, G.; Ong, B. Sensation seeking and the prediction of attitudes and be-haviours of wine tourists. Tour. Manag. 2008, 29, 950–966. [Google Scholar] [CrossRef]
- Marzo-Navarro, M.; Pedraja-Iglesias, M. Wine tourism development from the perspective of the potential tourist in Spain. Int. J. Contemp. Hosp. Manag. 2009, 21, 816–835. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M.; Ceron, J.-P.; Dubois, G. Consumer behaviour and demand response of tourists to climate change. Ann. Tour. Res. 2012, 39, 36–58. [Google Scholar] [CrossRef]
- Njoroge, J.M. Climate change and tourism adaptation: Literature review. Tour. Hosp. Manag. 2015, 21, 95–108. [Google Scholar] [CrossRef]
- Wilson, R. The Impacts of Climate Change on Australian Tourism Destinations Developing Adaptation and Response Strategies—A Scoping Study; CRC for Sustainable Tourism Pty Ltd.: Gold Coast, Australia, 2009. [Google Scholar]
- Turton, S.; Dickson, T.; Hadwen, W.; Jorgensen, B.S.; Pham, T.; Simmons, D.; Tremblay, P.; Wilson, R. Developing an approach for tourism climate change assessment: Evidence from four contrasting Australian case studies. J. Sustain. Tour. 2010, 18, 429–447. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Martín, M.B.; Armesto-López, X.A.; Cors-Iglesias, M.; Muñoz-Negrete, J. Adaptation strategies to climate change in the tourist sector: The case of coastal tourism in Spain. Tour. Int. Interdiscip. J. 2014, 62, 293–308. [Google Scholar]
- Zsarnoczky, M. The future of sustainable rural tourism development—The impacts of climate change. Ann. Pol. Assoc. Agric. Agribus. Econ. 2017, XIX, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Kubokawa, H.; Inoue, T.; Satoh, M. Evaluation of the Tourism Climate Index over Japan in a Future Climate Using a Statistical Downscaling Method. J. Meteorol. Soc. Jpn. 2014, 92, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, S.; Karimi, J. The Review of Changes in Tourism Climate Index (TCI) Isfahan (2005–1976). J. Reg. Plan. 2014, 3, 71–82. [Google Scholar]
- Pröbstl-Haider, U.; Haider, W.; Wirth, V.; Beardmore, B. Will climate change increase the attractiveness of summer destinations in the European Alps? A survey of German tourists. J. Outdoor Recreat. Tour. 2015, 11, 44–57. [Google Scholar] [CrossRef]
- Atzori, R.; Fyall, A.; Miller, G. Tourist responses to climate change: Potential impacts and adaptation in Florida’s coastal destinations. Tour. Manag. 2018, 69, 12–22. [Google Scholar] [CrossRef]
- Craig, C.A. The Weather-Proximity-Cognition (WPC) framework: A camping, weather, and climate change case. Tour. Manag. 2019, 75, 340–352. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Gao, H.J.; Li, J.Y. The correlation between tourists’ emotion and climate comfort index based on the micro-blog big data: A case study of domestic tourists in Xi’an city. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 2017, 45, 110–117. [Google Scholar]
- Ren, Y.; Liu, C.; Tang, X. A Correlation Analysis of Nanjing Climate Comfort Degree for Tourism & Travel Heat Index Changes of the Year based on the Big Data of Multiple Internet. J. Hebei Tour. Vocat. Coll. 2017, 4, 5–10. [Google Scholar]
- Grasso, V.; Crisci, A.; Morabito, M.; Nesi, P.; Pantaleo, G. Public crowdsensing of heat waves by social media data. Adv. Sci. Res. 2017, 14, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, L.; Zhou, H.; Wang, S. Impact of climate change on hiking: Quantitative evidence through big data mining. Curr. Issues Tour. 2020, 1–17. [Google Scholar] [CrossRef]
- Matzarakis, A. Assessment method for climate and tourism based on daily data. Dev. Tour. Climatol. 2007, 1, 1–7. [Google Scholar]
- Scott, D.; McBoyle, G. Using a ‘tourism climate index’to examine the implications of climate change for climate as a tourism resource. In Proceedings of the First International Workshop on Climate, Tourism and Recreation, Halkidiki, Greece, 5–10 October 2001; Porto Carras, International Society of Biometeorology: Sithonia, Greece, 2001; pp. 69–88. [Google Scholar]
- Fisichelli, N.A.; Schuurman, G.W.; Monahan, W.B.; Ziesler, P.S. Protected Area Tourism in a Changing Climate: Will Visitation at US National Parks Warm Up or Overheat? PLoS ONE 2015, 10, e0128226. [Google Scholar] [CrossRef] [PubMed]
- Coldrey, K.M.; Turpie, J.K. Potential impacts of changing climate on nature-based tourism: A case study of South Africa’s national parks. Koedoe 2020, 62, 12. [Google Scholar] [CrossRef]
- Scott, D.; Rutty, M.; Amelung, B.; Tang, M. An inter-comparison of the holiday climate index (HCI) and the tour-ism climate index (TCI) in Europe. Atmosphere 2016, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Köberl, J.; Prettenthaler, F.; Bird, D.N. Modelling climate change impacts on tourism demand: A comparative study from Sardinia (Italy) and Cap Bon (Tunisia). Sci. Total Environ. 2016, 543, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Perch-Nielsen, S.L.; Amelung, B.; Knutti, R. Future climate resources for tourism in Europe based on the daily Tourism Climatic Index. Clim. Chang. 2010, 103, 363–381. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Bateman, B.L.; Vanderwal, J.; Johnson, C.N. Nice weather for bettongs: Using weather events, not climate means, in species distribution models. Ecography 2012, 35, 306–314. [Google Scholar] [CrossRef]
- Levin, N.; Lechner, A.; Brown, G. An evaluation of crowdsourced information for assessing the visitation and perceived importance of protected areas. Appl. Geogr. 2017, 79, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, N.; Hiura, T. Demand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [Google Scholar] [CrossRef]
- Walden-Schreiner, C.; Leung, Y.F.; Tateosian, L. Digital footprints: Incorporating crowdsourced geographic infor-mation for protected area management. Appl. Geogr. 2018, 90, 44–54. [Google Scholar] [CrossRef]
- Bernetti, I.; Alampi Sottini, V.; Bambi, L.; Barbierato, E.; Borghini, T.; Capecchi, I.; Saragosa, C. Urban Niche Assessment: An Approach Integrating Social Media Analysis, Spatial Urban Indicators and Geo-Statistical Techniques. Sustainability 2020, 12, 3982. [Google Scholar] [CrossRef]
- Sottini, V.A.; Barbierato, E.; Bernetti, I.; Capecchi, I.; Fabbrizzi, S.; Menghini, S. Rural environment and land-scape quality: An evaluation model integrating social media analysis and geostatistics techniques. Aestimum 2019, 43–62. [Google Scholar] [CrossRef]
- Sottini, V.A.; Barbierato, E.; Bernetti, I.; Capecchi, I.; Fabbrizzi, S.; Menghini, S. The use of crowdsourced geo-graphic information for spatial evaluation of cultural ecosystem services in the agricultural landscape: The case of Chianti Classico (Italy). New Medit. 2019, 18, 105–118. [Google Scholar] [CrossRef]
- Compés Lopez, R.; Szolnoki, G. Culture and Wine Tourism. In Sustainable and Innovative Wine Tourism Success Models from All around the World; Cajamar Caja Rural: Valencia, Spain, 2021. [Google Scholar]
- Frochot, I. Wine tourism in France: A paradox? In Wine Tourism around the World; Routledge: London, UK, 2009; pp. 67–80. [Google Scholar]
- Brunori, G.; Rossi, A. Differentiating countryside: Social representations and governance patterns in rural areas with high social density: The case of Chianti, Italy. J. Rural. Stud. 2007, 23, 183–205. [Google Scholar] [CrossRef]
- Giovanni, P.; Fabio, P.; Maria, B.P.; Alessandro, B. Food and Wine Tourism in the Langa del Barolo: Survey on Restaurant Offer. Micro Macro Mark. 2017, 1, 27–44. [Google Scholar]
- Job, H.; Murphy, A. Germany’s Mosel Valley: Can tourism help preserve its cultural heritage? Tour. Rev. Int. 2006, 9, 333–347. [Google Scholar] [CrossRef]
- Sessions, C.; Wood, S.A.; Rabotyagov, S.; Fisher, D.M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 2016, 183, 703–711. [Google Scholar] [CrossRef]
- Cox, A.M.; Clough, P.D.; Marlow, J. Flickr: A first look at user behaviour in the context of photography as serious leisure. Inf. Res. 2008, 13, 336. Available online: http://InformationR.net/ir/13-1/paper336.html (accessed on 6 January 2008).
- Liu, I.; Norman, W.C.; Pennington-Gray, L. A flash of culinary tourism: Understanding the influences of online food photography on people’s travel planning process on flickr. Tour. Cult. Commun. 2013, 13, 5–18. [Google Scholar] [CrossRef]
- Barros, C.; Moya-Gómez, B.; García-Palomares, J.C. Identifying Temporal Patterns of Visitors to National Parks through Geotagged Photographs. Sustainability 2019, 11, 6983. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, P.; Mitchell, J.E. Ensembles: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009; p. 160. [Google Scholar]
- Hurrell, J.; Visbeck, M.; Pirani, A. WCRP Coupled Model Intercomparison Project–Phase 5; Special Issue of the CLIVAR Exchanges Newsletter; International CLIVAR Project Office: Bracknell, UK, 2011. [Google Scholar]
- Betts, R.A.; Golding, N.; Gonzalez, P.; Gornall, J.; Kahana, R.; Kay, G.; Mitchell, L.; Wiltshire, A. Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the repre-sentative concentration pathways. Biogeosciences 2015, 12, 1317–1338. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Gössling, S.; De Freitas, C. Preferred climates for tourism: Case studies from Canada, New Zealand and Sweden. Clim. Res. 2008, 45, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Rutty, M.; Scott, D. Will the Mediterranean become “too hot” for tourism? A reassessment. Tour. Hosp. Plan. Dev. 2010, 7, 267–281. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Differential climate preferences of international beach tourists. Clim. Res. 2013, 57, 259–269. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Comparison of Climate Preferences for Domestic and International Beach Holidays: A Case Study of Canadian Travelers. Atmosphere 2016, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Charalampopoulos, I. A comparative sensitivity analysis of human thermal comfort indices with generalized additive models. Theor. Appl. Clim. 2019, 137, 1605–1622. [Google Scholar] [CrossRef]
- Du, D.; Zhao, X.; Huang, R. The impact of climate change on developed economies. Econ. Lett. 2017, 153, 43–46. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Qiu, Y.; Wang, Y.D.; Cobanoglu, C.; Ciftci, O.; Liu, Z. Loss of profit in the hotel industry of the United States due to climate change. Environ. Res. Lett. 2019, 14, 084022. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perperoglou, A.; Sauerbrei, W.; Abrahamowicz, M.; Schmid, M. A review of spline function procedures in R. BMC Med. Res. Methodol. 2019, 19, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elith, J.; Ferrier, S.; Huettmann, F.; Leathwick, J. The evaluation strip: A new and robust method for plotting pre-dicted responses from species distribution models. Ecol. Model. 2005, 186, 280–289. [Google Scholar] [CrossRef]
- Milborrow, S. Plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutty, M.; Scott, D.; Matthews, L.; Burrowes, R.; Trotman, A.; Mahon, R.; Charles, A. An inter-comparison of the holiday climate index (HCI: Beach) and the tourism climate index (TCI) to explain Canadian tourism arrivals to the Caribbe-an. Atmosphere 2020, 11, 412. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A. Mediterranean Tourism and Climate (Change): A Survey-Based Study. Tour. Hosp. Plan. Dev. 2010, 7, 253–265. [Google Scholar] [CrossRef]
- Armas, R.J.D. Potencialidad e Integración Del ‘Turismo Del Vino’ En Un Destino de Sol y Playa: El Caso de Tenerife. PASOS Rev. Tur. Patrim. Cult. 2008, 6, 199–212. [Google Scholar]
- Garibaldi, R.; Sfodera, F. Technologies for enhancing wine tourism experience. In The Routledge Handbook of Tourism Experience Management and Marketing; Routledge: London, UK, 2020; Volume 16, pp. 409–417. [Google Scholar] [CrossRef]
- Ashenfelter, O.; Storchmann, K. Climate Change and Wine: A Review of the Economic Implications. J. Wine Econ. 2016, 11, 105–138. [Google Scholar] [CrossRef]
- Gurbey, A.P. Climate change problems in agricultural landscape areas: Eastern thrace vineyards. J. Environ. Prot. Ecol. 2020, 21, 1090–1097. [Google Scholar]
- Nov, O.; Naaman, M.; Ye, C. Analysis of participation in an online photo-sharing community: A multidimensional perspective. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 555–566. [Google Scholar] [CrossRef] [Green Version]
Variable | VIF |
---|---|
Percent humidity | 2.75 |
Mean temperature | 1.81 |
Precipitation | 1.19 |
Wind speed | 1.09 |
Cloud cover | 1.86 |
Parametric Coefficients: | Estimate | Std. Error | z value | Pr(>|z|) | |
---|---|---|---|---|---|
(Intercept) | −3.28047 | 0.14455 | −22.695 | <2 × 10−16 | *** |
Chianti Classico | −0.51845 | 0.02898 | −17.889 | <2 × 10−16 | *** |
Langhe Monferrato | −0.19927 | 0.02874 | −6.932 | 4.14 × 10−12 | *** |
La Rioja | −0.5612 | 0.02724 | −20.603 | <2 × 10−16 | *** |
Mosel | −0.36304 | 0.02967 | −12.238 | <2 × 10−16 | *** |
Percent humidity node 1 | 0.42655 | 0.07646 | 5.579 | 2.43 × 10−8 | *** |
Percent humidity node 2 | 0.19327 | 0.07085 | 2.728 | 0.006376 | ** |
Percent humidity node 3 | −0.18205 | 0.09029 | −2.016 | 0.043773 | * |
Mean temperature node 1 | 0.77641 | 0.09469 | 8.199 | 2.42 × 10−16 | *** |
Mean temperature node 2 | 1.77848 | 0.0859 | 20.704 | <2 × 10−16 | *** |
Mean temperature node 3 | 2.05635 | 0.10606 | 19.389 | <2 × 10−16 | *** |
Precipitation | −0.2646 | 0.15648 | −1.691 | 0.090853 | |
Wind speed node 1 | 1.87338 | 0.11682 | 16.037 | <2 × 10−16 | *** |
Wind speed node 2 | 2.21186 | 0.08645 | 25.584 | <2 × 10−16 | *** |
Wind speed node 3 | 3.58592 | 0.13765 | 26.051 | <2 × 10−16 | *** |
Wind speed node 4 | 0.61104 | 0.27339 | 2.235 | 0.025413 | * |
Cloud cover node 1 | −0.07541 | 0.03527 | −2.138 | 0.032503 | * |
Cloud cover node 2 | −0.11123 | 0.03207 | −3.468 | 0.000523 | *** |
Cloud cover node 3 | −0.42266 | 0.03421 | −12.355 | <2 × 10−16 | *** |
Temperature range node 1 | 0.26303 | 0.06526 | 4.031 | 5.56 × 10−5 | *** |
Temperature range node 2 | 0.18322 | 0.05775 | 3.173 | 0.001511 | ** |
Temperature range node 3 | −0.37023 | 0.08861 | −4.178 | 2.94 × 10−5 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sottini, V.A.; Barbierato, E.; Bernetti, I.; Capecchi, I. Impact of Climate Change on Wine Tourism: An Approach through Social Media Data. Sustainability 2021, 13, 7489. https://doi.org/10.3390/su13137489
Sottini VA, Barbierato E, Bernetti I, Capecchi I. Impact of Climate Change on Wine Tourism: An Approach through Social Media Data. Sustainability. 2021; 13(13):7489. https://doi.org/10.3390/su13137489
Chicago/Turabian StyleSottini, Veronica Alampi, Elena Barbierato, Iacopo Bernetti, and Irene Capecchi. 2021. "Impact of Climate Change on Wine Tourism: An Approach through Social Media Data" Sustainability 13, no. 13: 7489. https://doi.org/10.3390/su13137489
APA StyleSottini, V. A., Barbierato, E., Bernetti, I., & Capecchi, I. (2021). Impact of Climate Change on Wine Tourism: An Approach through Social Media Data. Sustainability, 13(13), 7489. https://doi.org/10.3390/su13137489