Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functional Urban Green Typology
2.2. Mapping Functional Urban Green Types Using Remote Sensing
2.2.1. Study Area, Selection of Functional Urban Green Types and General Classification Approach
2.2.2. Remote Sensing Data
2.2.3. Training and Validation Data on Urban Composition and Functional Urban Green Types
2.2.4. Detailed Classification Approach
2.3. Calculation of Spectral and Structural Features
2.4. Creation of Image Objects—Image Segmentation
2.5. Extraction of Training and Validation Object Features
2.6. Identifying Most Suitable Image Features for Plant Type Classification through Random Forest Models
2.7. Application of the Best Model, Post-classification Procedure and Accuracy Assessment
2.8. Spatial Configuration of Trees and Shrubs
3. Results
3.1. Potential of Remote Sensing Data for Differentiating Functional Urban Green Types
3.2. Producing a Functional Urban Green Map
4. Discussion
4.1. Potential Applications of the Proposed Functional Urban Green Typology
4.2. Mapping Functional Urban Green Types Using Remote Sensing Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample Sizes (Number of Objects) | Relative Abundance Validation Blocks (%) | |||
---|---|---|---|---|
ID | Land Cover Class | Training | Testing | |
10 | Deciduous broadleaf tree | 408 | 178 | 22.99 |
11 | Evergreen coniferous tree | 71 | 27 | 0.57 |
20 | Deciduous broadleaf shrub | 88 | 34 | 1.68 |
21 | Evergreen coniferous shrub | 18 | 12 | 0.04 |
22 | Evergreen broadleaf shrub | 63 | 34 | 1.31 |
31 | Tall herb vegetation | 38 | 18 | 0.14 |
32 | Flower bed | 28 | 11 | 0.93 |
33 | Meadow & flower field | 63 | 16 | 2.03 |
34 | Lawn | 142 | 59 | 14.41 |
40 | Arable land | 22 | 8 | 0.00 |
41 | Vegetable garden | 25 | 13 | 0.00 |
50 | Ext. green roof | 13 | 5 | 0.89 |
60 | Roof | 251 | 106 | 12.24 |
70 | Pavement | 240 | 105 | 36.51 |
80 | Soil | 25 | 18 | 2.00 |
90 | Water | 12 | 3 | 3.03 |
100 | Cars | 163 | 62 | 0.00 |
ID | Included Features | Number of Features |
---|---|---|
Hyperspectral | ||
1 | NDVI (apex) | 2 |
2 | APEX indices (NDVI, NDWI-G, NDWI-W, NDWI-M, GrassIdx, RedGreen ratio, BlueGreen ratio, brightness) | 16 |
3 | APEX indices + LiDAR features (nDSM1, nDSM2, intensity, treeIndex) | 24 |
4 | APEX indices + LiDAR features + texture features (texture of nDSM1, nDSM2, intensity) | 72 |
5 | APEX indices + LiDAR features + texture features + geometry (area, perimeter, compact_circle) | 75 |
6 | APEX bands (218 original spectral bands) | 416 |
7 | APEX bands + LiDAR features | 424 |
8 | APEX bands + LiDAR features + texture features | 472 |
9 | APEX bands + LiDAR features + texture features + geometry | 475 |
10 | APEX MNF (30 MNF transformed APEX bands) | 60 |
11 | APEX MNF + LiDAR features | 68 |
12 | APEX MNF + LiDAR features + texture features | 116 |
13 | APEX MNF + LiDAR features + texture features + geometry | 119 |
Multispectral | ||
14 | NDVI (worldview-2) | 2 |
15 | NDVI + WV bands (all 8 original Worldview-2 bands) | 18 |
16 | NDVI + WV bands + LiDAR features | 26 |
17 | NDVI + WV bands + LiDAR features + texture features | 74 |
18 | NDVI + WV bands + LiDAR features + texture features + geometry | 77 |
LiDAR only | ||
19 | LiDAR features | 8 |
20 | LiDAR features + texture features | 56 |
21 | LiDAR features + texture features + geometry | 59 |
Feature Set ID | Hierarchical Model | Non-hierarchical Model | |||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | Basic | Detailed | |
Hyperspectral + LiDAR | |||||||||
1 | 0.91 | 0.69 | 0.51 | 0.42 | 0.44 | 0.34 | 0.47 | 0.38 | 0.34 |
2 | 0.94 | 0.79 | 0.61 | 0.55 | 0.64 | 0.55 | 0.67 | 0.57 | 0.54 |
3 | 0.96 | 0.91 | 0.81 | 0.69 | 0.69 | 0.66 | 0.91 | 0.83 | 0.77 |
4 | 0.97 | 0.93 | 0.86 | 0.70 | 0.69 | 0.65 | 0.92 | 0.85 | 0.78 |
5 | 0.96 | 0.93 | 0.85 | 0.69 | 0.69 | 0.66 | 0.92 | 0.85 | 0.78 |
6 | 0.93 | 0.78 | 0.60 | 0.55 | 0.65 | 0.61 | 0.65 | 0.58 | 0.54 |
7 | 0.95 | 0.90 | 0.82 | 0.67 | 0.71 | 0.66 | 0.92 | 0.83 | 0.77 |
8 | 0.95 | 0.92 | 0.85 | 0.69 | 0.71 | 0.66 | 0.94 | 0.85 | 0.76 |
9 | 0.95 | 0.92 | 0.86 | 0.69 | 0.72 | 0.67 | 0.93 | 0.85 | 0.77 |
10 | 0.94 | 0.84 | 0.66 | 0.57 | 0.71 | 0.69 | 0.76 | 0.65 | 0.62 |
11 | 0.96 | 0.92 | 0.86 | 0.74 | 0.73 | 0.71 | 0.91 | 0.85 | 0.80 |
12 | 0.98 | 0.93 | 0.85 | 0.72 | 0.75 | 0.71 | 0.92 | 0.86 | 0.79 |
13 | 0.98 | 0.93 | 0.86 | 0.72 | 0.73 | 0.70 | 0.92 | 0.85 | 0.78 |
Multispectral + LiDAR | |||||||||
14 | 0.90 | 0.65 | 0.54 | 0.44 | 0.47 | 0.38 | 0.39 | 0.34 | 0.30 |
15 | 0.92 | 0.75 | 0.67 | 0.52 | 0.57 | 0.51 | 0.54 | 0.53 | 0.50 |
16 | 0.95 | 0.90 | 0.83 | 0.63 | 0.72 | 0.64 | 0.88 | 0.82 | 0.73 |
17 | 0.96 | 0.92 | 0.85 | 0.67 | 0.69 | 0.65 | 0.89 | 0.83 | 0.76 |
18 | 0.96 | 0.92 | 0.86 | 0.69 | 0.70 | 0.63 | 0.90 | 0.83 | 0.76 |
LiDAR Only | |||||||||
19 | 0.92 | 0.88 | 0.80 | 0.62 | 0.66 | 0.64 | 0.86 | 0.78 | 0.70 |
20 | 0.94 | 0.90 | 0.82 | 0.64 | 0.66 | 0.62 | 0.87 | 0.82 | 0.72 |
21 | 0.94 | 0.89 | 0.83 | 0.65 | 0.67 | 0.61 | 0.86 | 0.82 | 0.73 |
Source of Confusion / Error | Classification Rules |
---|---|
Shadowed areas wrongly classified as water | * the following is only applied to objects with class probability below 0.7 * If NDWI_X > -0.3 ---> water Else if intensity > 0.3 AND NDVI > 0.6 ---> herbaceous vegetation Else ---> pavement If water AND area < 200 pixels AND NDVI > 0.6 ---> lawn If water AND area < 200 pixels AND NDVI ≤ 0.6 ---> pavement |
Water body wrongly classified as vegetation or pavement | * the following is only applied to objects with class probability below 0.7 * If NDWI_X > -0.3 AND relative border to water > 0 ---> water |
Shaded or narrow pavement misclassified as vegetation | * the following is only applied to objects with class probability below 0.7 * If herbaceous vegetation AND intensity < 0.4 AND NDVI < 0.85 ---> pavement If herbaceous vegetation AND NDVI < 0.2 ---> pavement If lawn AND NDVI < 0.2 ---> pavement If lawn AND intensity < 0.6 ---> pavement If cropland AND intensity < 0.23 ---> pavement If cropland AND intensity < 0.35 AND asymmetry > 0.84 ---> pavement |
Small patches classified as cropland | If cropland AND area < 600 pixels AND intensity ≥ 0.4 ---> herbaceous vegetation If cropland AND area < 600 pixels AND intensity < 0.4 ---> soil |
Cars classified as shrub | If shrub enclosed by car ---> car If shrub with relative border to car > 0.5 ---> car If shrub with relative border to car > 0.24 AND NDVI < 0.35 ---> car If shrub with relative border to car > 0.24 AND relative height difference < 0.13 ---> car |
Shrub classified as car | If car AND area < 52 pixels AND NDVI > 0.3 ---> shrub If car AND asymmetry > 0.8 AND NDVI > 0.2 ---> shrub If car AND compactness > 4 AND NDVI > 0.2 ---> shrub |
Roof edge misclassified as tree | If tree AND relative border to roof > 0.3 AND area < 500 pixels ---> roof If tree AND relative border to roof > 0.3 AND asymmetry > 0.95 ---> roof If tree fully enclosed by roof ---> roof |
Small portions of trees or shrubs classified as roof | If roof AND area < 200 pixels AND relative border to tree > 0.4 ---> tree If roof AND area < 200 pixels AND relative border to shrub > 0.4 ---> shrub |
Edges of trees misclassified as shrub (due to low height) | If shrub AND relative border to tree > 0.31 AND area < 300 pixels ---> tree |
Small parts of evergreen coniferous trees (ECT) misclassified as deciduous broadleaf trees (DBT) and other way around | If DBT AND relative border to ECT > 0.3 AND area < 400 pixels ---> ECT If ECT AND relative border to DBT > 0.3 AND area < 400 pixels ---> DBT |
Tree | Shrub | Herbaceous | Lawn | Crop-land | Ext. green roof | Roof | Pavement | Soil | Water | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Tree | 678,685 | 16,731 | 324 | 2620 | 0 | 408 | 26,503 | 7000 | 542 | 70 | 732,883 |
Shrub | 26,777 | 90,576 | 8975 | 9852 | 0 | 0 | 2439 | 16,464 | 2179 | 2229 | 159,491 |
Herbaceous | 8437 | 10,689 | 70,748 | 27,303 | 0 | 0 | 821 | 18,379 | 3743 | 1484 | 141,604 |
Lawn | 15,599 | 6919 | 12,776 | 401,164 | 0 | 0 | 5506 | 38,844 | 14,082 | 421 | 495,311 |
Cropland | 4066 | 298 | 585 | 1818 | 0 | 0 | 13 | 26,343 | 978 | 702 | 34,803 |
Ext. green roof | 2 | 0 | 2 | 16 | 0 | 28,052 | 9117 | 80 | 0 | 0 | 37,269 |
Roof | 991 | 1084 | 34 | 1453 | 0 | 28 | 342,389 | 11,587 | 1808 | 0 | 359,374 |
Pavement | 17,311 | 9259 | 4878 | 12,491 | 0 | 0 | 4711 | 1,027,231 | 10,363 | 3677 | 1,089,921 |
Soil | 1458 | 741 | 680 | 3065 | 0 | 0 | 243 | 17,114 | 30,026 | 0 | 53,327 |
Water | 658 | 171 | 69 | 859 | 0 | 0 | 100 | 5130 | 191 | 88,357 | 95,535 |
Total | 75,3984 | 136,468 | 99,071 | 460,641 | 0 | 28,488 | 391,842 | 1,168,172 | 63,912 | 96,940 | 3,199,518 |
Tree | Shrub | Herbaceous | Lawn | Cropland | Ext. Green Roof | Roof | Pavement | Soil | Water | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Tree | 684,658 | 19,606 | 722 | 3763 | 0 | 408 | 5282 | 6521 | 755 | 210 | 721,925 |
Shrub | 19,523 | 87,142 | 8569 | 8254 | 0 | 0 | 2597 | 16,968 | 2074 | 2089 | 147,216 |
Herbaceous | 6811 | 9845 | 69,678 | 27,162 | 0 | 0 | 753 | 12,398 | 3333 | 847 | 130,827 |
Lawn | 11,795 | 4880 | 9437 | 387,315 | 0 | 0 | 5270 | 15,810 | 8104 | 421 | 443,032 |
Cropland | 510 | 46 | 27 | 142 | 0 | 0 | 13 | 6016 | 683 | 0 | 7437 |
Ext. green roof | 2 | 0 | 2 | 16 | 0 | 28,052 | 9117 | 80 | 0 | 0 | 37,269 |
Roof | 2288 | 1311 | 44 | 1879 | 0 | 28 | 363,529 | 13,986 | 1873 | 0 | 384,938 |
Pavement | 25,533 | 12,839 | 9147 | 28,516 | 0 | 0 | 5025 | 1,071,473 | 16,783 | 3599 | 1,172,915 |
Soil | 2702 | 782 | 934 | 3594 | 0 | 0 | 243 | 22,052 | 30,307 | 399 | 61,013 |
Water | 162 | 17 | 511 | 0 | 0 | 0 | 13 | 2868 | 0 | 89,375 | 92,946 |
Total | 753,984 | 136,468 | 99,071 | 460,641 | 0 | 28,488 | 391,842 | 1,168,172 | 63,912 | 96,940 | 3,199,518 |
DBT | ECT | DBS | ECS | EBS | Tall herb | Flower bed | Meadow | Lawn | Arable land | Vegetable Garden | Ext. Green Roof | Roof | Pavement | Soil | Water | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBT | 655,649 | 6106 | 10,641 | 109 | 5178 | 54 | 47 | 201 | 2518 | 0 | 0 | 408 | 26,193 | 6924 | 535 | 70 | 714,633 |
ECT | 7562 | 9368 | 209 | 3 | 591 | 13 | 1 | 8 | 102 | 0 | 0 | 0 | 310 | 76 | 7 | 0 | 18,250 |
DBS | 18,114 | 1078 | 29,566 | 1811 | 18,785 | 3058 | 624 | 2066 | 5387 | 0 | 0 | 0 | 1942 | 8917 | 1317 | 1117 | 93,782 |
ECS | 280 | 0 | 159 | 2398 | 0 | 1 | 0 | 7 | 252 | 0 | 0 | 0 | 30 | 121 | 78 | 0 | 3326 |
EBS | 7065 | 264 | 10,118 | 1626 | 26,114 | 1371 | 594 | 1254 | 4285 | 0 | 0 | 0 | 467 | 7500 | 784 | 1112 | 62,554 |
Tall herb | 386 | 0 | 398 | 0 | 1014 | 2756 | 34 | 2859 | 351 | 0 | 0 | 0 | 62 | 266 | 119 | 643 | 8888 |
Flower bed | 876 | 97 | 1673 | 215 | 916 | 552 | 5640 | 795 | 4462 | 0 | 0 | 0 | 290 | 4295 | 309 | 1 | 20,121 |
Meadow | 6930 | 148 | 3467 | 458 | 2547 | 12,033 | 15,338 | 30,741 | 22,517 | 0 | 0 | 0 | 469 | 13,801 | 3315 | 840 | 112,604 |
Lawn | 15,117 | 482 | 3316 | 366 | 3237 | 200 | 4319 | 8257 | 401,164 | 0 | 0 | 0 | 5506 | 38,844 | 14,082 | 421 | 495,311 |
Arable land | 489 | 0 | 20 | 15 | 5 | 0 | 13 | 53 | 616 | 0 | 0 | 0 | 0 | 7414 | 108 | 47 | 8780 |
Vegetable garden | 3530 | 23 | 29 | 48 | 181 | 14 | 258 | 247 | 1103 | 0 | 0 | 0 | 13 | 18,872 | 870 | 655 | 25,843 |
Ext. green roof | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 16 | 0 | 0 | 28,052 | 9117 | 80 | 0 | 0 | 37,269 |
Roof | 845 | 146 | 511 | 64 | 509 | 0 | 12 | 22 | 1453 | 0 | 0 | 28 | 342,389 | 11,587 | 1808 | 0 | 359,374 |
Pavement | 16,849 | 462 | 3169 | 794 | 5296 | 294 | 2584 | 2000 | 12,491 | 0 | 0 | 0 | 4711 | 1,027,231 | 10363 | 3677 | 1,089,921 |
Soil | 1386 | 72 | 154 | 160 | 427 | 293 | 289 | 98 | 3065 | 0 | 0 | 0 | 243 | 17,114 | 30,026 | 0 | 53,327 |
Water | 657 | 1 | 47 | 0 | 124 | 1 | 56 | 12 | 859 | 0 | 0 | 0 | 100 | 5130 | 191 | 88,357 | 95,535 |
Total | 735,737 | 18,247 | 63,477 | 8067 | 64,924 | 20,640 | 29,809 | 48,622 | 460,641 | 0 | 0 | 28,488 | 391,842 | 1,168,172 | 63,912 | 96,940 | 3,199,518 |
DBT | ECT | DBS | ECS | EBS | Tall herb | Flower bed | Meadow | Lawn | Arable land | Vegetable Garden | Ext. Green Roof | Roof | Pavement | Soil | Water | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBT | 658,717 | 3622 | 11,471 | 300 | 6256 | 139 | 47 | 509 | 3605 | 0 | 0 | 408 | 5280 | 6291 | 706 | 206 | 697,557 |
ECT | 9968 | 12,351 | 350 | 1 | 1228 | 0 | 11 | 16 | 158 | 0 | 0 | 0 | 2 | 230 | 49 | 4 | 24,368 |
DBS | 14,371 | 717 | 29,121 | 1718 | 18,598 | 3007 | 614 | 1826 | 4329 | 0 | 0 | 0 | 2122 | 11,537 | 1436 | 1095 | 90,491 |
ECS | 218 | 0 | 159 | 2187 | 0 | 1 | 0 | 7 | 198 | 0 | 0 | 0 | 18 | 24 | 72 | 0 | 2884 |
EBS | 4009 | 208 | 9240 | 1499 | 24620 | 1350 | 594 | 1170 | 3727 | 0 | 0 | 0 | 457 | 5407 | 566 | 994 | 53,841 |
Tall herb | 256 | 0 | 350 | 0 | 974 | 2331 | 34 | 2806 | 351 | 0 | 0 | 0 | 13 | 96 | 119 | 245 | 7575 |
Flower bed | 580 | 96 | 1449 | 215 | 882 | 552 | 5636 | 589 | 3989 | 0 | 0 | 0 | 288 | 2962 | 199 | 1 | 17,438 |
Meadow | 5732 | 147 | 3403 | 521 | 2051 | 12,013 | 15,245 | 30,472 | 22,822 | 0 | 0 | 0 | 452 | 9340 | 3015 | 601 | 105,814 |
Lawn | 11,435 | 360 | 2357 | 288 | 2235 | 181 | 4137 | 5119 | 387,315 | 0 | 0 | 0 | 5270 | 15,810 | 8104 | 421 | 443,032 |
Arable land | 95 | 0 | 13 | 0 | 5 | 0 | 5 | 0 | 25 | 0 | 0 | 0 | 0 | 1682 | 42 | 0 | 1867 |
Vegetable garden | 415 | 0 | 3 | 0 | 25 | 0 | 0 | 22 | 117 | 0 | 0 | 0 | 13 | 4334 | 641 | 0 | 5570 |
Ext. green roof | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 16 | 0 | 0 | 28,052 | 9117 | 80 | 0 | 0 | 37,269 |
Roof | 2224 | 64 | 433 | 72 | 806 | 0 | 12 | 32 | 1879 | 0 | 0 | 28 | 363,529 | 13,986 | 1873 | 0 | 384,938 |
Pavement | 24,923 | 610 | 4974 | 1106 | 6759 | 738 | 2593 | 5816 | 28,516 | 0 | 0 | 0 | 5025 | 1,071,473 | 16,783 | 3599 | 1,172,915 |
Soil | 2630 | 72 | 154 | 160 | 468 | 293 | 418 | 223 | 3594 | 0 | 0 | 0 | 243 | 22,052 | 30,307 | 399 | 61,013 |
Water | 162 | 0 | 0 | 0 | 17 | 35 | 463 | 13 | 0 | 0 | 0 | 0 | 13 | 2868 | 0 | 89,375 | 92,946 |
Total | 735,737 | 18,247 | 63,477 | 8067 | 64,924 | 20,640 | 29,809 | 48,622 | 460,641 | 0 | 0 | 28,488 | 391,842 | 1,168,172 | 63,912 | 96,940 | 3,199,518 |
References
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban areas. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 535–612. [Google Scholar]
- MEA. Ecosystems and Human Well-Being. Available online: http://pdf.wri.org/ecosystems_human_wellbeing.pdf (accessed on 9 March 2020).
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Niemelä, J.; Saarela, S.R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Andersson, E.; Mcphearson, T.; Kremer, P.; Gomez-baggethun, E. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 2015, 12, 157–164. [Google Scholar] [CrossRef]
- Breuste, J.; Schnellinger, J.; Anna, S.Q. Urban Ecosystem services on the local level: Urban green spaces as providers. Ekológia 2013, 32, 290–304. [Google Scholar] [CrossRef] [Green Version]
- Gómez-baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Derkzen, M.L.; Van Teeffelen, A.J.A.; Verburg, P.H. Quantifying urban ecosystem services based on high- resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Graça, M.; Alves, P.; Gonçalves, J.; Nowak, D.J.; Hoehn, R.; Farinha-Marques, P.; Cunha, M. Assessing how green space types affect ecosystem services delivery in Porto, Portugal. Landsc. Urban Plan. 2018, 170, 195–208. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Lamarque, P.; Colace, M.P.; Garden, D.; Girel, J.; Pellet, G.; Douzet, R. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 2011, 99, 135–147. [Google Scholar] [CrossRef]
- De Ridder, K.; Adamec, V.; Bañuelos, A.; Bruse, M.; Bürger, M.; Damsgaard, O.; Dufek, J.; Hirsch, J.; Lefebre, F.; Pérez-Lacorzana, J.M.; et al. An integrated methodology to assess the benefits of urban green space. Sci. Total Environ. 2004, 334, 489–497. [Google Scholar] [CrossRef]
- Woodruff, S.C.; BenDor, T.K. Ecosystem services in urban planning: Comparative paradigms and guidelines for high quality plans. Landsc. Urban Plan. 2016, 152, 90–100. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanu, T. Green infrastructure and ecosystem services-is the devil in the detail? Ann. Bot. 2016, 118, 377–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Farrugia, S.; Hudson, M.D.; McCulloch, L. An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 136–145. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.6.0 User’s Guide. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ (accessed on 9 March 2020).
- The Mersey Forest; Natural Economy Northwest; CABE; Natural England; Yorkshire Forward; The Northern Way; Design for London; Defra; Tees Valley Unlimited; Pleasington Consulting Ltd; et al. GI-Val: The Green Infrastructure Valuation Toolkit. Version 1.6 (Updated in 2018). 2010. Available online: https://bit.ly/givaluationtoolkit (accessed on 9 March 2020).
- Mexia, T.; Vieira, J.; Príncipe, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; Correia, O.; Branquinho, C.; et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 2018, 160, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Heal. 2016, 15, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermy, M.; Cornelis, J. Towards a monitoring method and a number of multifaceted and hierarchical biodiversity indicators for urban and suburban parks. Landsc. Urban Plan. 2000, 49, 149–162. [Google Scholar] [CrossRef]
- Mathieu, R.; Aryal, J.; Chong, A.K. Object-based classification of ikonos imagery for mapping large-scale vegetation communities in urban areas. Sensors 2007, 7, 2860–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvejić, R.; Eler, K.; Pintar, M.; Železnikar, Š.; Haase, D.; Hansen, R.; Kabisch, N.; Lafortezza, R.; Strohbach, M.; Green Surge. A Typology of Urban Green Spaces, Eco-System Provisioning Services and Demands. Available online: https://greensurge.eu/working-packages/wp3/files/D3.1_Typology_of_urban_green_spaces_1_.pdf/D3.1_Typology_of_urban_green_spaces_v2_.pdf (accessed on 9 March 2020).
- Haase, D.; Jänicke, C.; Wellmann, T. Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city. Landsc. Urban Plan. 2019, 182, 44–54. [Google Scholar] [CrossRef]
- Bartesaghi-koc, C.; Osmond, P.; Peters, A. Mapping and classifying green infrastructure typologies for climate-related studies based on airborne remote sensing data. Urban For. Urban Green. 2019, 37, 154–167. [Google Scholar] [CrossRef]
- Small, C.; Okujeni, A.; Van der Linden, S.; Waske, B. Remote Sensing of Urban Environments. Compr. Remote Sens. 2018, 6, 96–127. [Google Scholar]
- Bertels, L.; Deronde, B.; Kempeneers, P.; Provoost, S.; Tortelboom, E. Potentials of airborne hyperspectral remote sensing for vegetation mapping of spatially heterogeneous dynamic dunes, a case study along the Belgian coastline. In Proceedings of the Dunes and Estuaries 2005’—International Conference on Nature Restoration Practices in European Coastal Habitats, Koksijde, Belgium, 19–23 September 2005; pp. 153–163. [Google Scholar]
- Degerickx, J.; Hermy, M.; Somers, B. Mapping functional urban green types using hyperspectral remote sensing. In Proceedings of the 2017 Joint Urban Remote Sensing Event, JURSE 2017, Dubai, UAE, 6–8 March 2017. [Google Scholar]
- Hirano, A.; Madden, M.; Welch, R. Hyperspectral image data for mapping wetland vegetation. Wetlands 2003, 23, 436–448. [Google Scholar] [CrossRef]
- Roth, K.L.; Roberts, D.A.; Dennison, P.E.; Alonzo, M.; Peterson, S.H.; Beland, M. Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens. Environ. 2015, 167, 135–151. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 57–66. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9780429192180. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.; Adão, T.; Hruška, J.; Pádua, L.; et al. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, S.; Okujeni, A.; Canters, F.; Degerickx, J.; Heiden, U.; Hostert, P.; Priem, F.; Somers, B.; Thiel, F. Imaging Spectroscopy of Urban Environments. Surv. Geophys. 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wetherley, E.B.; Roberts, D.A.; McFadden, J.P. Mapping spectrally similar urban materials at sub-pixel scales. Remote Sens. Environ. 2017, 195, 170–183. [Google Scholar] [CrossRef]
- Roberts, D.; Alonzo, M.; Wetherley, E.B.; Dudley, K.L.; Dennison, P.E. Multiscale Analysis of Urban Areas Using Mixing Models. In Integrating Scale in Remote Sensing and GIS; CRC Press: Boca Raton, FL, USA, 2017; pp. 247–282. [Google Scholar]
- Okujeni, A.; Van der Linden, S.; Tits, L.; Somers, B.; Hostert, P. Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens. Environ. 2013, 137, 184–197. [Google Scholar] [CrossRef]
- Abbasi, B.; Arefi, H.; Bigdeli, B.; Motagh, M.; Roessner, S. Fusion of hyperspectral and lidar data based on dimension reduction and maximum likelihood. ISPRS 2015, 40, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Du, P.; Wu, C.; Xia, J.; Chanussot, J. Mapping Urban Land Cover of a Large Area Using Multiple Sensors Multiple Features. Remote Sens. 2018, 10, 872. [Google Scholar] [CrossRef] [Green Version]
- Degerickx, J.; Roberts, D.A.; Somers, B. Enhancing the performance of Multiple Endmember Spectral Mixture Analysis (MESMA) for urban land cover mapping using airborne lidar data and band selection. Remote Sens. Environ. 2019, 221, 260–273. [Google Scholar] [CrossRef]
- Koetz, B.; Morsdorf, F.; Curt, T.; Van der Linden, S.; Borgniet, L.; Odermatt, D.; Alleaume, S.; Lampin, C.; Jappio, M.; Allgöwer, B. Fusion of imaging spectrometer and Lidar data using support vector machines for land cover classification in the context of forest fire management. In Proceedings of the 10th Intl. Symposium on Physical Measurements and Signatures in Remote Sensing, Davos, Switzerland, 12–14 March 2007. [Google Scholar]
- Priem, F.; Canters, F. Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping. Remote Sens. 2016, 8, 787. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Tong, X.; Li, X.; Xu, X.; Xie, H.; Feng, T.; Sun, T.; Jin, Y.; Liu, X. A Two-Phase Classification of Urban Vegetation Using Airborne LiDAR Data and Aerial Photography. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4153–4166. [Google Scholar] [CrossRef]
- Chance, C.M.; Coops, N.C.; Plowright, A.A.; Tooke, T.R.; Christen, A.; Aven, N. Invasive shrub mapping in an urban environment from hyperspectral and LiDAR-derived attributes. Front. Plant Sci. 2016, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Degerickx, J.; Roberts, D.A.; McFadden, J.P.; Hermy, M.; Somers, B. Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Jiang, H.; Van De Voorde, T.; Lu, S.; Xu, W.; Zhou, Y. Land cover mapping in urban environments using hyperspectral APEX data: A study case in Baden, Switzerland. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 70–82. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis. Remote Sens. Environ. 2013, 133, 251–264. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Man, Q.; Dong, P.; Guo, H. Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use classification. Int. J. Remote Sens. 2015, 36, 1618–1644. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Onojeghuo, A.R. Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 79–91. [Google Scholar] [CrossRef]
- Van der Linden, S.; Janz, A.; Waske, B.B.; Eiden, M.; Hostert, P. Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. J. Appl. Remote Sens. 2007, 1, 013543. [Google Scholar] [CrossRef]
- Zhang, C.; Cooper, H.; Selch, D.; Meng, X.; Qiu, F.; Myint, S.W.; Roberts, C.; Xie, Z. Mapping urban land cover types using object-based multiple endmember spectral mixture analysis. Remote Sens. Lett. 2014, 5, 521–529. [Google Scholar] [CrossRef]
- Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification. Remote Sens. 2017, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.; Schöpfer, E.; Hölbling, D.; Blaschke, T.; Moeller, M.; Jekel, T.; Kloyber, E. Quantifying and Qualifying Urban Green by Integrating Remote Sensing, GIS, and Social Science Method. In Use of Landscape Sciences for the Assessment of Environmental Security; Springer: Dordrecht, The Netherlands, 2008; pp. 93–105. [Google Scholar]
- Mathieu, R.; Freeman, C.; Aryal, J. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 2007, 81, 179–192. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Litschike, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation—A review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Smets, V.; Wirion, C.; Bauwens, W.; Hermy, M.; Somers, B.; Verbeiren, B. The importance of city trees for reducing net rainfall: Comparing measurements and simulations. Hydrol. Earth Syst. Sci. 2019, 23, 3865–3884. [Google Scholar] [CrossRef] [Green Version]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Cornelis, J.; Hermy, M. Biodiversity relationships in urban and suburban parks in Flanders. Landsc. Urban Plan. 2004, 69, 385–401. [Google Scholar] [CrossRef]
- Hegetschweiler, K.T.; De Vries, S.; Arnberger, A.; Bell, S.; Brennan, M.; Siter, N.; Stahl, A.; Voigt, A.; Hunziker, M. Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: A review of European studies. Urban For. Urban Green. 2017, 21, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.E.; Lancaster, K.; Rees, E. Bird communities and the structure of urban habitats. Can. J. Zool. 1979, 57, 2358–2368. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- Gosling, L.; Sparks, T.H.; Araya, Y.; Harvey, M.; Ansine, J. Differences between urban and rural hedges in England revealed by a citizen science project. BMC Ecol. 2016, 16, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.A.; Vandewalle, M.; Sykers, M.T.; Berry, P.M.; Bugter, R.; de Bello, F.; Feld, C.K.; Grandin, U.; Harrington, R.; Haslett, J.R.; et al. Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodivers. Conserv. 2010, 19, 2791–2821. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.J.; Kwak, K.H.; Park, S.B.; Ryu, Y.H. Effects of building roof greening on air quality in street canyons. Atmos. Environ. 2012, 61, 48–55. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Taylor, J.E.; Emmett, M.R. What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raji, B.; Tenpierik, M.J.; Dobbelsteen, A. Van Den The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Lindemann-matthies, P.; Junge, X.; Matthies, D. The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 2010, 143, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Orford, K.A.; Murray, P.J.; Vaughan, I.P.; Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 2016, 53, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Dewaelheyns, V.; Lerouge, F.; Rogge, E.; Vranken, L. Garden Space: Mapping Trade-offs and the Adaptive Capacity of Home Food Production; Katholieke Universiteit Leuven: Leuven, Belgium, 2014. [Google Scholar]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Eurostat. Land cover and land use. In Eurostat Regional Yearbook; Brandmüller, T., Önnerfors, A., Eds.; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Van de Voorde, T.; Canters, F.; Chan, J.C. Mapping Update and Analysis of the Evolution of Non-Built (Green) Spaces in the Brussels Capital Region. Available online: https://www.semanticscholar.org/paper/Mapping-update-and-analysis-of-the-evolution-of-in-Voorde-Canters/c978b166b9ea6b34191b2b4fad24da3f7e148393 (accessed on 9 March 2020).
- De Villers, J. Rapport over de Staat van Het Leefmilieu in Brussel, Semi-Natuurlijk Leefmilieu en Openbare Groene Ruimten; Leefmilieu Brussel: Brussels, Belgium, 2006. [Google Scholar]
- Degerickx, J.; Okujeni, A.; Iordache, M.D.; Hermy, M.; Van der Linden, S.; Somers, B. A novel spectral library pruning technique for spectral unmixing of Urban land cover. Remote Sens. 2017, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1973, 1, 309–317. [Google Scholar]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Automated spectral analysis: A geological example using AVIRIS data, north Grapevine Mountains, Nevada. In Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing; Arbor, A., Ed.; Environmental Research Institute of Michigan: Ann Arbor, MI, USA, 1994. [Google Scholar]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- O’Neil-Dunne, J.; MacFaden, S.; Royar, A. A versatile, production-oriented approach to high-resolution tree-canopy mapping in urban and suburban landscapes using GEOBIA and data fusion. Remote Sens. 2014, 6, 12837–12865. [Google Scholar] [CrossRef] [Green Version]
- Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feltynowski, M.; Kronenberg, J.; Bergier, T.; Kabisch, N.; Łaszkiewicz, E.; Strohbach, M.W. Challenges of urban green space management in the face of using inadequate data. Urban For. Urban Green. 2018, 31, 56–66. [Google Scholar] [CrossRef]
- Hendrix, R.; Liekens, I.; De Nocker, L.; Vranckx, S.; Janssen, S.; Lauwaet, D.; Brabers, L.; Broekx, S. Waardering van Ecosysteemdiensten in een Stedelijke Omgeving: Een Handleiding. Available online: https://docplayer.nl/39133495-Waardering-van-ecosysteemdiensten-in-een-stedelijke-omgeving-een-handleiding.html (accessed on 9 March 2020).
- VITO Nature Value Explorer. Available online: https://www.natuurwaardeverkenner.be/#/ (accessed on 27 April 2019).
- City of Antwerp Antwerpse Groentool. Available online: https://groentool.antwerpen.be/ (accessed on 27 April 2019).
- De Ridder, K.; Lauwaet, D.; Maiheu, B. UrbClim—A fast urban boundary layer climate model. Urban Clim. 2015, 12, 21–48. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; De Smedt, F. WetSpa Extension, A GIS-based Hydrologic Model for Flood Prediction and Watershed Management Documentation and User Manual. Available online: https://www.vub.be/WetSpa/downloads/WetSpa_manual.pdf (accessed on 9 March 2020).
- Yan, J.; Zhou, W.; Han, L.; Qian, Y. Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban For. Urban Green. 2018, 31, 230–240. [Google Scholar] [CrossRef]
- Pelorosso, R.; Gobattoni, F.; Geri, F.; Leone, A. PANDORA 3.0 plugin: A new biodiversity ecosystem service assessment tool for urban green infrastructure connectivity planning. Ecosyst. Serv. 2017, 26, 476–482. [Google Scholar] [CrossRef]
- Brell, M.; Segl, K.; Guanter, L.; Bookhagen, B. 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction. ISPRS J. Photogramm. Remote Sens. 2019, 149, 200–214. [Google Scholar] [CrossRef]
- Marcinkowska-Ochtyra, A.; Zagajewski, B.; Raczko, E.; Ochtyra, A.; Jarocinska, A. Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery. Remote Sens. 2018, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Gudex-Cross, D.; Pontius, J.; Adams, A. Enhanced forest cover mapping using spectral unmixing and object-based classification of multi-temporal Landsat imagery. Remote Sens. Environ. 2017, 196, 193–204. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Dechka, J.A.; Franklin, S.E.; Watmough, M.D.; Bennett, R.P.; Ingstrup, D.W. Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskatchewan. Can. J. Remote Sens. 2002, 28, 679–685. [Google Scholar] [CrossRef]
- Lucas, R.; Rowlands, A.; Brown, A.; Keyworth, S.; Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62, 165–185. [Google Scholar] [CrossRef]
- Van der Linden, S.; Hostert, P. The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 2298–2305. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow detection in very high spatial resolution aerial images: A comparative study. ISPRS J. Photogramm. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Tong, X.; Xie, H.; Weng, Q. Urban Land Cover Classification with Airborne Hyperspectral Data: What Features to Use? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3998–4009. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Johnson, B.; Bragais, M.; Endo, I.; Magcale-Macandog, D.; Macandog, P. Image Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery. ISPRS Int. J. Geo-Inf. 2015, 4, 2292–2305. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Huang, X.; Member, S.; Liu, H.; Liao, W. Semantic Classification of Urban Trees Using Very High Resolution Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1413–1424. [Google Scholar] [CrossRef]
- Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 2018, 135, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Baker, F.; Smith, C.; Cavan, G. A Combined Approach to Classifying Land Surface Cover of Urban Domestic Gardens Using Citizen Science Data and High Resolution Image Analysis. Remote Sens. 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
Functional Urban Green Type | Definition | Provisioning | Regulating | Cultural | Supporting | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Food | Biomass | Air Purification | Micro-Climate | C Sequestration | Water: Quantity | Water: Quality | Noise and Visual | Recreation | Visual Attractiveness | Internal Biodiversity | Supporting Biodiversity | ||
TREES *1 *2 | |||||||||||||
Forest | Area dominated by densely planted or naturally grown trees. Canopy is closed, except for forests in early succession stage. The ecological function is more important compared to the production function. | X | X | X | X | X | X | X | X | X | X | X | |
Tree plantation | Trees planted at regular and nearly constant intervals from one another, usually with herbaceous or grassy undergrowth. Canopy is not necessarily closed. Trees are around the same age and size. Main function is production. | X | X | X | X | X | X | X | X | X | |||
Wood verge | A dense mixture of different species of trees and shrubs. Shape is linear; used as a fence next to e.g. roads, watercourses, private property. | X | X | X | X | X | X | X | X | ||||
Tree patch | A group of trees together forming a closed canopy. | X | X | X | X | X | X | ||||||
Tree row | Trees planted at regular and nearly constant intervals (3–15 m) in one or multiple rows. Trees are around the same age. Maximum width is 30 m. | X | X | X | X | X | X | X | X | ||||
Espalier | Trees (or large shrubs) intensively pruned and guided in a way that all branches occur in one vertical plane. May also occur next to a building facade. | (X) | (X) | X | (X) | X | X | X | X | X | |||
Connected solitary tree | A single tree positioned close to other trees (distance smaller than 15 m). | X | X | X | X | X | X | X | |||||
Isolated solitary tree | A single tree positioned in a relatively wide, open space (distance to nearest tree larger than 15 m). | X | X | X | X | X | X | ||||||
SHRUBS *1 | |||||||||||||
Scrub patch | Large surface area covered with shrubs (width >15 m). | X | X | X | X | X | X | (X) | X | X | |||
Hedge | A row of shrubs or small trees, planted within 1 m from each other and regularly (once or multiple times per year) sheared. Maximum width is 2 m. | (X) | (X) | (X) | (X) | (X) | X | (X) | X | ||||
Group of shrubs | A group of shrubs of less than 15 m wide or a solitary individual, mainly planted for ornamental purposes. | (X) | (X) | (X) | (X) | (X) | (X) | X | |||||
HERBACEOUS PLANTS | |||||||||||||
Lawn | Homogeneous patch dominated by grass species and regularly mown. | X | (X) | (X) | X | ||||||||
Pasture | Diverse patch dominated by grass species which is grazed by animals. | (X) | (X) | X | X | X | X | ||||||
Meadow | Diverse patch dominated by grass species which is infrequently mown. | X | (X) | (X) | X | X | X | ||||||
Flower bed | Patch planted with herbaceous non-grass species, mainly for ornamental purposes, also including plants planted in pots. | X | X | (X) | |||||||||
Tall herb vegetation | Dense herbaceous vegetation of more than 1 m high. | X | (X) | X | X | X | |||||||
Flower field | Patch dominated by herbaceous non-grass species, natural situation. | (X) | (X) | (X) | X | X | X | ||||||
Water plants | Plants fully living in water, either submerged or near the water surface. | (X) | X | (X) | X | ||||||||
Arable land | Large land surface used for crop production. | X | (X) | (X) | X | ||||||||
Vegetable garden | Small-scale farming. Typically, different crops are combined on a small piece of land. | X | (X) | (X) | (X) | ||||||||
Climbers and plant walls | Climbing or non-climbing plants (partially) covering a wall, with or without additional infrastructure to support the plants. This type also includes plants that spontaneously grow directly on (old) walls. | X | X | X | X | X | X | (X) | |||||
Extensive green roof | Green roof with limited substrate depth (max. 20 cm) dominated by Sedum (leaf succulent) species and possibly other spontaneous herbaceous species. | (X) | X | X | X | X | (X) | X | |||||
Intensive green roof | Green roof with substrate depth >20 cm, containing a mixture of grass, herbaceous plants, shrubs and/or trees. | (X) | (X) | X | (X) | X | X | X | X | (X) | X |
Distinction Between… | Classification Rules |
---|---|
Shrubs and hedges | If shrub AND Asymmetry ≥ 0.8 AND width ≤ 2.5 m ---> hedge If shrub AND compactness > 5 and width (main line) < 2 m ---> hedge |
Group of shrubs and scrub patch | If shrub AND width ≥ 15 m ---> scrub patch Else ---> group of shrubs |
Tree patch, tree row, solitary tree connected and solitary tree isolated | If tree AND asymmetry ≥ 0.8 AND width < 30 m ---> tree row If tree AND area < 15 m² ---> solitary tree If tree AND area < 150 m² AND asymmetry < 0.3 ---> solitary tree If solitary tree AND distance to other trees > 15 m ---> solitary tree isolated Else ---> tree patch |
Detection of wood verges | Merge all trees and shrub classes together If combined object has asymmetry ≥ 0.8 AND area > 150 m² AND relative contribution of both tree and shrub < 0.7 ---> wood verge |
(a) BASIC CLASSES | H-APEX | H-WV2 | H-LiDAR | NH-APEX | NH-WV2 | NH-LiDAR | |
Overall Accuracy | 0.88 | 0.86 | 0.85 | 0.89 | 0.88 | 0.85 | |
Class-wise Accuracies | |||||||
10 | Tree | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.98 |
20 | Shrub | 0.90 | 0.90 | 0.92 | 0.93 | 0.93 | 0.93 |
30 | Herbaceous | 0.80 | 0.80 | 0.77 | 0.78 | 0.76 | 0.76 |
34 | Lawn | 0.92 | 0.92 | 0.90 | 0.93 | 0.93 | 0.90 |
40 | Agriculture | 0.76 | 0.71 | 0.59 | 0.74 | 0.66 | 0.59 |
50 | Ext. green roof | 0.80 | 0.70 | 0.70 | 0.80 | 0.70 | 0.60 |
60 | Roof | 0.98 | 0.98 | 0.96 | 0.98 | 0.98 | 0.96 |
70 | Pavement | 0.96 | 0.95 | 0.92 | 0.96 | 0.96 | 0.92 |
80 | Soil | 0.72 | 0.53 | 0.50 | 0.58 | 0.53 | 0.50 |
90 | Water | 1.00 | 0.83 | 0.83 | 0.83 | 0.67 | 0.67 |
100 | Cars | 0.94 | 0.94 | 0.94 | 0.93 | 0.94 | 0.94 |
(b) DETAILED CLASSES | H-APEX | H-WV2 | H-LiDAR | NH-APEX | NH-WV2 | NH-LiDAR | |
Overall Accuracy | 0.81 | 0.76 | 0.74 | 0.81 | 0.77 | 0.75 | |
Class-wise Accuracies | |||||||
10 | Deciduous broadleaf tree | 0.97 | 0.95 | 0.96 | 0.97 | 0.96 | 0.96 |
11 | Evergreen coniferous tree | 0.87 | 0.61 | 0.55 | 0.81 | 0.61 | 0.55 |
20 | Deciduous broadleaf shrub | 0.81 | 0.81 | 0.84 | 0.82 | 0.83 | 0.84 |
21 | Evergreen coniferous shrub | 0.61 | 0.53 | 0.51 | 0.59 | 0.57 | 0.52 |
22 | Evergreen broadleaf shrub | 0.73 | 0.71 | 0.71 | 0.78 | 0.69 | 0.72 |
31 | Tall herb vegetation | 0.80 | 0.78 | 0.77 | 0.74 | 0.80 | 0.80 |
32 | Flower bed | 0.68 | 0.63 | 0.63 | 0.54 | 0.50 | 0.54 |
33 | Meadow and flower field | 0.81 | 0.77 | 0.74 | 0.78 | 0.74 | 0.77 |
34 | Lawn | 0.92 | 0.92 | 0.90 | 0.93 | 0.93 | 0.92 |
40 | Arable land | 0.94 | 0.75 | 0.56 | 0.87 | 0.69 | 0.56 |
41 | Vegetable garden | 0.65 | 0.69 | 0.61 | 0.62 | 0.65 | 0.57 |
50 | Ext. green roof | 0.80 | 0.70 | 0.70 | 0.80 | 0.70 | 0.70 |
60 | Roof | 0.98 | 0.98 | 0.96 | 0.99 | 0.98 | 0.97 |
70 | Pavement | 0.96 | 0.95 | 0.92 | 0.96 | 0.96 | 0.92 |
80 | Soil | 0.72 | 0.53 | 0.50 | 0.64 | 0.53 | 0.50 |
90 | Water | 1.00 | 0.83 | 0.83 | 0.83 | 0.67 | 0.67 |
100 | Cars | 0.94 | 0.94 | 0.94 | 0.95 | 0.95 | 0.96 |
(a) BASIC CLASSES | Initial Classification | Retaining Only Class Probability > 0.7 | Post-Classification Correction | ||
Overall Accuracy | 0.86 0.82 | 0.94 0.92 | 0.87 | ||
Kappa | 0.84 | ||||
Per class | Acc | n (×10³) | Acc | Reduction n | Acc |
Tree | 0.90 | 754.0 | 0.94 | 0.07 | 0.93 |
Shrub | 0.55 | 136.5 | 0.70 | 0.33 | 0.57 |
Herbaceous | 0.48 | 99.1 | 0.82 | 0.34 | 0.52 |
Lawn | 0.78 | 460.6 | 0.87 | 0.19 | 0.85 |
Ext. green roof | 0.75 | 28.5 | 0.97 | 0.06 | 0.75 |
Roof | 0.95 | 391.8 | 0.98 | 0.11 | 0.94 |
Pavement | 0.91 | 1168.2 | 0.94 | 0.20 | 0.86 |
Soil | 0.55 | 63.9 | 0.75 | 0.46 | 0.49 |
Water | 0.92 | 96.9 | 0.99 | 0.09 | 0.96 |
Total | 3199.5 | 0.17 | |||
(b) DETAILED CLASSES | Initial Classification | Retaining Only Class Probabilities > 0.7 | Post-Classification Correction | ||
Overall accuracy | 0.84 | 0.94 | 0.86 | ||
Kappa | 0.79 | 0.92 | 0.81 | ||
Per class | Acc | n (×10³) | Acc | Reduction n | Acc |
DBT | 0.89 | 735.7 | 0.94 | 0.14 | 0.93 |
ECT | 0.51 | 18.2 | 0.94 | 0.43 | 0.50 |
DBS | 0.30 | 63.5 | 0.71 | 0.68 | 0.31 |
ECS | 0.72 | 8.1 | 0.90 | 0.75 | 0.76 |
EBS | 0.41 | 64.9 | 0.89 | 0.72 | 0.45 |
Tall herb | 0.31 | 20.6 | 0.60 | 0.52 | 0.30 |
Flower bed | 0.27 | 29.8 | 0.73 | 0.53 | 0.32 |
Meadow & flower field | 0.26 | 48.6 | 0.51 | 0.41 | 0.28 |
Lawn | 0.78 | 460.6 | 0.87 | 0.21 | 0.85 |
Ext. green roof | 0.75 | 28.5 | 0.97 | 0.06 | 0.75 |
Roof | 0.95 | 391.8 | 0.98 | 0.12 | 0.94 |
Pavement | 0.91 | 1168.2 | 0.94 | 0.20 | 0.86 |
Soil | 0.55 | 63.9 | 0.75 | 0.47 | 0.49 |
Water | 0.92 | 96.9 | 0.99 | 0.09 | 0.96 |
Total | 3199.5 | 0.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degerickx, J.; Hermy, M.; Somers, B. Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data. Sustainability 2020, 12, 2144. https://doi.org/10.3390/su12052144
Degerickx J, Hermy M, Somers B. Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data. Sustainability. 2020; 12(5):2144. https://doi.org/10.3390/su12052144
Chicago/Turabian StyleDegerickx, Jeroen, Martin Hermy, and Ben Somers. 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data" Sustainability 12, no. 5: 2144. https://doi.org/10.3390/su12052144