Understanding Mobile Showrooming Based on a Technology Acceptance and Use Model
Abstract
:1. Introduction
2. Literature Review
3. Research Model and Hypotheses
3.1. Performance Expectancy
3.2. Effort Expectancy
3.3. Social Influence
3.4. Facilitating Conditions
3.5. Hedonic Motivation
3.6. Value Consciousness
3.7. Purchase Involvement
3.8. Mobile Dependency as a Moderator of the Relationship between Value Consciousness and Mobile Showrooming Intention
4. Methodology
5. Results
6. Discussion and Conclusions
6.1. Practical Implications
6.2. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Contruct/Items | Authors | Mean | SD |
---|---|---|---|
Facilitating conditions The smartphone, compared to the PC, allows me to get access to what I want wherever I am. For shopping purposes, having a smartphone is like having both a mobile phone and a PC together. Buying through the smartphone, instead of doing it through the PC, saves me time. Buying through the smartphone, instead of through the PC, requires less effort. | [28] | 5.96 5.79 5.38 5.38 | 1.11 1.21 1.40 1.38 |
Social influence My family and friends influence my decision to use the smartphone for shopping. The media (TV, radio, newspapers) influence my decision to use the smartphone for shopping. I think I would use the smartphone more for shopping if people close to me did. | [28] | 4.16 4.05 4.01 | 1.88 1.79 1.80 |
Hedonic motivation Shopping through the smartphone is fun. Shopping through the smartphone is enjoyable. Shopping through the smartphone is very entertaining. | [28] | 5.36 5.11 5.25 | 1.36 1.40 1.39 |
Purchase involvement How would you rate the purchase you made? Important………………Unimportant Relevant………………...Irrelevant Means a lot to me………Means nothing to me | [87] | 5.60 5.52 5.50 | 1.17 1.18 1.17 |
Effort expectancy It has been easy for me to develop the skills needed for shopping through the smartphone. My interaction with online shopping sites through the smartphone is clear and understandable. It is easy to become skillful at using online shopping websites through the smartphone. | [28] | 5.50 5.54 5.64 | 1.32 1.25 1.19 |
Performance expectancy I find shopping through the smartphone is useful in my daily life. Using the smartphone for shopping helps me to accomplish things more quickly. Shopping through the smartphone increases my shopping efficiency. | [28] | 5.58 5.46 5.46 | 1.19 1.29 1.27 |
Value consciousness When shopping, I am equally concerned about low prices and product quality. When shopping, I compare the prices to be sure I get the best value for my money. When shopping, I try to maximise the quality I get for the money I can spend. When I buy products, I like to be sure that I am getting my money’s worth. | [58] | 6.05 5.93 5.94 5.98 | 1.10 1.18 1.24 1.14 |
Mobile dependency In my day to day, usage of the smartphone is high. I feel lost when my smartphone is not with me. I use the smartphone for everything. I am totally dependent on my smartphone. | [32] | 6.16 5.22 5.40 5.09 | 1.10 1.45 1.39 1.52 |
Showrooming intention It is likely that in the future I will shop again in this way. When I have to purchase this kind of product again, I will do it in the same way. I have the intention to continue shopping this way. | [47] | 5.89 5.57 5.68 | 1.13 1.12 1.13 |
References
- Brynjolfsson, B.E.; Hu, Y.J.; Rahman, M.S. Competing in the Age of Omnichannel Retailing. MIT Sloan Manag. Rev. 2013, 54, 23–29. [Google Scholar]
- Fiestas, J.C.; Tuzovic, S. Mobile-assisted showroomers: Understanding their purchase journey and personalities. J. Retail. Consum. Serv. 2021, 58, 102280. [Google Scholar] [CrossRef]
- Chiu, H.C.; Hsieh, Y.C.; Roan, J.; Tseng, K.J.; Hsieh, J.K. The challenge for multichannel services: Cross-channel free-riding behavior. Electron. Commer. Res. Appl. 2011, 10, 268–277. [Google Scholar] [CrossRef]
- Goraya, M.A.S.; Zhu, J.; Akram, M.S.; Shareef, M.A.; Malik, A.; Bhatti, Z.A. The impact of channel integration on consumers’ channel preferences: Do showrooming and webrooming behaviors matter? J. Retail. Consum. Serv. 2020, 102130. [Google Scholar] [CrossRef]
- Flavián, C.; Gurrea, R.; Orús, C. Combining channels to make smart purchases: The role of webrooming and showrooming. J. Retail. Consum. Serv. 2020, 52. [Google Scholar] [CrossRef]
- Barwitz, N.; Maas, P. Understanding the Omnichannel Customer Journey: Determinants of Interaction Choice. J. Interact. Mark. 2018, 43, 116–133. [Google Scholar] [CrossRef]
- iVend Retail. Global Path to Purchase Report. 2018. Available online: https://support.ivend.com/userportal?id=doc_view&doc=KB0011242 (accessed on 4 May 2021).
- Kim, B.; Park, M.J. An Examination of the Effect of Consumer Personal Traits on Show Rooming Behavior: The Effect of Product Type. J. Internet Commer. 2019, 18, 24–44. [Google Scholar] [CrossRef]
- Rapp, A.; Baker, T.L.; Bachrach, D.G.; Ogilvie, J.; Beitelspacher, L.S. Perceived customer showrooming behavior and the effect on retail salesperson self-efficacy and performance. J. Retail. 2015, 91, 358–369. [Google Scholar] [CrossRef]
- Fassnacht, M.; Beatty, S.E.; Szajna, M. Combating the negative effects of showrooming: Successful salesperson tactics for converting showroomers into buyers. J. Bus. Res. 2019, 102, 131–139. [Google Scholar] [CrossRef]
- Schneider, P.J.; Zielke, S. Searching offline and buying online–An analysis of showrooming forms and segments. J. Retail. Consum. Serv. 2020, 52. [Google Scholar] [CrossRef]
- Mehra, A.; Kumar, S.; Raju, J.S. Competitive strategies for brick-and-mortar stores to counter ‘showrooming’. Manag. Sci. 2018, 64, 3076–3090. [Google Scholar] [CrossRef] [Green Version]
- Dahana, W.D.; Shin, H.J.; Katsumata, S. Influence of individual characteristics on whether and how much consumers engage in showrooming behavior. Electron. Commer. Res. 2018, 18, 665–692. [Google Scholar] [CrossRef]
- Kang, J.Y.M. Showrooming, Webrooming, and User-Generated Content Creation in the Omnichannel Era. J. Internet Commer. 2018, 17, 145–169. [Google Scholar] [CrossRef]
- Viejo-Fernández, N.; Sanzo-Pérez, M.J.; Vázquez-Casielles, R. Is showrooming really so terrible? start understanding showroomers. J. Retail. Consum. Serv. 2020, 54. [Google Scholar] [CrossRef]
- Juaneda-Ayensa, E.; Mosquera, A.; Murillo, Y.S. Omnichannel customer behavior: Key drivers of technology acceptance and use and their effects on purchase intention. Front. Psychol. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Rodríguez, T.; Carvajal-Trujillo, E. Online purchasing tickets for low cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tour. Manag. 2014, 43, 70–88. [Google Scholar] [CrossRef]
- Sahu, K.C.; Naved Khan, M.; Das Gupta, K. Determinants of webrooming and showrooming behavior: A systematic literature review. J. Internet Commer. 2021, 20, 137–166. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Kannan, P.K.; Inman, J.J. From Multi-Channel Retailing to Omni-Channel Retailing Introduction to the Special Issue on Multi-Channel Retailing. J. Retail. 2015, 91, 174–181. [Google Scholar] [CrossRef]
- Lemon, K.N.; Verhoef, P.C. Understanding Customer Experience Throughout the Customer Journey. J. Mark. 2016, 80, 69–96. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Neslin, S.A.; Vroomen, B. Multichannel customer management: Understanding the research-shopper phenomenon. Int. J. Res. Mark. 2007, 24, 129–148. [Google Scholar] [CrossRef]
- Flavián, C.; Gurrea, R.; Orús, C. Feeling Confident and Smart with Webrooming: Understanding the Consumer’s Path to Satisfaction. J. Interact. Mark. 2019, 47, 1–15. [Google Scholar] [CrossRef]
- Gensler, S.; Neslin, S.A.; Verhoef, P.C. The Showrooming Phenomenon: It’s More than Just About Price. J. Interact. Mark. 2017, 38, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Sahney, S. Antecedents to consumers’ showrooming behaviour: An integrated TAM-TPB framework. J. Consum. Mark. 2018, 35, 438–450. [Google Scholar] [CrossRef]
- Perry, A.; Kent, P.; Bonetti, F. The use of mobile technologies in physical stores: The case of fashion retailing. In Exploring Omnichannel Retailing; Piotrowicz, W., Cuthbertson, R., Eds.; Springer: Cham, Switzerland, 2019; pp. 169–195. [Google Scholar]
- Santos, S.; Gonçalves, H.M. Multichannel consumer behaviors in the mobile environment: Using fsQCA and discriminant analysis to understand webrooming motivations. J. Bus. Res. 2019, 101, 757–766. [Google Scholar] [CrossRef]
- Lamberton, C.; Stephen, A.T. A thematic exploration of digital, social media, and mobile marketing: Research evolution from 2000 to 2015 and an agenda for future inquiry. J. Mark. 2016, 80, 146–172. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.J.; Gupta, P.B.; Bihn, H.C.; Hutchins, J. Showrooming: An Exploratory Empirical Investigation of Students’ Attitudes and Behavior. Inf. Syst. Manag. 2018, 35, 294–307. [Google Scholar] [CrossRef]
- Kokho Sit, J.; Hoang, A.; Inversini, A. Showrooming and retail opportunities: A qualitative investigation via a consumer-experience lens. J. Retail. Consum. Serv. 2018, 40, 163–174. [Google Scholar] [CrossRef]
- Wang, C.; Lee, M.K.; Hua, Z. A theory of social media dependence: Evidence from microblog users. Decis. Support. Syst. 2015, 69, 40–49. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Vallerand, R.J. Toward a hierarchical model of intrinsic and extrinsic motivation. In Advances in Experimental Social Psychology; Zanna, M.P., Ed.; Academic Press: Cambridge, MA, USA, 1997; Volumn 29, pp. 271–360. [Google Scholar]
- Rogers, E. Diffusion of Innovations; The Free Press: New York, NY, USA, 1983. [Google Scholar]
- Marinkovic, V.; Kalinic, Z. Antecedents of customer satisfaction in mobile commerce. Online Inf. Rev. 2017, 41, 138–154. [Google Scholar] [CrossRef]
- Choi, S. What promotes smartphone-based mobile commerce? Mobile-specific and self-service characteristics. Internet Res. 2018, 28, 105–122. [Google Scholar] [CrossRef]
- Yadav, R.; Sharma, S.K.; Tarhini, A. A multi-analytical approach to understand and predict the mobile commerce adoption. J. Enterp. Inf. Manag. 2016, 29, 222–237. [Google Scholar] [CrossRef]
- Camoiras-Rodriguez, Z.; Varela, C. The influence of consumer personality traits on mobile shopping intention. Spanish J. Mark. 2020, 24, 331–353. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Chong, A.Y.L.; Chan, F.T.S.; Ooi, K.B. Predicting consumer decisions to adopt mobile commerce: Cross country empirical examination between China and Malaysia. Decis. Support Syst. 2012, 53, 34–43. [Google Scholar] [CrossRef]
- Tsu Wei, T.; Marthandan, G.; Yee-Loong Chong, A.; Ooi, K.; Arumugam, S. What drives Malaysian m-commerce adoption? An empirical analysis. Ind. Manag. Data Syst. 2009, 109, 370–388. [Google Scholar] [CrossRef] [Green Version]
- Blaise, R.; Halloran, M.; Muchnick, M. Mobile commerce competitive advantage: A quantitative study of variables that predict m-commerce purchase intentions. J. Internet Commer. 2018, 17, 96–114. [Google Scholar] [CrossRef]
- Norazah Mohd, S. Students’ dependence on smart phones. Campus Wide Inf. Syst. 2013, 30, 124–134. [Google Scholar] [CrossRef]
- Lu, J. Are personal innovativeness and social influence critical to continue with mobile commerce. Internet Res. 2014, 24, 134–159. [Google Scholar] [CrossRef]
- Pookulangara, S.; Hawley, J.; Xiao, G. Explaining consumers’ channel-switching behavior using the theory of planned behavior. J. Retail. Consum. Serv. 2011, 18, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Rejón-Guardia, F.; Luna-Nevarez, C. ‘Showrooming’ in Consumer Electronics Retailing: An Empirical Study. J. Internet Commer. 2017, 16, 174–201. [Google Scholar] [CrossRef]
- Thakur, R.; Srivastava, M. Customer usage intention of mobile commerce in India: An empirical study. J. Indian Bus. Res. 2013, 5, 52–72. [Google Scholar] [CrossRef]
- Chong, A.Y.L. Mobile commerce usage activities: The roles of demographic and motivation variables. Technol. Forecast. Soc. Chang. 2013, 80, 1350–1359. [Google Scholar] [CrossRef]
- Babin, B.J.; Darden, W.R.; Griffin, M. Work and/or Fun: Measuring hedonic and utilitarian shopping value. J. Consum. Res. 1994, 20, 644–657. [Google Scholar] [CrossRef]
- Picot-Coupey, K.; Krey, N.; Huré, E.; Ackermann, C.L. Still work and/or fun? Corroboration of the hedonic and utilitarian shopping value scale. J. Bus. Res. 2021, 126, 578–590. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, D.J.; Wachter, K. A study of mobile user engagement (MoEN): Engagement motivations, perceived value, satisfaction, and continued engagement intention. Decis. Support Syst. 2013, 56, 361–370. [Google Scholar] [CrossRef]
- Madan, K.; Yadav, R. Understanding and predicting antecedents of mobile shopping adoption. Asia Pacific J. Mark. Logist. 2018, 30, 139–162. [Google Scholar] [CrossRef]
- Shaw, N.; Sergueeva, K. The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. Int. J. Inf. Manag. 2019, 45, 44–55. [Google Scholar] [CrossRef]
- Konuş, U.; Verhoef, P.C.; Neslin, S.A. Multichannel Shopper Segments and Their Covariates. J. Retail. 2008, 84, 398–413. [Google Scholar] [CrossRef]
- Arora, S.; Singha, K.; Sahney, S. Understanding consumer’s showrooming behaviour: Extending the theory of planned behaviour. Asia Pacific J. Mark. Logist. 2017, 29, 409–431. [Google Scholar] [CrossRef]
- Lichtenstein, D.R.; Ridgway, N.M.; Netemeyer, R.G. Price Perceptions and Consumer Shopping Behavior: A Field Study. J. Mark. Res. 1993, 30, 234. [Google Scholar] [CrossRef]
- Delgado-Ballester, E.; Hernandez-Espallardo, M.; Rodriguez-Orejuela, A. Store image influences in consumers’ perceptions of store brands: The moderating role of value consciousness. Eur. J. Mark. 2014, 48, 1850–1869. [Google Scholar] [CrossRef]
- Balabanis, G.; Reynolds, N.L. Consumer attitudes towards multi-channel retailers ’ Web sites : The role of involvement, brand attitude, internet knowledge and visit duration. J. Bus. 2001, 18, 105–131. [Google Scholar]
- Laaksonen, P. Consumer Involvement: Concepts and Research; Van Nostrand Reinhold: London, UK, 1994. [Google Scholar]
- Zaichkowsky, J.L. Conceptualizing involvement. J. Advert. 1986, 15, 4–34. [Google Scholar] [CrossRef]
- Bloch, P.H.; Sherrell, D.L.; Ridgway, N.M. Consumer Search: An Extended Framework. J. Consum. Res. 1986, 13, 119. [Google Scholar] [CrossRef]
- Arora, S.; Sahney, S. Examining consumers’ webrooming behavior: An integrated approach. Mark. Intell. Plan. 2019, 37, 339–354. [Google Scholar] [CrossRef]
- Hooi Ting, D.; Fong Lim, S.; Siuly Patanmacia, T.; Gie Low, C.; Chuan Ker, G. Dependency on smartphone and the impact on purchase behaviour. Young Consum. 2011, 12, 193–203. [Google Scholar] [CrossRef]
- Bellini, S.; Aiolfi, S. Impulse buying behavior: The mobile revolution. Int. J. Retail. Distrib. Manag. 2019, 48, 1–17. [Google Scholar] [CrossRef]
- Mafé, C.R.; Blas, S.S. Explaining Internet dependency: An exploratory study of future purchase intention of Spanish Internet users. Internet Res. 2006, 16, 380–397. [Google Scholar] [CrossRef]
- Daurer, S.; Molitor, D.; Spann, M.; Manchanda, P. Consumer Search Behavior on the Mobile Internet: An Empirical Analysis; Ross School of Business: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Flavián, C.; Gurrea, R.; Orús, C. Choice confidence in the webrooming purchase process: The impact of online positive reviews and the motivation to touch. J. Consum. Behav. 2016, 15, 459–476. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares: Concepts, Methods and Applications in Marketing and Related Fields; Vinzi, V.E., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin, Heidelberg, 2010; pp. 655–690. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar]
- Hair, M.; Hult, J.F.J.; Ringle, G.T.M.; Sarstedt, C. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Podsakoff, P.M.; Mackenzie, S.B.; Lee, J.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Premier for Soft Modelling; University of Akron Press: Akron, OH, USA, 1992. [Google Scholar]
- Fornell, C.; Cha, J. Partial least squares. In Advanced Methods of Market Research; Bagozzi, R., Ed.; Blackwell: Cambridge, UK, 1994; pp. 52–87. [Google Scholar]
- Cheung, G.W.; Lau, R.S. Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organ. Res. Methods 2008, 11, 296–325. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Krull, J.L.; Lockwood, C.M. Equivalence of the mediation, confounding and suppression effect. Prev. Sci. 2000, 1, 173–181. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M. Rethinking some of the rethinking of partial least squares. Eur. J. Mark. 2019, 53, 566–584. [Google Scholar] [CrossRef]
- Verkijika, S.F. Factors influencing the adoption of mobile commerce applications in Cameroon. Telemat. Inform. 2018, 35, 1665–1674. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Baptista, G.; Campos, F. Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Comput. Human Behav. 2019, 61, 404–414. [Google Scholar] [CrossRef]
- Herrero, A.; San Martín, H.; Garcia-De los Salmones, M.M. Explaining the adoption of social networks sites for sharing user-generated content: A revision of the UTAUT2. Comput. Hum. Behav. 2017, 71, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Sánchez, J.P.; Villarejo-Ramos, A.F. Acceptance and use of big data techniques in services companies. J. Retail. Consum. Serv. 2020, 52, 101888. [Google Scholar] [CrossRef]
- Wang, W.; He, H.; Sahadev, S.; Song, W. U.K. consumers’ perceived risk of buying products from emerging economies: A moderated mediation model. J. Consum. Behav. 2018, 17, 326–339. [Google Scholar] [CrossRef]
- Shaw, B.; Kesharwani, A. Moderating Effect of Smartphone Addiction on Mobile Wallet Payment Adoption. J. Internet Commer. 2019, 18, 291–309. [Google Scholar] [CrossRef]
- Zaichkowsky, J.L. The personal involvement inventory: Reduction, revision, and application to advertising. J. Advert. 1994, 23, 59–70. [Google Scholar] [CrossRef]
Construct | Loading | t | Cronbach’s Alpha | Composite Reliability | AVE |
---|---|---|---|---|---|
Performance expectancy | 0.871 | 0.921 | 0.795 | ||
PE1 | 0.861 | 51.444 | |||
PE2 | 0.899 | 74.559 | |||
PE3 | 0.914 | 93.209 | |||
Effort expectancy | 0.875 | 0.923 | 0.800 | ||
EE1 | 0.858 | 38.407 | |||
EE2 | 0.923 | 87.642 | |||
EE3 | 0.901 | 67.400 | |||
Social influence | 0.892 | 0.931 | 0.818 | ||
SI1 | 0.881 | 12.099 | |||
SI2 | 0.947 | 15.455 | |||
SI3 | 0.884 | 12.852 | |||
Facilitating conditions | 0.834 | 0.889 | 0.667 | ||
FC1 | 0.796 | 36.655 | |||
FC2 | 0.831 | 50.560 | |||
FC3 | 0.851 | 45.189 | |||
FC4 | 0.787 | 33.278 | |||
Hedonic motivation | 0.917 | 0.947 | 0.857 | ||
HM1 | 0.910 | 81.327 | |||
HM2 | 0.941 | 152.866 | |||
HM3 | 0.925 | 68.908 | |||
Value consciousness | 0.861 | 0.905 | 0.705 | ||
VC1 | 0.840 | 37.613 | |||
VC2 | 0.815 | 32.490 | |||
VC3 | 0.836 | 39.487 | |||
VC4 | 0.867 | 66.090 | |||
Purchase involvement | 0.876 | 0.923 | 0.801 | ||
PI1 | 0.880 | 58.805 | |||
PI2 | 0.898 | 59.262 | |||
PI3 | 0.906 | 100.833 | |||
Mobile showrooming intention | 0.860 | 0.915 | 0.782 | ||
MSI1 | 0.848 | 34.548 | |||
MSI2 | 0.891 | 82.858 | |||
MSI3 | 0.912 | 121.304 | |||
Mobile dependency | 0.851 | 0.899 | 0.691 | ||
MD1 | 0.757 | 30.147 | |||
MD2 | 0.853 | 48.329 | |||
MD3 | 0.885 | 79.859 | |||
MD4 | 0.825 | 44.197 |
PE | EE | SI | FC | HM | VC | PI | MD | MSI | |
---|---|---|---|---|---|---|---|---|---|
PE | 0.892 | 0.540 | 0.227 | 0.704 | 0.717 | 0.417 | 0.347 | 0.631 | 0.432 |
EE | 0.618 | 0.894 | 0.093 | 0.567 | 0.534 | 0.517 | 0.316 | 0.435 | 0.351 |
SI | 0.248 | 0.096 | 0.904 | 0.185 | 0.337 | −0.117 | 0.051 | 0.224 | 0.102 |
FC | 0.828 | 0.658 | 0.245 | 0.817 | 0.668 | 0.524 | 0.386 | 0.646 | 0.499 |
HM | 0.803 | 0.594 | 0.371 | 0.768 | 0.926 | 0.295 | 0.374 | 0.585 | 0.398 |
VC | 0.478 | 0.595 | 0.142 | 0.605 | 0.329 | 0.840 | 0.442 | 0.393 | 0.618 |
PI | 0.395 | 0.360 | 0.067 | 0.446 | 0.413 | 0.507 | 0.895 | 0.321 | 0.427 |
MD | 0.727 | 0.489 | 0.280 | 0.756 | 0.660 | 0.435 | 0.361 | 0.831 | 0.434 |
MSI | 0.498 | 0.404 | 0.107 | 0.584 | 0.445 | 0.718 | 0.490 | 0.498 | 0.884 |
Main Effects Only | Main and Moderating Effects | ||||
---|---|---|---|---|---|
β | t-Value | β | t-Value | ||
H1 | Performance expectancy -> Mobile showrooming intention | 0.027 | 0.454 ns | 0.011 | 0.171 ns |
H2 | Effort expectancy -> Mobile showrooming intention | −0.121 | 2.560 * | −0.105 | 2.399 * |
H3 | Social influence -> Mobile showrooming intention | 0.089 | 2.908 ** | 0.094 | 2.611 ** |
H4 | Facilitating conditions -> Showrooming intention | 0.085 | 1.522 ns | 0.086 | 1.540 ns |
H5 | Hedonic motivation -> Mobile showrooming intention | 0.104 | 2.017 * | 0.106 | 2.094 * |
H6 | Value consciousness -> Mobile showrooming intention | 0.514 | 10.587 *** | 0.498 | 9.497 *** |
H7 | Purchase involvement -> Mobile showrooming intention | 0.123 | 3.133 ** | 0.132 | 3.480 *** |
Mobile dependency-> Mobile showrooming intention | 0.091 | 1.820 ns | 0.090 | 1.946 ns | |
H8 | Value consciousness * Mobile dependency -> Mobile showrooming intention | −0.074 | 2.024 * | ||
Mobile showrooming intention | R2: 0.473 Q2: 0.362 | R2: 0.480 Q2: 0.364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimborazo-Azogue, L.-E.; Frasquet, M.; Molla-Descals, A.; Miquel-Romero, M.-J. Understanding Mobile Showrooming Based on a Technology Acceptance and Use Model. Sustainability 2021, 13, 7288. https://doi.org/10.3390/su13137288
Chimborazo-Azogue L-E, Frasquet M, Molla-Descals A, Miquel-Romero M-J. Understanding Mobile Showrooming Based on a Technology Acceptance and Use Model. Sustainability. 2021; 13(13):7288. https://doi.org/10.3390/su13137288
Chicago/Turabian StyleChimborazo-Azogue, Luis-Edwin, Marta Frasquet, Alejandro Molla-Descals, and Maria-Jose Miquel-Romero. 2021. "Understanding Mobile Showrooming Based on a Technology Acceptance and Use Model" Sustainability 13, no. 13: 7288. https://doi.org/10.3390/su13137288
APA StyleChimborazo-Azogue, L.-E., Frasquet, M., Molla-Descals, A., & Miquel-Romero, M.-J. (2021). Understanding Mobile Showrooming Based on a Technology Acceptance and Use Model. Sustainability, 13(13), 7288. https://doi.org/10.3390/su13137288