Increasing Profitability and Monitoring Environmental Performance: A Case Study in the Agri-Food Industry through an Edge-IoT Platform
Abstract
:1. Introduction
2. Economic and Environmental Effects of Information Technology in the Agricultural Industry
2.1. Optimal Production and Profitability in Terms of Technology Application
2.2. Environmental Performance
3. Industrial Internet of Things and Edge Computing Technologies in Smart Farming Scenarios
4. Profitability and Environmental Performance of an Edge-IoT Platform in a Smart Farming Scenario
4.1. Sensor Monitoring
4.2. Reduction in Data Volume Transmitted from the IoT and Edge Layers to the Cloud
4.3. Efficiency Measures including Sustainability
5. Experimentation and Initial Results
- Seeds (kg).
- Irrigation (m).
- Data transfer between the IoT and Cloud layers (KiB) (The Data transfer between the IoT and Cloud layers has been presented in KiB, according to the International System Units [76]).
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Igna, I.A.; Rincon-Aznar, A.; Venturini, F. Upstream regulation, factor demand and productivity: Cross-industry differences in OECD countries, 1975–2007. Inf. Econ. Policy 2019, 49, 100830. [Google Scholar] [CrossRef]
- Gardner, B. European Agriculture: Policies, Production, and Trade; Psychology Press: Hove, UK, 1996. [Google Scholar]
- European Commission. The End of Milk Quotas; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Wimmer, S.; Sauer, J. Profitability Development and Resource Reallocation: The Case of Sugar Beet Farming in Germany. J. Agric. Econ. 2020, 71, 816–837. [Google Scholar] [CrossRef]
- Cathagne, A.; Guyomard, H.; Levert, F. Milk quotas in the European Union: Distribution of marginal costs and quota rents. Eur. Dairy Ind. Model Work. Pap. 2006, 1, 23. [Google Scholar]
- Philippidis, G.; Waschik, R. Melitz Meets Milk: The Impact of Quota Abolition on EU Dairy Export Competitiveness. J. Agric. Econ. 2019, 70, 44–61. [Google Scholar] [CrossRef]
- Van Arendonk, J.A.; Liinamo, A.E. Dairy cattle production in Europe. Theriogenology 2003, 59, 563–569. [Google Scholar] [CrossRef]
- Milk and Milk Product Statistics—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Milk_and_milk_product_statistics#Milk_products (accessed on 1 March 2020).
- Reardon, T.; Barrett, C.B.; Berdegué, J.A.; Swinnen, J.F. Agrifood industry transformation and small farmers in developing countries. World Dev. 2009, 37, 1717–1727. [Google Scholar] [CrossRef]
- Beus, C.E.; Dunlap, R.E. Conventional versus alternative agriculture: The paradigmatic roots of the debate. Rural Sociol. 1990, 55, 590–616. [Google Scholar] [CrossRef]
- Tweeten, L. Government commodity program impacts on farm numbers. In Size, Structure and the Changing Face of 368 American Agriculture; Westview Press: Boulder, CO, USA, 1993; Volume 6. [Google Scholar]
- Alonso, R.S.; Sittón-Candanedo, I.; García, Ó.; Prieto, J.; Rodríguez-González, S. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Netw. 2020, 98, 102047. [Google Scholar] [CrossRef]
- Agri-Environmental Indicator—Irrigation—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_irrigation (accessed on 1 March 2020).
- Agriculture Statistics at Regional Level—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agriculture_statistics_at_regional_level&oldid=431854 (accessed on 1 March 2020).
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Fleming, K.; Waweru, P.; Wambua, M.; Ondula, E.; Samuel, L. Toward quantified small-scale farms in africa. IEEE Internet Comput. 2016, 20, 63–67. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2017, 6, 6900–6919. [Google Scholar] [CrossRef]
- Alonso, R.S.; Sittón-Candanedo, I.; Casado-Vara, R.; Prieto, J.; Corchado, J.M. Deep Reinforcement Learning for the Management of Software-Defined Networks and Network Function Virtualization in an Edge-IoT Architecture. Sustainability 2020, 12, 5706. [Google Scholar] [CrossRef]
- Wu, C.; Toosi, A.N.; Buyya, R.; Ramamohanarao, K. Hedonic Pricing of Cloud Computing Services. IEEE Trans. Cloud Comput. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Peng, M.; Zhang, K. Edge computing technologies for Internet of Things: A primer. Digit. Commun. Netw. 2018, 4, 77–86. [Google Scholar] [CrossRef]
- Lansink, A.O.; Wall, A. Frontier models for evaluating environmental efficiency: An overview. Econ. Bus. Lett. 2014, 3, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.; Lewin, A.Y.; Seiford, L.M. Data envelopment analysis theory, methodology and applications. J. Oper. Res. Soc. 1997, 48, 332–333. [Google Scholar] [CrossRef]
- Theodoridis, A.M.; Anwar, M.M. A comparison of DEA and SFA methods: A case study of farm households in Bangladesh. J. Dev. Areas 2011, 95–110. [Google Scholar] [CrossRef]
- Dyckhoff, H.; Allen, K. Measuring ecological efficiency with data envelopment analysis (DEA). Eur. J. Oper. Res. 2001, 132, 312–325. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; Corchado, J.M.; Rodríguez-González, S.; Casado-Vara, R. A review of edge computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 2019, 99, 278–294. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Balafoutis, A.T.; Beck, B.; Fountas, S.; Tsiropoulos, Z.; Vangeyte, J.; van der Wal, T.; Soto-Embodas, I.; Gómez-Barbero, M.; Pedersen, S.M. Smart farming technologies–description, taxonomy and economic impact. In Precision Agriculture: Technology and Economic Perspectives; Springer: Cham, Switzerland, 2017; pp. 21–77. [Google Scholar]
- Gupta, M.C. Environmental management and its impact on the operations function. Int. J. Oper. Prod. Manag. 1995, 15, 34–51. [Google Scholar] [CrossRef]
- Humphreys, P.; McIvor, R.; Chan, F. Using case-based reasoning to evaluate supplier environmental management performance. Expert Syst. Appl. 2003, 25, 141–153. [Google Scholar] [CrossRef]
- Handfield, R.B.; Walton, S.V.; Seegers, L.K.; Melnyk, S.A. ‘Green’value chain practices in the furniture industry. J. Oper. Manag. 1997, 15, 293–315. [Google Scholar] [CrossRef]
- European Commission. European Commission Horizon 2050; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Pedersen, S.M.; Lind, K.M. (Eds.) Precision Agriculture: Technology and Economic Perspectives; Springer: Berlin, Germany, 2017. [Google Scholar]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Liu, Y.; Langemeier, M.R.; Small, I.M.; Joseph, L.; Fry, W.E. Risk management strategies using precision agriculture technology to manage potato late blight. Agron. J. 2017, 109, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Shephard, R.W. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Takeshima, H. Custom-hired tractor services and returns to scale in smallholder agriculture: A production function approach. Agric. Econ. 2017, 48, 363–372. [Google Scholar] [CrossRef]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Swan, T.W. Economic growth and capital accumulation. Econ. Rec. 1956, 32, 334–361. [Google Scholar] [CrossRef]
- Van Beveren, I. Total factor productivity estimation: A practical review. J. Econ. Surv. 2012, 26, 98–128. [Google Scholar] [CrossRef] [Green Version]
- Zellner, A.; Kmenta, J.; Dreze, J. Specification and estimation of Cobb-Douglas production function models. Econom. J. Econom. Soc. 1966, 34, 784–795. [Google Scholar] [CrossRef]
- European Commission Policy Instruments for the Dairy Sector. 2016. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/630345/EPRS_BRI(2018)630345_EN.pdf (accessed on 11 November 2020).
- Machek, O.; Špička, J. Productivity and profitability of the Czech agricultural sector after the economic crisis. WSEAS Trans. Bus. Econ. 2014, 11, 700–706. [Google Scholar]
- Cao, Q.; Banerjee, R.; Gupta, S.; Li, J.; Zhou, W.; Jeyachandra, B. Data driven production forecasting using machine learning. In SPE Argentina Exploration and Production of Unconventional Resources Symposium; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2016. [Google Scholar] [CrossRef]
- Schmidheiny, S.; Timberlake, L. Changing Course: A Global Business Perspective on Development and the Environment; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Ichimura, M.; Nam, S.; Bonjour, S.; Rankine, H.; Carisma, B.; Qiu, Y.; Khrueachotikul, R. Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment; ESCAP: Bangkok, Thailand, 2009. [Google Scholar]
- OECD. Eco-Efficiency; OECD: Paris, France, 2008; Available online: https://www.oecd-ilibrary.org/environment/eco-efficiency_9789264040304-en (accessed on 11 November 2020). [CrossRef]
- Tiwari, D.; Loof, R.; Paudyal, G. Environmental–economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agric. Syst. 1999, 60, 99–112. [Google Scholar] [CrossRef]
- Hjalmarsson, L.; Kumbhakar, S.C.; Heshmati, A. DEA, DFA and SFA: A comparison. J. Product. Anal. 1996, 7, 303–327. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Alonso, R.S.; Sittón-Candanedo, I.; Rodríguez-González, S.; García, Ó.; Prieto, J. A Survey on Software-Defined Networks and Edge Computing over IoT. In Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection; Communications in Computer and Information Science; de la Prieta, F., González-Briones, A., Pawleski, P., Calvaresi, D., Del Val, E., Lopes, F., Julian, V., Osaba, E., Sánchez-Iborra, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 289–301. [Google Scholar]
- Sánchez-Iborra, R.; Sánchez-Gómez, J.; Skarmeta, A. Evolving IoT networks by the confluence of MEC and LP-WAN paradigms. Future Gener. Comput. Syst. 2018, 88, 199–208. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; García, Ó.; Gil, A.B.; Rodríguez-González, S. A Review on Edge Computing in Smart Energy by means of a Systematic Mapping Study. Electronics 2020, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Agrawal, H.; Prieto, J.; Ramos, C.; Corchado, J.M. Smart feeding in farming through IoT in silos. In Intelligent Systems Technologies and Applications 2016; Advances in Intelligent Systems and Computing; Corchado, J.M., Mitra, S., Thampi, S.M., El-Alfy, E.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 355–366. [Google Scholar]
- Cambra, C.; Sendra, S.; Lloret, J.; Lacuesta, R. Smart system for bicarbonate control in irrigation for hydroponic precision farming. Sensors 2018, 18, 1333. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.R.; Chen, Y.X. An rfid-based smart nest box: An experimental study of laying performance and behavior of individual hens. Sensors 2018, 18, 859. [Google Scholar] [CrossRef] [Green Version]
- ElMasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Liang, G.; Tian, H.; Sun, J.; Wan, C. Electronic nose-based technique for rapid detection and recognition of moldy apples. Sensors 2019, 19, 1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potamitis, I.; Rigakis, I.; Tatlas, N.A.; Potirakis, S. In-Vivo Vibroacoustic Surveillance of Trees in the Context of the IoT. Sensors 2019, 19, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future internet: The internet of things architecture, possible applications and key challenges. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, Islamabad, India, 17–19 December 2012; pp. 257–260. [Google Scholar]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Ryu, M.; Yun, J.; Miao, T.; Ahn, I.Y.; Choi, S.C.; Kim, J. Design and implementation of a connected farm for smart farming system. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Kamilaris, A.; Gao, F.; Prenafeta-Boldú, F.X.; Ali, M.I. Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 442–447. [Google Scholar]
- Popović, T.; Latinović, N.; Pešić, A.; Zečević, Ž.; Krstajić, B.; Djukanović, S. Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Comput. Electron. Agric. 2017, 140, 255–265. [Google Scholar] [CrossRef]
- Suma, N.; Samson, S.R.; Saranya, S.; Shanmugapriya, G.; Subhashri, R. IoT based smart agriculture monitoring system. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 177–181. [Google Scholar]
- Park, J.; Choi, J.H.; Lee, Y.J.; Min, O. A Layered Features Analysis in Smart Farm Environments. In Proceedings of the International Conference on Big Data and Internet of Thing; ACM: New York, NY, USA, 2017; pp. 169–173. [Google Scholar]
- Factory Automation Edge Computing Operating System Reference Implementation (FAR-EDGE). FAR-EDGE Project H2020. 2017. Available online: https://www.edge4industry.eu/2018/02/15/h2020-far-edge-project-factory-automation-meets-edge-computing-blockchain-technology/ (accessed on 11 November 2020).
- INTEL-SAP. IoT Joint Reference Architecture from Intel and SAP. Technical Report; INTEL-SAP: Mountain View, CA, USA, 2018. [Google Scholar]
- Edge Computing Consortium; Alliance of Industrial Internet. Edge Computing Reference Architecture 2.0; Technical Report; Edge Computing Consortium: Beijing, China, 2017. [Google Scholar]
- Tseng, M.; Canaran, T.E.; Canaran, L. Introduction to Edge Computing in IIoT; Technical Report; Industrial Internet Consortium: Needham, MA, USA, 2018. [Google Scholar]
- The EPI Team. Environmental Performance Index; Yale University and Columbia University: New Haven, CT, USA, 2018. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Chen, X.; Shi, Q.; Yang, L.; Xu, J. ThriftyEdge: Resource-efficient edge computing for intelligent IoT applications. IEEE Netw. 2018, 32, 61–65. [Google Scholar] [CrossRef]
- Guillén, M.A.; Llanes, A.; Imbernón, B.; Martínez-España, R.; Bueno-Crespo, A.; Cano, J.C.; Cecilia, J.M. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J. Supercomput. 2020. [Google Scholar] [CrossRef]
- Newell, D.B.; Tiesinga, E. The international system of units (SI). NIST Spec. Publ. 2019, 330, 1–138. [Google Scholar]
- Nuthall, P.L. Case studies of the interactions between farm profitability and the use of a farm computer. Comput. Electron. Agric. 2004, 42, 19–30. [Google Scholar] [CrossRef]
- Piedra-Muñoz, L.; Galdeano-Gómez, E.; Pérez-Mesa, J.C. Is sustainability compatible with profitability? An empirical analysis on family farming activity. Sustainability 2016, 8, 893. [Google Scholar] [CrossRef] [Green Version]
Description | Economic Variation | Environment Implication |
---|---|---|
Reduction in data traffic to the cloud | ✓ | |
Water consumption prediction and expenditure reduction | ✓ | ✓ |
Efficiency analysis | ✓ | ✓ |
Description | Impact |
---|---|
Water resources | ✓ |
Agriculture | ✓ |
Forests | ✗ |
Fisheries | ✗ |
Biodiversity | ✗ |
Climate and Energy | ✓ |
Variables | Description | Values |
---|---|---|
Temperature | Maximum and minimum temperature per day | °C |
Rain | Rainwater storage levels | [0, 1] |
Humidity | Levels of Humidity | % |
Oct. | Nov. | Dec. | Jan. | Apr. | May | Jun. | Jul. | Aug. | Sep. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Crop (kg) | Oats | 73,560 | 20,160 | ||||||||
Barley | 165,450 | ||||||||||
Wheat | 150,275 | ||||||||||
Rye | 624,250 | 37,240 | |||||||||
Alfalfa | 369,740 | 369,740 | 369,740 | 369,740 | 369,740 | ||||||
Corn | 1,169,500 | ||||||||||
Sunflower | 49,512 | ||||||||||
Irrigation (m) | Oats | ||||||||||
Barley | |||||||||||
Wheat | |||||||||||
Rye | |||||||||||
Alfalfa | 15,846 | 24,561 | 39,615 | 57,310 | 57,310 | 39,615 | |||||
Corn | 14,034 | 21,753 | 35,085 | 50,756 | 50,756 | 35,085 | |||||
Sunflower | |||||||||||
Seed (kg) | Oats | 3678 | 1680 | ||||||||
Barley | 13,236 | ||||||||||
Wheat | 2383 | 9610 | |||||||||
Rye | 5080 | 2984 | |||||||||
Alfalfa | |||||||||||
Corn | 936 | ||||||||||
Sunflower | 309 | ||||||||||
Data Transfer (KiB) | 98 | 185 | 185 | 185 | 185 | 185 | 98 | 98 | 98 | 98 |
Input | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Production | 344,887.25 | 477,515.63 | - | 1,588,752.00 |
Seed | 3324.66 | 43,998.29 | - | 1672 |
Water | 36,810.50 | 5774.70 | - | 108,066.00 |
Data To Cloud | 141 | 61 | 98 | 185 |
Efficiency Score | Efficiency Including | Efficiency Including | |
---|---|---|---|
(without Data Transfer) | Data Transfer (Non-Edge) | Data Transfer (Edge) | |
Jan. | 0.00000000000000000 | 0.00000000000000000 | 0.0000000000000000 |
Feb. | 0.00000000000000000 | 0.00000000000000000 | 0.0000000000000000 |
Mar. | 0.00000000000000000 | 0.00000000000000000 | 0.0000000000000000 |
Apr. | 1.0000000001149627 * | 1.0000000003415337 * | 0.999999998826628 |
May | 0.5974752182042993 | 0.5974752182108287 | 0.5974752183686124 |
Jun. | 0.3366733979573597 | 0.3366733973263220 | 0.336673397316983 |
Jul. | 0.4675777121202736 | 0.4675777556160109 | 0.4675777236779653 |
Aug. | 1.000000111621838 * | 1.000000000001108 * | 1.000000003334154 * |
Sep. | 0.3366734178297389 | 0.3366733972738352 | 0.3366733979902312 |
Oct. | 0.0000000000000000 | 0.0000000000000000 | 0.0000000000000000 |
Nov. | 0.0000000000000000 | 0.0000000000000000 | 0.0000000000000000 |
Dec. | 0.00000000000000000 | 0.00000000000000000 | 0.00000000000000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Pons, M.E.; Plaza-Hernández, M.; Alonso, R.S.; Parra-Domínguez, J.; Prieto, J. Increasing Profitability and Monitoring Environmental Performance: A Case Study in the Agri-Food Industry through an Edge-IoT Platform. Sustainability 2021, 13, 283. https://doi.org/10.3390/su13010283
Pérez-Pons ME, Plaza-Hernández M, Alonso RS, Parra-Domínguez J, Prieto J. Increasing Profitability and Monitoring Environmental Performance: A Case Study in the Agri-Food Industry through an Edge-IoT Platform. Sustainability. 2021; 13(1):283. https://doi.org/10.3390/su13010283
Chicago/Turabian StylePérez-Pons, María E., Marta Plaza-Hernández, Ricardo S. Alonso, Javier Parra-Domínguez, and Javier Prieto. 2021. "Increasing Profitability and Monitoring Environmental Performance: A Case Study in the Agri-Food Industry through an Edge-IoT Platform" Sustainability 13, no. 1: 283. https://doi.org/10.3390/su13010283