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Abstract: Urban green spaces are known to provide ample benefits to human society and hence
play a vital role in safeguarding the quality of life in our cities. In order to optimize the design and
management of green spaces with regard to the provisioning of these ecosystem services, there is
a clear need for uniform and spatially explicit datasets on the existing urban green infrastructure.
Current mapping approaches, however, largely focus on large land use units (e.g., park, garden), or
broad land cover classes (e.g., tree, grass), not providing sufficient thematic detail to model urban
ecosystem service supply. We therefore proposed a functional urban green typology and explored
the potential of both passive (2 m-hyperspectral and 0.5 m-multispectral optical imagery) and active
(airborne LiDAR) remote sensing technology for mapping the proposed types using object-based
image analysis and machine learning. Airborne LiDAR data was found to be the most valuable dataset
overall, while fusion with hyperspectral data was essential for mapping the most detailed classes.
High spectral similarities, along with adjacency and shadow effects still caused severe confusion,
resulting in class-wise accuracies <50% for some detailed functional types. Further research should
focus on the use of multi-temporal image analysis to fully unlock the potential of remote sensing data
for detailed urban green mapping.

Keywords: multispectral; hyperspectral; LiDAR; vegetation monitoring; ecosystem services;
object-based image analysis; data fusion; remote sensing; machine learning; Random Forest models

1. Introduction

Worldwide, urban areas are faced with major challenges imposed by rapid urbanization trends
and the increased occurrence of extreme weather events due to climate change [1]. In order to safeguard
the quality of urban life, cities need to be designed and managed in a smart and (more) sustainable way.
In this respect, urban green represents an important tool due to the many ecosystem services (i.e., direct
or indirect benefits to human society [2]) it may provide, including provisioning (e.g., food production),
regulating (e.g., mitigating urban heat waves, floods and air pollution), cultural (e.g., recreation) and
supporting (e.g., biodiversity, pollination) services [3,4]. Quantifying ecosystem services provided by
urban green in a spatially explicit way, or the production of ecosystem service maps, has been proposed
as a valuable tool in support of sustainable urban planning, development and policy making [4–7].
Indeed, such maps could be used to identify problematic urban zones featuring a lack of a particular
or multiple ecosystem services which should subsequently be prioritized in urban development
plans [8–10]. Moreover, by generating ecosystem service maps for different urban planning scenarios,
informed and sustainably sound decisions can be made to ensure high environmental quality in our
future cities [11,12]. Lastly, due to the ever growing knowledge on the link between particular plant
traits and ecosystem services, such maps can assist urban green managers to design green spaces
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which are not only aesthetically appealing, but which also maximize the diversity and magnitude of
ecosystem services provided [13].

A frequently used way of mapping ecosystem services, referred to as the value-transfer approach,
relies on the combination of a land cover map and a pre-defined scoring table in which each of the
land cover classes is assigned an ecosystem service score, which in itself can consist of a simple
ranking or a more advanced quantitative score [8,14–17]. Most of these ecosystem service mapping
efforts however focus on broad land cover classes (in ecosystem services literature referred to as
service providing units, e.g. forest, wetland, garden, park, allotment, agricultural land [5]), failing to
capture the important effects of the specific type, properties and context of urban green on ecosystem
service provisioning [5,15,18,19]. On the other hand, several more detailed typologies of urban green
have been suggested, each designed for a specific application, e.g., biodiversity monitoring [20,21],
land use [22,23], urban climate [24], urban hydrology and cooling [15] and management of public
urban green (e.g. urban green administration of the city of Brussels, oral communication). In order
to get an integrated yet detailed view on ecosystem services provided by urban green, we suggest
the construction of a functional urban green typology, i.e., a typology solely based on the main
functions and services of urban green and taking into account vegetation type, relevant properties and
contextual information.

Aside from a functional urban green typology, an operational mapping workflow is required to
effectively monitor these detailed urban green types at a city-wide scale. In this paper, rather than
relying on labor- and time-consuming field inventories, we explore the potential of remote sensing
data acquired from airplanes and satellites, in combination with state-of-the-art image processing
techniques, for mapping of functional urban green types. In particular, our main focus is on the
use of optical remote sensing data, measuring the reflectance of solar light on the earth’s surface
within the visible (VIS; 0.4–0.7 µm), near-infrared (NIR; 0.7–1.25 µm) and short-wave infrared (SWIR;
1.25–2.5 µm) domains of the electromagnetic spectrum (Figure 1). As each object interacts differently
with different parts of this spectrum, the reflected signal can be used as a basis for (urban) land
cover mapping (Figure 1, [25]). Due to the very subtle differences in spectral reflectance between
different vegetation types and between individual species, detailed vegetation mapping generally
requires the use of hyperspectral sensors (in which reflectance is measured in high detail using many,
narrow and contiguous spectral bands; Figure 1 [26–31]). Although the technological advances and
number of applications for hyperspectral sensors on board of satellites [32] and UAVs (unmanned
aerial vehicles, or drones [33]) are slowly increasing, most hyperspectral imagery today is captured
using airplanes, generating detailed imagery with a spatial resolution (pixel size) of 2–15 m. Due to
the high spatial complexity and heterogeneity of urban areas however, airborne hyperspectral data is
typically characterized by a high share of mixed image pixels, i.e., pixels containing more than one
land cover class, in turn severely complicating further analysis [34,35]. Despite a growing number of
subpixel mapping approaches, e.g., [36,37], detailed urban green mapping remains challenging due to
the high spectral similarity amongst individual urban green types [27].
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Figure 1. The difference between hyperspectral signals (plotted as individual lines) and multispectral
signals. For the latter, only the spectral band limits have been plotted as grey rectangles. The
multispectral sensor (in this case Worldview-2) only records a single reflectance value per band. From
the examples plotted here, it becomes clear that spectral data can be used to identify objects. The
different parts of the spectrum have been indicated on top of the graph, where VIS = visible (0.4–0.7 µm),
NIR = near-infrared (0.7–1.25 µm) and SWIR = short-wave infrared (1.25–2.5 µm).

Over time, many approaches have been suggested to allow for more detailed urban mapping.
Firstly, fusion of spectral data with LiDAR (Light Detection and Ranging) data has been successfully
applied in urban areas for land cover mapping [38–42], tree species classification [43], urban green
mapping [44], detection of invasive shrub species [45] and tree health estimation [46] due to the high
complementarity between spectral data and spatially very detailed structural information derived
from 3D LiDAR data. Secondly, hierarchical (or stratified) classification approaches (i.e., classification
done at multiple thematic levels, where each level is used as a constraint to map the next, more
detailed level) have been shown to increase the mapping accuracy of detailed land cover classes [47–49].
Thirdly, Object-Based Image Analysis (OBIA), in which similar pixels are grouped into homogeneous
image objects prior to classification, represents another promising technique [50]. By using objects
rather than pixels, additional information (i.e., size, shape and internal variability of image objects)
becomes available to the classification algorithm. Although commonly being applied on (airborne)
hyperspectral data [51–54], the added value of OBIA becomes most apparent when applied on high
spatial resolution multispectral data, allowing distinction between detailed land cover classes based
on limited spectral information [55–59]. Here, we will further explore these three analysis techniques,
specifically for detailed urban green mapping.

In summary, the overall goal of this study is to develop a framework (typology) and associated
workflow based on remote sensing data for accurate mapping of functional urban green types.
By assessing the potential of various remote sensing data sources, i.e., airborne hyperspectral data,
high-resolution multispectral satellite data and airborne LiDAR data (and different combinations
thereof), we additionally aim for increased insight into the most relevant input data to be used for
detailed urban green mapping.
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2. Materials and Methods

2.1. Functional Urban Green Typology

Urban green can be studied on many different scales, ranging from parcel level (park, garden) to
the individual plant scale [6]. As parks and gardens may provide entirely different services depending
on their composition (e.g., a lawn mainly serves as a playground for kids, whereas a botanical garden
is more interesting from an ecological, educational and scientific point of view [18]) and individual
plants may serve other purposes depending on their context (e.g., a row of street trees as part of an
ecological network, versus a solitary tree for ornamental purposes), we decided to focus on urban green
elements as the main unit of our typology. An urban green element is defined here as an assemblage of
individual plants together providing similar functions and services.

Based on a literature review, combined with in-house expert knowledge, we identified key plant
properties affecting ecosystem service provisioning, including all four ecosystem service categories
(provisioning, regulating, cultural and supporting services [2]). Using these insights, we categorized
urban green elements into a total of 23 functional urban green types and provided a qualitative score
on the contribution of each type to the most relevant urban ecosystem services (Table 1). Functional
urban green types were categorized into three main categories, i.e., tree, shrub and herbaceous plants.
Due to their large size and leaf area compared to other urban green elements, trees are known to excel
at providing regulating ecosystem services [60–62]. Further distinction into multiple tree functional
types was therefore mainly based on their production potential (food and woody biomass), cultural
benefits (potential for recreation and aesthetic value), internal biodiversity and their potential to
support more biodiversity. The extent (surface area), structural diversity, spatial configuration (shape,
area/edge length, connectivity) and management (frequency of harvesting and human disturbance)
were identified as the main factors affecting the provisioning of these specific ecosystem services by
urban trees [63–66]. Based on these characteristics, eight tree functional types were defined, ranging
from (semi-)natural forests to individual isolated trees (Table 1). Precise definitions of these functional
urban green types were based on expert knowledge and local good practices and guidelines for urban
green management. Specifically in terms of regulating services, leaf phenology (evergreen/deciduous),
leaf type (broadleaf/coniferous) and tree size were found to be crucial factors [60–62,67]. Although
not explicitly included in our typology, we highly recommend these tree characteristics to be used as
supplementary information to further refine any ecosystem service assessment of urban trees.

Due to a general lack of scientific literature specifically focusing on ecosystem service provisioning
by shrubs in an urban context, largely the same reasoning as used for trees was applied. Three
functional types were defined based on a combination of extent and spatial configuration (Table 1).
Due to their size and compact shape, large scrub patches can significantly contribute to regulating
ecosystem services and provide valuable habitats for various animal species. Hedges are a specific
type commonly used in urban areas as noise and privacy barriers, but at the same time present habitat
opportunities for smaller animals, both vertebrates and invertebrates [68]. Finally, individual or small
groups of shrubs, mainly planted for ornamental purposes in parks and gardens, were treated as a
separate functional type. As for trees, leaf phenology and leaf type constitute important complementary
information for detailed assessment of ecosystem services.
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Table 1. Functional urban green typology proposed in this study. For each type, an indication of its relevance for several provisioning, regulating, cultural and
supporting ecosystem services is included (X = important contribution; (X) = low contribution; blank = (almost) no contribution). Functional types that are not being
covered in the remote sensing based mapping part of this study have been greyed out.

Functional Urban
Green Type Definition Provisioning Regulating Cultural Supporting
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TREES *1 *2

Forest

Area dominated by densely planted or naturally
grown trees. Canopy is closed, except for forests in
early succession stage. The ecological function is
more important compared to the production function.

X X X X X X X X X X X

Tree plantation

Trees planted at regular and nearly constant intervals
from one another, usually with herbaceous or grassy
undergrowth. Canopy is not necessarily closed. Trees
are around the same age and size. Main function
is production.

X X X X X X X X X

Wood verge
A dense mixture of different species of trees and
shrubs. Shape is linear; used as a fence next to e.g.
roads, watercourses, private property.

X X X X X X X X

Tree patch A group of trees together forming a closed canopy. X X X X X X

Tree row
Trees planted at regular and nearly constant intervals
(3–15 m) in one or multiple rows. Trees are around the
same age. Maximum width is 30 m.

X X X X X X X X

Espalier
Trees (or large shrubs) intensively pruned and guided
in a way that all branches occur in one vertical plane.
May also occur next to a building facade.

(X) (X) X (X) X X X X X

Connected solitary
tree

A single tree positioned close to other trees (distance
smaller than 15 m). X X X X X X X

Isolated solitary
tree

A single tree positioned in a relatively wide, open
space (distance to nearest tree larger than 15 m). X X X X X X
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SHRUBS *1

Scrub patch Large surface area covered with shrubs (width >15
m). X X X X X X (X) X X

Hedge
A row of shrubs or small trees, planted within 1 m
from each other and regularly (once or multiple times
per year) sheared. Maximum width is 2 m.

(X) (X) (X) (X) (X) X (X) X

Group of shrubs A group of shrubs of less than 15 m wide or a solitary
individual, mainly planted for ornamental purposes. (X) (X) (X) (X) (X) (X) X

HERBACEOUS PLANTS

Lawn Homogeneous patch dominated by grass species and
regularly mown. X (X) (X) X

Pasture Diverse patch dominated by grass species which is
grazed by animals. (X) (X) X X X X

Meadow Diverse patch dominated by grass species which is
infrequently mown. X (X) (X) X X X

Flower bed
Patch planted with herbaceous non-grass species,
mainly for ornamental purposes, also including
plants planted in pots.

X X (X)

Tall herb
vegetation Dense herbaceous vegetation of more than 1 m high. X (X) X X X

Flower field Patch dominated by herbaceous non-grass species,
natural situation. (X) (X) (X) X X X

Water plants Plants fully living in water, either submerged or near
the water surface. (X) X (X) X

Arable land Large land surface used for crop production. X (X) (X) X

Vegetable garden Small-scale farming. Typically, different crops are
combined on a small piece of land. X (X) (X) (X)
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Functional Urban
Green Type Definition Provisioning Regulating Cultural Supporting
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Climbers and
plant walls

Climbing or non-climbing plants (partially) covering
a wall, with or without additional infrastructure to
support the plants. This type also includes plants that
spontaneously grow directly on (old) walls.

X X X X X X (X)

Extensive green
roof

Green roof with limited substrate depth (max. 20 cm)
dominated by Sedum (leaf succulent) species and
possibly other spontaneous herbaceous species.

(X) X X X X (X) X

Intensive green
roof

Green roof with substrate depth >20 cm, containing a
mixture of grass, herbaceous plants, shrubs
and/or trees.

(X) (X) X (X) X X X X (X) X

*1 Each of the urban green functional types within this category should be further divided according to phenology (evergreen/deciduous) and leaf type (broadleaf/coniferous). *2 Each of
the urban green functional types within this category should be further divided according to size (height).
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From a functional perspective, herbaceous plants are significantly different from trees and shrubs.
Due to their relatively small size, their contribution to regulating services is rather limited [69].
Herbaceous and woody vegetation closely associated with buildings (allowed to grow closely against
building façades or on roofs) however represents a notable exception to this general rule of thumb.
Many previous studies have shown the regulating benefits of these urban green types, which mainly
relate to stormwater management, water purification, improved insulation of buildings and mitigating
air pollution [70–76]. Therefore, both façade vegetation and green roofs have been identified as
separate functional urban green types (Table 1). Additional distinction among herbaceous urban
green types was based on their food and biomass production potential (in turn determined by human
management and plant characteristics such as presence of edible plant parts, plant height and growth
rate) and their internal plant composition (flowering versus grass plants) and diversity. The latter two
characteristics both affect to a large extent their visual appeal [77] and potential to support biodiversity
and pollination [78]. A total of twelve functional types dominated by herbaceous plants were defined
(Table 1). Food crops, which are gaining more attention in urban areas [79,80], were divided into
large-scale agricultural fields and small-scale allotment gardens. The latter are characterized by
higher structural and plant diversity, in turn contributing to various other ecosystem services [81].
Grass-dominated types (including lawns, pastures and meadows) were subdivided based on their
internal biodiversity and human use, whereas further distinction within flowering plants was made
based on size (tall versus low herbs) and degree of human interference (semi-natural flower fields and
water plants versus intensively managed flower beds).

2.2. Mapping Functional Urban Green Types Using Remote Sensing

2.2.1. Study Area, Selection of Functional Urban Green Types and General Classification Approach

The Brussels Capital Region is defined as an administrative region consisting of the city of Brussels
together with 18 surrounding municipalities. This region is among the most densely built and intensely
used areas for residential, commercial and industrial purposes in Europe [82]. Nevertheless, its total
area of green space has been estimated at 8714 ha, or 54% of its total area [83], of which roughly 20%
is privately owned [84]. Most urban green is located near the edges of the Capital Region (30%–70%
urban green cover), whereas the dense city center only contains around 10% of green space [84]. The
exact extent of our study area was dictated by the availability of airborne remote sensing data used
in this study and is situated in the eastern part of the Capital Region (Figure 2). This particular area
comprises a large diversity of urban structure types, including dense residential zones in the west,
sparse residential zones in the east and south and industrial/commercial and more rural areas in
the north. Some urban green types defined in our functional typology were not considered in the
remainder of this study, either because of their intrinsic dimensions making them nearly impossible to
detect using remotely sensed data sources, or because of their limited occurrence within our study area
(see greyed-out entries in Table 1).
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Figure 2. Location and extent of remote sensing datasets used in this study relative to the full extent
of the Brussels Capital Region, together with the location of training and validation blocks. The size
of validation blocks has been exaggerated for visual purposes, its real size amounts to 100 × 100 m.
Worldview-2 data was available for the entire Brussels Capital Region.

As can be seen from Table 1, our functional urban green types were defined both in function of
plant type (e.g., deciduous tree versus tall herbaceous vegetation) and spatial configuration (e.g., tree
row versus solitary tree). Therefore, we opted here for a two-stage classification approach. In a
first stage, the different plant types present within the functional urban typology were identified.
A hierarchical classification scheme was defined (Table 3). Aside from the usual non-vegetation
classes regularly included in urban land cover studies (roofs, pavement, soil and water [37]), cars were
explicitly treated separately due to their high abundance and confusion with shrubs. For this first
stage, the potential of different datasets and classification approaches was investigated. Classification
results were then used to serve as building blocks in a second, rule-based classification approach to
make a distinction between patches, rows and individual trees and shrubs. The reader is referred to
Section 2.2.4 for a detailed explanation on the classification approach.

2.2.2. Remote Sensing Data

Airborne hyperspectral data was acquired using the APEX sensor on June 30, 2015. The sensor
was operated at a flying altitude of 3600 m a.s.l. which resulted in imagery featuring a spatial resolution
of 2 m. The APEX sensor covers the spectral range of 400–2500 nm. After removal of water absorption
bands, 218 spectral bands remained for further analysis. More information on image pre-processing
can be found in [85]. Airborne LiDAR data was collected around the same time in Summer 2015 by
Aerodata Surveys Nederland BV. The resulting LiDAR point cloud data featured an average resolution
of 15 pts/m2. Finally, a Worldview-2 image covering the entire Brussels Capital Region and captured on
July 24, 2016 was put at our disposal by Brussels Environmental Agency (BIM). Worldview-2 consists
of eight spectral bands covering the spectral range between 400 and 1050 nm. The raw image data
was atmospherically corrected using ATCOR and orthorectified using a 25 cm digital terrain model
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in ERDAS Imagine software. Finally, the spectral bands were pan-sharpened in ENVI 5.2 software
(Harris Geospatial Solutions) resulting in a pixel size of 0.5 m.

2.2.3. Training and Validation Data on Urban Composition and Functional Urban Green Types

Twenty 100 × 100 m validation blocks were delineated using a stratified random sampling
approach throughout the study area, thereby ensuring different urban structure types (dense and
sparse residential, industrial/commercial and urban green zones) to be sufficiently represented (Figure 2).
Due to privacy and accessibility issues, privately owned green areas were avoided as much as possible.
Within these validation blocks, land cover and functional urban green types (according to the typology
defined in Table 1) were manually mapped during a field visit, visually aided by a 7.5 cm resolution
RGB orthophoto acquired in winter 2014. After digitization, a random subsample of objects was
selected within each block to serve as training data.

In addition to the validation blocks, fifteen additional blocks were delineated throughout the
study area, ranging in size from 1.7 to 38.6 ha, to further complete our dataset of training objects.
Rather than mapping land cover in a spatially continuous way as was done for the validation blocks,
points were digitally drawn in these areas and labeled based on the same RGB orthophoto and Google
Street View. Drawing of points was done with special attention to those land cover classes and urban
green types which were underrepresented in the dataset composed by the validation blocks. Table A1
summarizes the sample size of the training dataset per land cover class and compares these to the
relative abundances of the classes in the validation blocks.

2.2.4. Detailed Classification Approach

In this study we explored the potential of combining hyper- or multispectral data with structural
information derived from airborne LiDAR data in an object-based classification approach to produce a
detailed land cover map with particular focus on functional urban green types. In essence, we first
identified the most useful features for detailed urban green mapping by training several Random
Forest models with varying sets of input data. Secondly, we applied the best performing model to
our twenty validation blocks to assess its potential to generate spatially continuous land cover maps.
Finally, some additional, rule-based classification steps were performed to enhance the final product.
Our detailed workflow is essentially comprised of seven parts (Figure 3), described in more detail in
the sections below.

Figure 3. Overview of the classification workflow of functional urban green types proposed in this
study, including (1) spectral and structural feature calculation, (2) image segmentation, (3) training
and validation data generation, (4) selection of best model to classify plant type, (5) application of best
model, (6) post-classification correction and (7) rule-based classification to discern spatial configuration.

2.3. Calculation of Spectral and Structural Features

Hyperspectral datasets typically contain more than 200 spectral bands, often showing high mutual
correlations and hence unnecessarily slowing down processing times. Here, we wanted to test whether
this information could be summarized without affecting classification accuracy. Two common ways to
summarize these data are (1) deriving spectral indices (i.e., ratios of spectral bands known to correlate
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with the occurrence or specific property of a particular land cover class) and (2) data transformation
specifically aiming at reducing data dimensionality while retaining maximum information content.
In this study we calculated a set of eight spectral indices thought to be relevant for urban land cover
mapping, i.e., Normalized Difference Vegetation Index (NDVI [86]), Normalized Difference Water
Index [87–89], a grass index highlighting the difference between trees and lawn [46], red/green ratio,
blue/green ratio and overall brightness (defined as the mean value of all spectral bands). Moreover,
we applied a forward Minimum Noise Fraction transformation (MNF [90]) on the APEX bands and
retained the first 30 bands based on visual inspection of the resulting eigenvalues. As Worldview-2
data only consists of eight spectral bands, the effect of data reduction was not tested for this dataset.
Only NDVI was calculated given its expected relevance for land cover mapping.

The 3D LiDAR point cloud data was converted into a set of 2D features potentially useful for land
cover and urban green classification. Aside from height above ground level (normalized digital surface
model; nDSM) and intensity, which represent the most frequently used LiDAR features in land cover
classification [91], an additional feature related to the permeability of objects was adopted from [92].
This feature, termed treeIndex here, is based on the difference between first and last LiDAR returns
and facilitates the differentiation between trees and buildings [46]. All of these features were computed
using OPALS software at a resolution of 25 cm, capped off at certain thresholds to remove outliers
(i.e., any value above the threshold is set to the threshold value) and scaled between 0 and 1. Two
versions of nDSM were created using two different capping thresholds of respectively 15 (nDSM1) and
3 m (nDSM2). Whereas nDSM1 more relates to the actual height of the objects, nDSM2 specifically
highlights small height variations, thereby increasing the detection rate of low objects (e.g., hedges, low
shrub; Figure 4). Capping thresholds for intensity and treeIndex amounted to 500 and 3 m respectively.

Figure 4. Example of input raster datasets used for image segmentation in this study and the
corresponding output for one of the twenty validation blocks, with (a) nDSM1, (b) nDSM2, (c) intensity
and (d) segmentation result depicted on intensity raster. Whereas nDSM1 shows the main height
differences between buildings, trees and ground, nDSM2 highlights small height variations of low
objects, e.g., individual hedges and cars.
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Aside from the actual height and brightness of objects, the internal variation of both features
within an object also show potential for classification purposes (e.g., height of a building is more
homogeneous compared to height of a single tree’s canopy, small height variations of natural grasslands
compared to lawns). In image analysis techniques, these features are referred to as image texture. Here,
we calculated four textural features (entropy, sum entropy, variance and sum variance) based on three
different LiDAR features (nDSM1, nDSM2 and intensity).

2.4. Creation of Image Objects—Image Segmentation

Image segmentation, or the process of combining image pixels to create relatively homogeneous,
non-overlapping image objects, lies at the foundation of object-based image analysis approaches.
In order to enhance the detection of small objects, segmentation in this study was only based on
LiDAR features (nDSM1, nDSM2 and intensity), i.e., the dataset featuring the highest spatial resolution.
We adopted the segmentation workflow proposed by [55], which is based on the i.segment algorithm in
GRASS GIS. The algorithm’s parameters were set for each training and validation block separately using
the Unsupervised Segmentation Parameter Optimization method [93]. An example of segmentation
inputs and resulting output is provided in Figure 4.

2.5. Extraction of Training and Validation Object Features

For each image object, the mean and standard deviation of all spectral, structural and textural
features were calculated and extracted using the i.segment.stats algorithm in GRASS GIS [55].
Additionally, geometrical features related to the object size and shape were also calculated, i.e., area,
perimeter and compactness.

2.6. Identifying Most Suitable Image Features for Plant Type Classification through Random Forest Models

Random forest (RF) is a machine learning approach increasingly being used in remote sensing
applications due to its relative high accuracy and computational efficiency compared to other frequently
used machine learning approaches [94]. Since our goal was to compare the potential of different
image datasets to label individual image objects, multiple RF models were trained, each based on a
distinctive set of object features (Table A2). In addition, we also tested the benefits of a hierarchical
classification approach, in which separate RF models were constructed and combined for subsequently
differentiating vegetation from non-vegetation, woody from non-woody vegetation and more detailed
urban green types. We split our training dataset (containing a total of 2543 objects) into training (70%)
and testing (30%) objects according to a stratified random selection procedure (see also Table A1).
Training was done using the default value of 500 trees, a random selection of ten values for the mtry
hyperparameter and a 10 times repeated 5-fold cross validation approach (based on [55]). The best RF
model was selected based on the total and class-based accuracies acquired for the independent test
set. Variable importance of individual input features was assessed by means of the mean decrease in
prediction error after permuting each predictor variable (default in R caret package).

2.7. Application of the Best Model, Post-classification Procedure and Accuracy Assessment

Being able to correctly classify homogeneous objects is a prerequisite to, but does not suffice for,
the production of spatially continuous classification maps. The best performing RF model (cf. previous
section) was therefore applied to the entire set of validation blocks to create spatially continuous
classification maps. These results were critically evaluated on a visual basis and some re-classification
rules were defined using eCognition software to correct for the most obvious errors (as was also
done by e.g., [57]; see Table A4 for more details). Final classification accuracies were determined by
calculating a confusion matrix and associated accuracy statistics (caret package, R software). Due to
the unbalanced validation dataset used in this study, balanced accuracy (scaling between 0 and 1) was
selected to describe model performance for individual classes.
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2.8. Spatial Configuration of Trees and Shrubs

After obtaining a detailed plant type map, further distinction between detailed tree and shrub
functional types based on spatial configuration (e.g., tree rows versus solitary trees) was accomplished
through an additional rule-based classification procedure, which is described in detail in Table 2.
In essence, individual trees and shrub objects were merged together, after which the resulting objects
were classified based on their size, shape and distance to other trees/shrubs.

Table 2. Overview of rule-based classification procedure used to distinguish different functional
types of trees and shrubs based on their spatial configuration. Procedure developed and applied in
eCognition software.

Distinction Between . . . Classification Rules

Shrubs and hedges If shrub AND Asymmetry ≥ 0.8 AND width ≤ 2.5 m —> hedge
If shrub AND compactness > 5 and width (main line) < 2 m —> hedge

Group of shrubs and scrub patch If shrub AND width ≥ 15 m —> scrub patch
Else —> group of shrubs

Tree patch, tree row, solitary tree
connected and solitary tree isolated

If tree AND asymmetry ≥ 0.8 AND width < 30 m —> tree row
If tree AND area < 15 m2 —> solitary tree

If tree AND area < 150 m2 AND asymmetry < 0.3 —> solitary tree
If solitary tree AND distance to other trees > 15 m —> solitary tree

isolated
Else —> tree patch

Detection of wood verges
Merge all trees and shrub classes together

If combined object has asymmetry ≥ 0.8 AND area > 150 m2 AND
relative contribution of both tree and shrub < 0.7 —> wood verge

3. Results

3.1. Potential of Remote Sensing Data for Differentiating Functional Urban Green Types

As stated in Section 2.2.4, multiple Random Forest models were constructed in order to assess
the potential of different image datasets for distinguishing functional urban green types. When
targeting basic urban green classes, high class-wise accuracies (>0.8) were attained, irrespective of the
image datasets being used, except for the soil (0.50–0.72) and agriculture (0.59–0.76) classes (Table 3a).
Most of the classes could be mapped with adequate accuracy using just LiDAR data. Agriculture,
extensive green roofs, soil and water were better discriminated upon adding spectral information, with
hyperspectral data contributing more (respective increase by 21%, 18%, 22% and 18%) compared to
multispectral data (14%, 7%, 6% and 0%). The approach of creating multiple models in a hierarchical
classification approach only slightly benefited the classification accuracy of basic vegetation types
(average increase of 1%), but had a clear positive effect for the soil (6%) and water (19%) classes.
When considering detailed urban green classes, the differences in performance between the different
image datasets became more pronounced. Total accuracy increased by respectively 3% and 8% upon
adding multispectral and hyperspectral data to LiDAR data, with maximum increases per class for
the latter amounting to 34% (evergreen coniferous tree) and 38% (arable land) (Table 3b). Despite the
availability of detailed hyperspectral and LiDAR data, several detailed urban green types remained
hard to distinguish (evergreen coniferous and broadleaf shrub, flower bed and vegetable garden
featured maximum accuracies below 0.80). Whereas the non-hierarchical approach mostly favored the
most abundant land cover classes in our dataset (e.g., lawn), the hierarchical approach resulted in a
considerable improvement for some of the more uncommon classes (e.g., flower bed by 21%; evergreen
coniferous tree and arable land both by 7%).
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Table 3. Overview of the best overall and class-wise (balanced) accuracies attained for the object-based
classification of individual test objects using three different data sources (APEX = hyperspectral +

LiDAR; WV2 = multispectral + LiDAR; LiDAR = LiDAR only) in a hierarchical (H) and non-hierarchical
(NH) classification approach. Results are shown for the classification of (a) basic (aggregated) urban
green classes and (b) most detailed classes. Best accuracies are indicated in bold. More information on
the specific object features used in each model is included in the Appendix A (Table A3).

(a) BASIC CLASSES H-APEX H-WV2 H-LiDAR NH-APEX NH-WV2 NH-LiDAR
Overall Accuracy 0.88 0.86 0.85 0.89 0.88 0.85

Class-wise Accuracies
10 Tree 0.99 0.98 0.98 0.99 0.99 0.98
20 Shrub 0.90 0.90 0.92 0.93 0.93 0.93
30 Herbaceous 0.80 0.80 0.77 0.78 0.76 0.76
34 Lawn 0.92 0.92 0.90 0.93 0.93 0.90
40 Agriculture 0.76 0.71 0.59 0.74 0.66 0.59
50 Ext. green roof 0.80 0.70 0.70 0.80 0.70 0.60
60 Roof 0.98 0.98 0.96 0.98 0.98 0.96
70 Pavement 0.96 0.95 0.92 0.96 0.96 0.92
80 Soil 0.72 0.53 0.50 0.58 0.53 0.50
90 Water 1.00 0.83 0.83 0.83 0.67 0.67

100 Cars 0.94 0.94 0.94 0.93 0.94 0.94

(b) DETAILED CLASSES H-APEX H-WV2 H-LiDAR NH-APEX NH-WV2 NH-LiDAR
Overall Accuracy 0.81 0.76 0.74 0.81 0.77 0.75

Class-wise Accuracies

10 Deciduous broadleaf
tree 0.97 0.95 0.96 0.97 0.96 0.96

11 Evergreen coniferous
tree 0.87 0.61 0.55 0.81 0.61 0.55

20 Deciduous broadleaf
shrub 0.81 0.81 0.84 0.82 0.83 0.84

21 Evergreen coniferous
shrub 0.61 0.53 0.51 0.59 0.57 0.52

22 Evergreen broadleaf
shrub 0.73 0.71 0.71 0.78 0.69 0.72

31 Tall herb vegetation 0.80 0.78 0.77 0.74 0.80 0.80
32 Flower bed 0.68 0.63 0.63 0.54 0.50 0.54

33 Meadow and flower
field 0.81 0.77 0.74 0.78 0.74 0.77

34 Lawn 0.92 0.92 0.90 0.93 0.93 0.92
40 Arable land 0.94 0.75 0.56 0.87 0.69 0.56
41 Vegetable garden 0.65 0.69 0.61 0.62 0.65 0.57
50 Ext. green roof 0.80 0.70 0.70 0.80 0.70 0.70
60 Roof 0.98 0.98 0.96 0.99 0.98 0.97
70 Pavement 0.96 0.95 0.92 0.96 0.96 0.92
80 Soil 0.72 0.53 0.50 0.64 0.53 0.50
90 Water 1.00 0.83 0.83 0.83 0.67 0.67

100 Cars 0.94 0.94 0.94 0.95 0.95 0.96

Regarding the specific object features to be used as input to the model, we observed that the
30 MNF bands derived from APEX data consistently outperformed the use of spectral indices based
on the same data, as well as the 218 original APEX bands, except for mutually distinguishing the
non-vegetation classes (see Appendix A, Table A3). The addition of LiDAR features consistently
increased the classification accuracy, most notably in case of the more detailed urban green classes.
Including textural and geometrical features on the other hand only increased model performance in
some instances and only to a very limited extent. Based on the top five ranking of feature importance
within the best performing Random Forest models, the most valuable object features for classification
included nDSM1, nDSM2, treeIndex, APEX MNF band 2, LiDAR intensity, APEX MNF band 6, texture
of nDSM2, followed by more APEX MNF bands.
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3.2. Producing a Functional Urban Green Map

Based on the outcomes presented in Table 3, the hierarchical model using hyperspectral and
LiDAR data was applied to all validation blocks to generate spatially continuous classification maps,
one for each block. Overall accuracy of these initial maps was good, i.e., 0.86 for basic vegetation
classes (Table 4a) and 0.84 for detailed classes (Table 4b), but mainly driven by the high coverage
of relatively easily distinguishable classes like buildings, pavement, deciduous broadleaf trees and
lawn. Amongst the basic classes, lowest class-wise accuracies were found for shrub (0.55), herbaceous
vegetation (0.48) and soil (0.55). Aside from high mutual confusion between these classes, pavement
and lawn turned out to be major sources of classification error for all three classes. With regard to
the more detailed vegetation classes (Table 4b), evergreen coniferous trees were frequently classified
as deciduous broadleaf trees, whereas detailed shrub and herbaceous vegetation classes featured
even lower class-wise accuracies below 0.5 (Table 3b). Main sources of confusion for shrubs included
broadleaf deciduous trees and mutual confusion between the three shrub classes, while more than half
of the pixels labeled as either tall herb or flower beds were wrongly classified as meadows.

Table 4. Overall and class-wise (balanced) classification accuracies achieved after applying the best
performing Random Forest model (cf. Table 3) on the twenty validation blocks (“initial classification”),
after discarding zones with uncertainty higher than 0.7 and after applying a rule-based post-classification
correction algorithm (cf. Table A4). n denotes the number of image pixels available per class. Due to
the absence of agricultural lands in our validation dataset, both arable land and vegetable gardens
have been omitted here.

(a) BASIC CLASSES Initial Classification Retaining Only Class
Probability > 0.7

Post-Classification
Correction

Overall Accuracy 0.86
0.82

0.94
0.92

0.87

Kappa 0.84

Per class Acc n (×103) Acc Reduction n Acc
Tree 0.90 754.0 0.94 0.07 0.93

Shrub 0.55 136.5 0.70 0.33 0.57
Herbaceous 0.48 99.1 0.82 0.34 0.52

Lawn 0.78 460.6 0.87 0.19 0.85
Ext. green roof 0.75 28.5 0.97 0.06 0.75

Roof 0.95 391.8 0.98 0.11 0.94
Pavement 0.91 1168.2 0.94 0.20 0.86

Soil 0.55 63.9 0.75 0.46 0.49
Water 0.92 96.9 0.99 0.09 0.96
Total 3199.5 0.17

(b) DETAILED
CLASSES Initial Classification Retaining Only Class

Probabilities > 0.7
Post-Classification

Correction

Overall accuracy 0.84 0.94 0.86
Kappa 0.79 0.92 0.81

Per class Acc n (×103) Acc Reduction n Acc
DBT 0.89 735.7 0.94 0.14 0.93
ECT 0.51 18.2 0.94 0.43 0.50
DBS 0.30 63.5 0.71 0.68 0.31
ECS 0.72 8.1 0.90 0.75 0.76
EBS 0.41 64.9 0.89 0.72 0.45

Tall herb 0.31 20.6 0.60 0.52 0.30
Flower bed 0.27 29.8 0.73 0.53 0.32

Meadow & flower field 0.26 48.6 0.51 0.41 0.28
Lawn 0.78 460.6 0.87 0.21 0.85

Ext. green roof 0.75 28.5 0.97 0.06 0.75
Roof 0.95 391.8 0.98 0.12 0.94

Pavement 0.91 1168.2 0.94 0.20 0.86
Soil 0.55 63.9 0.75 0.47 0.49

Water 0.92 96.9 0.99 0.09 0.96
Total 3199.5 0.21
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The Random Forest model not only produces a final classification label per image object, but
also provides an indication of uncertainty by means of estimated class membership probabilities. By
applying a simple threshold of < 0.7 to these probabilities, we explicitly mapped the location of objects
being classified with high uncertainty (Figure 5; threshold chosen based on visual inspection of results).
Aside from the confusion between detailed vegetation classes mentioned earlier, high classification
uncertainty was primarily found near object borders (e.g., building edges classified as trees), in
transition zones between two land covers (e.g., narrow pavement next to lawns modelled as lawns)
and in shadowed areas (e.g., shadowed pavement classified as water or vegetation). These zones made
up 17% and 21% of the total area to be classified respectively for the basic and detailed classification
(Table 4). Discarding these uncertain zones from the accuracy assessment indeed considerably boosted
classification performance up to 0.94 overall accuracy for both basic and detailed classification. Still,
class-wise accuracies for detailed herbaceous vegetation classes (tall herb, flower bed and meadow),
deciduous broadleaf shrub and soil remained rather low (≤0.75), indicating severe confusion between
these particular classes.

Figure 5. Example of classification results obtained for basic classes and for one out of twenty validation
blocks (100 × 100 m), including (a) first classification result, (b) first classification result where areas
featuring high classification uncertainty (class membership probability < 0.7) are masked out (white),
(c) result after post-classification correction and (d) manually digitized reference data.

Instead of merely discarding these uncertain areas, we developed a rule-based post-classification
procedure (Table A4), specifically aiming to reduce errors in zones affected by adjacency and/or
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shadow effects. Due to its high spatial detail and being an active remote sensing technology, LiDAR
data is inherently less prone to these disturbing effects and was hence mainly used during these
post-classification corrections. A notable exception includes the water class, for which we used
another water index, specifically designed to reduce the confusion with built-up surfaces in urban
areas [95]. Although the net effect on overall classification accuracy was small, the proposed algorithm
did increase the performance for all basic vegetation classes (mainly lawn) and water, reduced the
accuracies for pavement and soil classes (Table 4a), but, more importantly, produced a classification
map that visually made more sense (Figures 5 and 6). In particular, the detection of building edges
was improved, thereby reducing confusion between roofs and trees, whereas pavement and soil were
less frequently misclassified as low vegetation or water. Aside from reduced confusion between trees
and shrubs, the post-classification procedure however did not enhance distinction between detailed
urban green types (see Tables A5–A8 for a comparison between confusion matrices prior to and after
post-classification correction).

Figure 6. Example of detailed classification results obtained for one out of twenty validation blocks
(100 × 100 m), including (a) initial classification result based on Random Forest model, (b) result after
post-classification correction and (c) manually digitized reference data.

Finally, tree and shrubs were further classified based on their spatial configuration (cf. Table 2).
As can be seen visually in Figure 7a, this simple procedure worked well for the distinction between
narrow hedges and larger groups and patches of shrubs. Detection of tree rows on the other hand
was not always successful, particularly in case the tree row directly interacted with a neighboring tree
patch or when the crowns of individual trees within the row were not overlapping (Figure 7b,c).
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Figure 7. Detailed classification of trees and shrubs based on spatial configuration for (a) one entire
validation block (cf. Figure 6), (b) one particular tree row, which was only partly labeled as tree row
and (c) an area in which a tree row is in direct contact with a tree patch, causing the tree row not to be
detected at all.

4. Discussion

4.1. Potential Applications of the Proposed Functional Urban Green Typology

Earlier research has already pointed to the need for uniform and spatially explicit datasets on
urban green infrastructure within and across cities, in order to optimize the design and management
of urban green spaces with regard to the provisioning of ecosystem services [96]. The functional
urban green typology proposed here may act as a stepping stone towards accomplishing this goal.
More specifically, the 23 functional urban green types can, in the first place, be used as a universal
mapping framework to generate a detailed, spatially explicit view on urban ecosystem services through
a value-transfer approach (cf. Section 1). Aside from a mapping methodology, which was the focus
of the current paper, this approach requires a detailed ecosystem service scoring table indicating the
relevance of the different urban green types for various ecosystem services. Whereas Table 1 already
provides a qualitative starting point in this respect, more detailed quantitative ecosystem service scores
would fully enable the use of the functional urban green typology in this sense. Some efforts have
already been done to summarize the vast amount of scientific knowledge and empirical evidence on the
link between urban green and ecosystem services. Derkzen, Van Teeffelen and Verburg [8] for instance
published a list of six different ecosystem service indicator scores for seven, broad urban green types
and used these to evaluate ecosystem services in Rotterdam (The Netherlands). Farrugia, Hudson and
McCulloch [15] specifically focused on flood control and cooling and provided three related indicator
values for 22 detailed urban green types. In 2015, the Flemish institute for technological research
(VITO) published a report (in Dutch) on the valuation of ecosystem services in urban areas, including
qualitative and quantitative ecosystem service scores covering eight ecosystem services and 43 urban
green types based on an intensive literature review [97]. In turn, this report has been used as the basis
for the Nature Value Explorer, an online tool allowing to calculate the implications of different (urban)
planning scenarios on the provisioning of ecosystem services [98], and for the “Groentool”, another
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online tool designed for the city of Antwerp (Belgium) allowing to visualize the impact of different
urban green scenarios on various ecosystem services [99].

Aside from a more holistic view on ecosystem services, the proposed typology may provide a
solid framework to quantify particular urban ecosystem services in a detailed way using dedicated
biophysical models, e.g., UrbClim [100] for urban heat fluxes and WetSpa [101] for urban water flows.
Due to its intrinsic focus on ecosystem services, our functional typology provides more relevant
classes compared to standard urban land cover products most commonly used as a basis for such
models and most frequently generated by the urban remote sensing community, e.g., [36,37]. As a
consequence, these models should be adapted to deal with the high thematic detail of the proposed
typology. As different urban green characteristics might be relevant for different individual ecosystem
services (e.g., leaf phenology for urban water and species information for ecological functions), the
construction of a manageable typology that can directly be used to map each individual ecosystem
service would be wildly impractical. Therefore, we would like to stress that the proposed urban
green typology should be regarded as a flexible framework, which can be extended by additional
information derived either from remote sensing (e.g., leaf phenology using multiple images acquired
in different seasons [102]), additional spatial analysis (e.g., landscape connectivity [103]) or field
inventories (e.g., detailed information on species or management practices) to meet the needs of the
specific ecosystem service under consideration.

Although ecosystem services have been the main motivation behind our work and constitute the
basis for the resulting functional green typology, this typology, together with the associated mapping
workflow, could be adopted to serve many more applications. Indeed, such a spatially-explicit
and detailed characterization of urban green represents essential information for urban green
managers, allowing them to optimize their management activities across a city. Urban ecologists and
environmentalists can use these detailed thematic maps to study interactions between the occurrence
of certain urban green elements and the presence, abundance and reproduction potential of animal
species, as well as several indicators for environmental quality (e.g., ambient temperature, air and soil
pollution). This in turn will provide further insights into specific functions and services delivered by
these urban green types. Finally, detailed maps on the composition of urban green within a city can
provide valuable information to urban policymakers and planners on the current state, future priorities
and desirable action points regarding urban green.

4.2. Mapping Functional Urban Green Types Using Remote Sensing Data

In the past, LiDAR data has been successfully applied to improve urban and/or vegetation
classification performance by simply adding these data as a complementary data source to various
approaches, by themselves mainly based on spectral information [40–42,51,52,54]. The results in this
study however suggest that LiDAR data should take up a much more central role in detailed urban
classification efforts. Not only does its high spatial resolution allows for detailed image segmentation
(Figure 4), the various structural, spectral and textural features derived from LiDAR data were
also found to be the most important classification features overall. This is in line with a study by
Chen, Du, Wu, et al. [39], which concluded that height-related LiDAR features were more important
compared to spectral features for urban land cover mapping. Whereas basic land cover classes could
be readily differentiated using only LiDAR data, the added value of spectral data, and particularly of
hyperspectral data, increased significantly when considering thematically more detailed urban (green)
classes (Table 3). Conceptually, this can be explained by the higher degree of complementarity between
the high spatial detail of LiDAR data on the one hand and the higher spectral information content in
hyperspectral compared to multispectral data on the other hand, especially given the subtle spectral
differences between different urban green types [27]. Likewise, the combination of hyperspectral data
and LiDAR features was found to outperform combined multispectral and LiDAR data for detailed
habitat mapping in Cumbria, UK [52]. New innovative ways are arising for combining hyperspectral
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and LiDAR data in OBIA approaches (e.g., the concept of 3D hyperspectral point clouds [104]), opening
up new and exciting possibilities for further research in this respect.

Both the adoption of a hierarchical classification approach and the application of dimensionality
reduction techniques (in this case MNF) on the hyperspectral dataset improved classification accuracies
for detailed urban green types (Table A3). These results agree with earlier findings regarding hierarchical
classification of urban green [49] and relating to the added value of dimensionality reduction techniques
for detailed vegetation classification [29,105]. Despite the use of spatially and spectrally detailed data
sources and advanced analysis techniques (i.e., OBIA and Random Forest classification), uncertainties
of detailed urban green types still remained high, particularly for shrub and herbaceous vegetation
types (Table 3). Likewise, Mathieu, Aryal and Chong [21] reported only moderate accuracies of 63% up
to 77% for detailed urban green mapping in the city of Dunedin, New Zealand, based on multispectral
IKONOS imagery and OBIA techniques. Rather than merely using imagery acquired in summer
(when the vegetation season is at its peak and all vegetation types appear green), as was done here,
we highly suggest to further explore the potential of multi-temporal data for mapping these urban
green types. As such, information regarding plant phenology can be integrated into the classification
workflow, which is expected to benefit the distinction between evergreen and deciduous tree/shrub
types and even individual species [30,106,107], between different herbaceous vegetation types [108]
and between semi-natural versus agricultural land [109]. Yan, Zhou, Han, et al. [102] for instance
found that phenology increased classification accuracies of broad urban green types by 10% to 13%
when using an OBIA approach on Worldview-2 data.

Whereas classification performance on individual validation objects was not ideal but still
acceptable (Table 3), accuracies considerably dropped when attempting to map spatially continuous
areas (Table 4). Additional confusion was introduced particularly due to edge and adjacency effects,
i.e. signal of one pixel affecting the signal of its neighboring pixels due to multiple scattering of
light [110], and the high abundance of shadow (decreasing contrast, thereby making it harder to detect
subtle spectral differences [111]), as could be derived from the spatial distribution of classification
uncertainty (Figure 5b). Our rule-based post-classification procedure (Table A4) did resolve some
visually evident misclassification errors (Figures 5 and 6), but did not lead to a significant improvement
in overall accuracy (Table 4). One potential way to resolve this issue would be to collect additional
training data, specifically targeting these edge and shadow regions. As the main goal of the current
study was to assess the maximum potential of remote sensing data to differentiate various functional
urban green types, we rather focused our efforts on collecting clear examples (i.e., pure and bright
objects) of each functional type, which could explain the bad performance of our model in shadowed
areas. These additional training data can then either be combined with all other training data in
one and the same model, or can be used separately to train a specific model dedicated to classifying
shadowed areas. Rather than merely labeling shadow as a separate class in land cover maps, as
traditionally done by the urban remote sensing community [112,113], separately treating shadowed
and non-shadowed areas in a hierarchical classification approach is becoming more and more common
practice in order to reveal the true land cover composition of complex urban areas [42,47]. A second
approach which could reduce the negative impacts of object edges and shadow is the concept of
multi-scale or hierarchical segmentation, i.e., generating multiple, nested segmentation products for
the same area using different scale parameters [114]. A careful selection of the most appropriate
segmentation scale for each class of interest could lead to a more realistic representation of the complex
urban landscape (e.g., selecting different scales for big buildings versus small hedges) and could
effectively reduce the number of edge objects. Additionally, the use of features derived from multiple
segmentation scales has been shown to significantly improve land cover classification performance
over single segmentation approaches [115,116].

The remote sensing based mapping workflow presented here did certainly not cover all types or
aspects of the proposed functional urban green typology (Table 1) in an equally detailed way. Particularly,
the distinction between different tree and shrub functional types based on their spatial configuration
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could be further improved using more in-depth contextual and spatial analysis (cf. Figure 7b,c), for
instance based on specific metrics proposed by Wen, Huang, Liu, et al. [117] for semantic classification
of urban trees (e.g., cohesion index, shape index, distance to road). Certain specific urban green types
were not considered here due to their rarity in our study area and should be the focus of more, dedicated
research (e.g., detection of water plants or intensive green roofs). Finally, due to its orientation, vertical
green is not expected to be readily detectable using airborne remote sensing technology, stressing
the need to look into complementary data sources, including Google Street View [118] or citizen
science [119].

5. Conclusions

In this paper, we proposed a functional urban green typology and associated mapping workflow
based on remote sensing data to facilitate the production of urban ecosystem service maps. The
suggested typology, covering 23 functional types, may as such be used as a solid framework to produce a
holistic view on urban ecosystem services through a simple value-transfer approach, but can also easily
be extended using ancillary data for a more in-depth assessment of particular services. Our mapping
workflow (comprised by a hierarchical, object-based random forest classification and subsequent
rule-based post-classification correction) clearly demonstrated the potential, but also remaining
limitations of remote sensing data for detailed urban green mapping. In general, airborne LiDAR data
was found to be the most important data source for classification, but required complementary spectral
data (preferably hyperspectral) when targeting urban green types at high thematic detail. The high
spectral similarity between detailed urban green types and close interactions between different objects
in the complex urban fabric (causing obscuring adjacency and shadow effects) were identified as the
main sources of error, resulting in poor classification accuracies, especially for shrub and herbaceous
vegetation classes (balanced accuracy <0.5). Nevertheless, we believe this work to provide a starting
point for the further development of a functional urban green mapping workflow. In our opinion,
the main focus for future research should be directed towards incorporating detailed information on
phenology in the classification approach through the use of multi-temporal remote sensing data.
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Appendix A

Table A1. Sample size of training and testing datasets used for generating and testing Random
Forest models in this study, compared to relative abundance of land cover classes in our twenty
validation blocks.

Sample Sizes
(Number of Objects) Relative Abundance

Validation Blocks (%)ID Land Cover Class Training Testing

10 Deciduous broadleaf tree 408 178 22.99
11 Evergreen coniferous tree 71 27 0.57
20 Deciduous broadleaf shrub 88 34 1.68
21 Evergreen coniferous shrub 18 12 0.04
22 Evergreen broadleaf shrub 63 34 1.31
31 Tall herb vegetation 38 18 0.14
32 Flower bed 28 11 0.93
33 Meadow & flower field 63 16 2.03
34 Lawn 142 59 14.41
40 Arable land 22 8 0.00
41 Vegetable garden 25 13 0.00
50 Ext. green roof 13 5 0.89
60 Roof 251 106 12.24
70 Pavement 240 105 36.51
80 Soil 25 18 2.00
90 Water 12 3 3.03
100 Cars 163 62 0.00
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Table A2. Different combinations of object features used for training a random forest classification
model. Each combination was tested in a hierarchical and non-hierarchical classification approach. For
each feature (except for geometry features), both the object mean and standard deviation were included
in the model.

ID Included Features Number of Features

Hyperspectral
1 NDVI (apex) 2

2 APEX indices (NDVI, NDWI-G, NDWI-W, NDWI-M, GrassIdx,
RedGreen ratio, BlueGreen ratio, brightness) 16

3 APEX indices + LiDAR features (nDSM1, nDSM2, intensity, treeIndex) 24

4 APEX indices + LiDAR features + texture features (texture of nDSM1,
nDSM2, intensity) 72

5 APEX indices + LiDAR features + texture features + geometry (area,
perimeter, compact_circle) 75

6 APEX bands (218 original spectral bands) 416
7 APEX bands + LiDAR features 424
8 APEX bands + LiDAR features + texture features 472
9 APEX bands + LiDAR features + texture features + geometry 475

10 APEX MNF (30 MNF transformed APEX bands) 60
11 APEX MNF + LiDAR features 68
12 APEX MNF + LiDAR features + texture features 116
13 APEX MNF + LiDAR features + texture features + geometry 119

Multispectral
14 NDVI (worldview-2) 2
15 NDVI + WV bands (all 8 original Worldview-2 bands) 18
16 NDVI + WV bands + LiDAR features 26
17 NDVI + WV bands + LiDAR features + texture features 74
18 NDVI + WV bands + LiDAR features + texture features + geometry 77

LiDAR only
19 LiDAR features 8
20 LiDAR features + texture features 56
21 LiDAR features + texture features + geometry 59
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Table A3. Total accuracies attained through object-based classification of individual test objects using
different sets of object features as input to the classification algorithm. More information on the
specific features used in each set is included in Table A2. Results are shown both for the hierarchical
modelling approach and non-hierarchical model. In the former case, 7 individual models were created
to distinguish (1) vegetation from non-vegetation, (2) woody (tree, shrub) from non-woody vegetation,
(3) trees and shrubs, (4) detailed woody vegetation classes, (5) lawn, agriculture, extensive green roofs
and other herbaceous vegetation, (6) detailed non-woody vegetation classes and (7) roof, pavement,
soil and water. Two non-hierarchical models were produced, one for basic vegetation classes and one
for most detailed vegetation classes. Highest accuracies are indicated in bold.

Feature
Set ID Hierarchical Model Non-hierarchical

Model

(1) (2) (3) (4) (5) (6) (7) Basic Detailed

Hyperspectral + LiDAR
1 0.91 0.69 0.51 0.42 0.44 0.34 0.47 0.38 0.34
2 0.94 0.79 0.61 0.55 0.64 0.55 0.67 0.57 0.54
3 0.96 0.91 0.81 0.69 0.69 0.66 0.91 0.83 0.77
4 0.97 0.93 0.86 0.70 0.69 0.65 0.92 0.85 0.78
5 0.96 0.93 0.85 0.69 0.69 0.66 0.92 0.85 0.78
6 0.93 0.78 0.60 0.55 0.65 0.61 0.65 0.58 0.54
7 0.95 0.90 0.82 0.67 0.71 0.66 0.92 0.83 0.77
8 0.95 0.92 0.85 0.69 0.71 0.66 0.94 0.85 0.76
9 0.95 0.92 0.86 0.69 0.72 0.67 0.93 0.85 0.77

10 0.94 0.84 0.66 0.57 0.71 0.69 0.76 0.65 0.62
11 0.96 0.92 0.86 0.74 0.73 0.71 0.91 0.85 0.80
12 0.98 0.93 0.85 0.72 0.75 0.71 0.92 0.86 0.79
13 0.98 0.93 0.86 0.72 0.73 0.70 0.92 0.85 0.78

Multispectral + LiDAR
14 0.90 0.65 0.54 0.44 0.47 0.38 0.39 0.34 0.30
15 0.92 0.75 0.67 0.52 0.57 0.51 0.54 0.53 0.50
16 0.95 0.90 0.83 0.63 0.72 0.64 0.88 0.82 0.73
17 0.96 0.92 0.85 0.67 0.69 0.65 0.89 0.83 0.76
18 0.96 0.92 0.86 0.69 0.70 0.63 0.90 0.83 0.76

LiDAR Only
19 0.92 0.88 0.80 0.62 0.66 0.64 0.86 0.78 0.70
20 0.94 0.90 0.82 0.64 0.66 0.62 0.87 0.82 0.72
21 0.94 0.89 0.83 0.65 0.67 0.61 0.86 0.82 0.73
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Table A4. Overview of rule-based post-classification procedure used to correct for visually obvious
classification errors occurring after initial object-based classification of our twenty validation blocks.
Procedure developed and applied in eCognition software.

Source of Confusion / Error Classification Rules

Shadowed areas wrongly classified
as water

* the following is only applied to objects with class probability below 0.7 *
If NDWI_X > -0.3 —> water

Else if intensity > 0.3 AND NDVI > 0.6 —> herbaceous vegetation
Else —> pavement

If water AND area < 200 pixels AND NDVI > 0.6 —> lawn
If water AND area < 200 pixels AND NDVI ≤ 0.6 —> pavement

Water body wrongly classified as
vegetation or pavement

* the following is only applied to objects with class probability below 0.7 *
If NDWI_X > -0.3 AND relative border to water > 0 —> water

Shaded or narrow pavement
misclassified as vegetation

* the following is only applied to objects with class probability below 0.7 *
If herbaceous vegetation AND intensity < 0.4 AND NDVI

< 0.85 —> pavement
If herbaceous vegetation AND NDVI < 0.2 —> pavement

If lawn AND NDVI < 0.2 —> pavement
If lawn AND intensity < 0.6 —> pavement

If cropland AND intensity < 0.23 —> pavement
If cropland AND intensity < 0.35 AND asymmetry > 0.84 —> pavement

Small patches classified as cropland
If cropland AND area < 600 pixels AND intensity ≥ 0.4 —>

herbaceous vegetation
If cropland AND area < 600 pixels AND intensity < 0.4 —> soil

Cars classified as shrub

If shrub enclosed by car —> car
If shrub with relative border to car > 0.5 —> car

If shrub with relative border to car > 0.24 AND NDVI < 0.35 —> car
If shrub with relative border to car > 0.24 AND relative height difference <

0.13 —> car

Shrub classified as car
If car AND area < 52 pixels AND NDVI > 0.3 —> shrub

If car AND asymmetry > 0.8 AND NDVI > 0.2 —> shrub
If car AND compactness > 4 AND NDVI > 0.2 —> shrub

Roof edge misclassified as tree
If tree AND relative border to roof > 0.3 AND area < 500 pixels —> roof

If tree AND relative border to roof > 0.3 AND asymmetry > 0.95 —> roof
If tree fully enclosed by roof —> roof

Small portions of trees or shrubs
classified as roof

If roof AND area < 200 pixels AND relative border to tree > 0.4 —> tree
If roof AND area < 200 pixels AND relative border to shrub > 0.4 —> shrub

Edges of trees misclassified as shrub
(due to low height) If shrub AND relative border to tree > 0.31 AND area < 300 pixels —> tree

Small parts of evergreen coniferous
trees (ECT) misclassified as

deciduous broadleaf trees (DBT) and
other way around

If DBT AND relative border to ECT > 0.3 AND area < 400 pixels —> ECT
If ECT AND relative border to DBT > 0.3 AND area < 400 pixels —> DBT
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Table A5. Confusion matrix obtained for classifying all validation blocks according to the basic vegetation classes and using the best performing Random Forest
model, i.e., a hierarchical model featuring hyperspectral and LiDAR data. Classification results are presented in the rows, reference classes in the columns. Red
numbers indicate severe confusion (more than 5 % of the reference pixels of a certain class being classified as another class). Numbers marked in grey represent those
confusions actively dealt with in the post-classification correction procedure.

Tree Shrub Herbaceous Lawn Crop-land Ext. green
roof Roof Pavement Soil Water Total

Tree 678,685 16,731 324 2620 0 408 26,503 7000 542 70 732,883
Shrub 26,777 90,576 8975 9852 0 0 2439 16,464 2179 2229 159,491

Herbaceous 8437 10,689 70,748 27,303 0 0 821 18,379 3743 1484 141,604
Lawn 15,599 6919 12,776 401,164 0 0 5506 38,844 14,082 421 495,311

Cropland 4066 298 585 1818 0 0 13 26,343 978 702 34,803
Ext. green

roof 2 0 2 16 0 28,052 9117 80 0 0 37,269

Roof 991 1084 34 1453 0 28 342,389 11,587 1808 0 359,374
Pavement 17,311 9259 4878 12,491 0 0 4711 1,027,231 10,363 3677 1,089,921

Soil 1458 741 680 3065 0 0 243 17,114 30,026 0 53,327
Water 658 171 69 859 0 0 100 5130 191 88,357 95,535

Total 75,3984 136,468 99,071 460,641 0 28,488 391,842 1,168,172 63,912 96,940 3,199,518
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Table A6. Confusion matrix obtained after applying a rule-based post-classification correction procedure on the results presented in Table A5. Red numbers indicate
severe confusion (more than 5% of the reference pixels of a certain class being classified as another class). Numbers marked in grey represent those confusions actively
dealt with in the post-classification correction procedure.

Tree Shrub Herbaceous Lawn Cropland Ext. Green
Roof Roof Pavement Soil Water Total

Tree 684,658 19,606 722 3763 0 408 5282 6521 755 210 721,925
Shrub 19,523 87,142 8569 8254 0 0 2597 16,968 2074 2089 147,216

Herbaceous 6811 9845 69,678 27,162 0 0 753 12,398 3333 847 130,827
Lawn 11,795 4880 9437 387,315 0 0 5270 15,810 8104 421 443,032

Cropland 510 46 27 142 0 0 13 6016 683 0 7437
Ext. green

roof 2 0 2 16 0 28,052 9117 80 0 0 37,269

Roof 2288 1311 44 1879 0 28 363,529 13,986 1873 0 384,938
Pavement 25,533 12,839 9147 28,516 0 0 5025 1,071,473 16,783 3599 1,172,915

Soil 2702 782 934 3594 0 0 243 22,052 30,307 399 61,013
Water 162 17 511 0 0 0 13 2868 0 89,375 92,946

Total 753,984 136,468 99,071 460,641 0 28,488 391,842 1,168,172 63,912 96,940 3,199,518
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Table A7. Confusion matrix obtained for classifying all validation blocks according to the most detailed vegetation classes and using the best performing Random
Forest model, i.e., a hierarchical model featuring hyperspectral and LiDAR data. Red numbers indicate severe confusion (more than 5% of the reference pixels of a
certain class being misclassified).

DBT ECT DBS ECS EBS Tall
herb

Flower
bed Meadow Lawn Arable

land
Vegetable

Garden
Ext. Green

Roof Roof Pavement Soil Water Total

DBT 655,649 6106 10,641 109 5178 54 47 201 2518 0 0 408 26,193 6924 535 70 714,633
ECT 7562 9368 209 3 591 13 1 8 102 0 0 0 310 76 7 0 18,250

DBS 18,114 1078 29,566 1811 18,785 3058 624 2066 5387 0 0 0 1942 8917 1317 1117 93,782
ECS 280 0 159 2398 0 1 0 7 252 0 0 0 30 121 78 0 3326
EBS 7065 264 10,118 1626 26,114 1371 594 1254 4285 0 0 0 467 7500 784 1112 62,554

Tall herb 386 0 398 0 1014 2756 34 2859 351 0 0 0 62 266 119 643 8888
Flower bed 876 97 1673 215 916 552 5640 795 4462 0 0 0 290 4295 309 1 20,121

Meadow 6930 148 3467 458 2547 12,033 15,338 30,741 22,517 0 0 0 469 13,801 3315 840 112,604
Lawn 15,117 482 3316 366 3237 200 4319 8257 401,164 0 0 0 5506 38,844 14,082 421 495,311

Arable land 489 0 20 15 5 0 13 53 616 0 0 0 0 7414 108 47 8780
Vegetable

garden 3530 23 29 48 181 14 258 247 1103 0 0 0 13 18,872 870 655 25,843

Ext. green
roof 2 0 0 0 0 0 0 2 16 0 0 28,052 9117 80 0 0 37,269

Roof 845 146 511 64 509 0 12 22 1453 0 0 28 342,389 11,587 1808 0 359,374
Pavement 16,849 462 3169 794 5296 294 2584 2000 12,491 0 0 0 4711 1,027,231 10363 3677 1,089,921

Soil 1386 72 154 160 427 293 289 98 3065 0 0 0 243 17,114 30,026 0 53,327
Water 657 1 47 0 124 1 56 12 859 0 0 0 100 5130 191 88,357 95,535

Total 735,737 18,247 63,477 8067 64,924 20,640 29,809 48,622 460,641 0 0 28,488 391,842 1,168,172 63,912 96,940 3,199,518

DBT = Deciduous broadleaf tree; ECT = Evergreen coniferous tree; DBS = Deciduous broadleaf shrub; ECS = Evergreen coniferous shrub; EBS = Evergreen broadleaf shrub.
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Table A8. Confusion matrix obtained after applying a rule-based post-classification correction procedure on the results presented in Table A7. Red numbers indicate
severe confusion (more than 5% of the reference pixels of a certain class being classified as another class).

DBT ECT DBS ECS EBS Tall
herb

Flower
bed Meadow Lawn Arable

land
Vegetable

Garden
Ext. Green

Roof Roof Pavement Soil Water Total

DBT 658,717 3622 11,471 300 6256 139 47 509 3605 0 0 408 5280 6291 706 206 697,557
ECT 9968 12,351 350 1 1228 0 11 16 158 0 0 0 2 230 49 4 24,368

DBS 14,371 717 29,121 1718 18,598 3007 614 1826 4329 0 0 0 2122 11,537 1436 1095 90,491
ECS 218 0 159 2187 0 1 0 7 198 0 0 0 18 24 72 0 2884
EBS 4009 208 9240 1499 24620 1350 594 1170 3727 0 0 0 457 5407 566 994 53,841

Tall herb 256 0 350 0 974 2331 34 2806 351 0 0 0 13 96 119 245 7575
Flower bed 580 96 1449 215 882 552 5636 589 3989 0 0 0 288 2962 199 1 17,438

Meadow 5732 147 3403 521 2051 12,013 15,245 30,472 22,822 0 0 0 452 9340 3015 601 105,814
Lawn 11,435 360 2357 288 2235 181 4137 5119 387,315 0 0 0 5270 15,810 8104 421 443,032

Arable land 95 0 13 0 5 0 5 0 25 0 0 0 0 1682 42 0 1867
Vegetable

garden 415 0 3 0 25 0 0 22 117 0 0 0 13 4334 641 0 5570

Ext. green
roof 2 0 0 0 0 0 0 2 16 0 0 28,052 9117 80 0 0 37,269

Roof 2224 64 433 72 806 0 12 32 1879 0 0 28 363,529 13,986 1873 0 384,938
Pavement 24,923 610 4974 1106 6759 738 2593 5816 28,516 0 0 0 5025 1,071,473 16,783 3599 1,172,915

Soil 2630 72 154 160 468 293 418 223 3594 0 0 0 243 22,052 30,307 399 61,013
Water 162 0 0 0 17 35 463 13 0 0 0 0 13 2868 0 89,375 92,946

Total 735,737 18,247 63,477 8067 64,924 20,640 29,809 48,622 460,641 0 0 28,488 391,842 1,168,172 63,912 96,940 3,199,518

DBT = Deciduous broadleaf tree; ECT = Evergreen coniferous tree; DBS = Deciduous broadleaf shrub; ECS = Evergreen coniferous shrub; EBS = Evergreen broadleaf shrub
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