Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Dataset Development
2.2. Inclusion and Exclusion Criteria
2.3. Treatments and Indicators Evaluated for This Study
2.4. Statistical Analyses
3. Results
3.1. Descriptive Analysis
3.2. Network Meta-Analysis (NMA)
3.3. Pairwise Meta-Analysis (PMA)
3.4. Publication Bias
3.5. Pearson Correlation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elliott, E.T.; Coleman, D.C. Let the soil work for us. Ecol. Bull. 1988, 39, 23–32. [Google Scholar]
- Thiele-Bruhn, S.; Bloem, J.; Vries, F.T.; Kalbitz, K.; Wagg, C. Linking soil biodiversity and agricultural soil management. Curr. Opin. Environ. Sustain. 2012, 4, 523–528. [Google Scholar] [CrossRef]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res. 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Sartori, L.; Simonetti, G.; Berti, A.; Morari, F. Soil macro- and microstructure as affected by different tillage systems and their effects on maize root growth. Soil Tillage Res. 2014, 140, 55–65. [Google Scholar] [CrossRef]
- Nunes, M.R.; Pauletto, E.A.; Denardin, J.E.; Suzuki, L.E.A.S.; van Es, H.M. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil Tillage Res. 2019, 186, 183–190. [Google Scholar] [CrossRef]
- Nciizah, A.D.; Wakindiki, I.I.C. Physical indicators of soil erosion; aggregate stability and erodibility. Arch. Agron. Soil Sci. 2015, 61, 827–842. [Google Scholar] [CrossRef]
- Nunes, M.R.; Denardin, J.E.; Pauletto, E.A.; Faganello, A.; Pinto, L.F.S. Mitigation of clayey soil compaction managed under no-tillage. Soil Tillage Res. 2015, 148, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Letey, J. Relationship between soil physical properties and crop production. Adv. Soil Sci. 1985, 1, 277–294. [Google Scholar]
- Steele, M.K.; Coale, F.J.; Hill, R.L. Winter annual cover crop impacts on no-till soil physical properties and organic matter. Soil Sci. Soc. Am. J. 2012, 76, 2164–2173. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shapiro, C.A.; Wortmann, C.S.; Drijber, R.A.; Mamo, M.; Shaver, T.M.; Ferguson, R.B. Soil organic carbon: The value to soil properties. J. Soil Water Conserv. 2013, 68, 129–134. [Google Scholar] [CrossRef]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversication improve fi soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Anger, D.A.; Prévost, D.; Vézina, L.P.; Chalifour, F.P. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci. Soc. Am. J. 1997, 61, 262–267. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Wright, S.F.; Stuedemann, J.A. Soil aggregation and glomalin under pastures in the Southern Piedmont USA. Soil Sci. Soc. Am. J. 2000, 64, 1018–1026. [Google Scholar] [CrossRef]
- Kumar, A.; Dorodnikov, M.; Splettstößer, T.; Kuzyakov, Y.; Pausch, J. Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma 2017, 306, 50–57. [Google Scholar] [CrossRef]
- Kautz, T.; Stumm, C.; Kösters, R.; Köpke, U. Effects of perennial fodder crops on soil structure in agricultural headlands. J. Plant Nutr. Soil Sci. 2010, 173, 490–501. [Google Scholar] [CrossRef]
- Veum, K.S.; Kremer, R.J.; Sudduth, K.A.; Kitchen, N.R.; Lerch, R.N.; Baffaut, C.; Stott, D.E.; Karlen, D.L.; Sadler, E.J. Conservation effects on soil quality indicators in the Missouri Salt River Basin. J. Soil Water Conserv. 2015, 70, 232–246. [Google Scholar] [CrossRef]
- Lal, R.; Reicosky, D.; Hanson, J. Evolution of the plow over 10;000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the worldwide spread of conservation agriculture. Field Actions Sci. Rep. 2015, 8, 1–51. [Google Scholar]
- Martínez, I.; Chervet, A.; Weisskopf, P.; Sturny, W.G.; Rek, J.; Keller, T. Two decades of no-till in the Oberacker long-term field experiment: Part II. Soil porosity and gas transport parameters. Soil Tillage Res. 2016, 163, 130–140. [Google Scholar] [CrossRef]
- Kinoshita, R.; Schindelbeck, R.R.; van Es, R.M. Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil Tillage Res. 2017, 174, 34–44. [Google Scholar] [CrossRef]
- Dairon, R.; Dutertre, A.; Tournebize, J.; Marks-Perreau, J.; Carluer, N. Long-term impact of reduced tillage on water and pesticide flow in a drained context. Environ. Sci. Pollut. Res. 2017, 24, 6866–6877. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J. Degree of compactness; soil physical properties and yield of soybean in six soils under no-tillage. Soil Res. 2013, 51, 311–321. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.K.; Denardin, J.E.; Cambardella, C.A. Corn root and soil health indicator response to no-till production practices. Agric. Ecosyst. Environ. 2019, 285, 106607. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wienhold, B.J.; Jin, V.L.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis Part 1 Agronomy Monograph 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy. Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Quisenberry, V.L.; Smith, B.R.; Phillips, R.E.; Scott, H.D.; Nortcliff, S. A soil classification system for describing water and chemical transport. Soil Sci. 1993, 156, 306–315. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-analysis and the science of research synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef]
- Wiebe, N.; Vandermeer, B.; Platt, R.W.; Klassen, T.P.; Moher, D.; Barrowman, N.J. A systematic review identifies a lack of standardization in methods for handling missing variance data. J. Clin. Epidemiol. 2006, 59, 342–353. [Google Scholar] [CrossRef]
- Weir, C.J.; Butcher, I.; Assi, V.; Lewis, S.C.; Murray, G.D.; Langhorne, P.; Brady, M.C. Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: A systematic review. BMC Med. Res. Methodol. 2018, 18, 25. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Hui, D.F.; Zhang, D.Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 2006, 87, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meurer, K.H.E.; Haddaway, N.R.; Bolinder, M.A.; Kätterer, T. Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil—A systematic review using an ESM approach. Earth Sci. Rev. 2018, 177, 613–622. [Google Scholar] [CrossRef]
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol. 2006, 59, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Thiessen Philbrook, H.; Barrowman, N.; Garg, A.X. Imputing variance estimates do not alter the conclusions of a meta-analysis with continuous outcomes: A case study of changes in renal function after living kidney donation. J. Clin. Epidemiol. 2007, 60, 228–240. [Google Scholar] [CrossRef]
- Rücker, G.; Schwarzer, G. Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network meta-analysis. Stat. Med. 2014, 33, 4353–4369. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Rücker, G.; Schwarzer, G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med. Res. Methodol. 2015, 31, 15–58. [Google Scholar] [CrossRef] [Green Version]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 6, 1–48. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Model-Ling for Nested Data. In Mixed Effects Models and Extensions in Ecology With R; Springer: Berlin/Heidelberg, Germany, 2009; pp. 101–142. [Google Scholar]
- Anzures-Cabrera, J.; Higgins, J.P. Graphical displays for meta-analysis: An overview with suggestions for practice. Res. Synth. Methods 2010, 1, 66–80. [Google Scholar] [CrossRef]
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil health assessment: Past accomplishments, current activities and future opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Karlen, D.L.; Rice, C.W. Soil degradation: Will humankind ever learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.W.; Haszler, G.R.; Blevins, R.L. The effects of organic matter and tillage on maximum compactibility of soils using the proctor test. Soil Sci. 1996, 161, 502–508. [Google Scholar] [CrossRef]
- Veiga, M.; Horn, R.; Reinert, D.J.; Reichert, J.M. Soil compressibility and penetrability of an Oxisol from southern Brazil as affected by long-term tillage systems. Soil Tillage Res. 2007, 92, 104–113. [Google Scholar]
- Carter, M.R. Characterization of soil physical properties and organic matter under long-term primary tillage in a humid climate. Soil Tillage Res. 1996, 38, 251–263. [Google Scholar] [CrossRef]
- Alam, M.K.; Salahin, N.; Islam, S.; Begum, R.; Hasanuzzaman, M.; Islam, M.; Rahman, M. Patterns of change in soil organic matter; physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J. Agric. Sci. 2017, 155, 216–238. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Grzesiak, S.; Grzesiak, M.T.; Hura, T.; Marcinska, I.; Rzepka, A. Changes in root system structure; leaf matric potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environ. Exp. Bot. 2012, 88, 2–10. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Hakansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, G.; Singh, R.P. Conservation tillage and optimal water supply enhances microbial enzyme (glucosidase; urease and phosphatase) activities in fields under wheat cultivation during various nitrogen management practices. Arch. Agron. Soil Sci. 2013, 59, 911–928. [Google Scholar] [CrossRef]
- Das, A.; Lyngdoh, D.; Ghosh, P.K.; Lal, R.; Layek, J.; Idapuganti, R.G. Tillage and cropping sequence effect on physico-chemical and biological properties of soil in Eastern Himalayas, India. Soil Tillage Res. 2018, 180, 182–193. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Horton, R.; Ankeny, M.D. Infiltration and macroporosity under a row crop agricultural field in a glacial till soil. Soil Sci. 1996, 161, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Ball, B.C.; Tormena, C.A.; Giarola, N.F.B.; Guimarães, R.M.L. Soil structure and greenhouse gas production differences between row and interrow positions under no-tillage. Sci. Agric. 2014, 71, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Pillai, U.P.; McGarry, D. Structure repair of a compacted Vertisol with wet–dry cycles and crops. Soil Sci. Soc. Am. J. 1999, 63, 201–210. [Google Scholar] [CrossRef]
- Pires, L.F.; Cássaro, F.A.M.; Reichardt, K.; Bacchi, O.O.S. Soil porous system changes quantified by analyzing soil water retention curve modifications. Soil Tillage Res. 2008, 100, 72–77. [Google Scholar] [CrossRef]
- Bavoso, M.A.; Silva, A.P.; Figueiredo, G.C.; Tormena, C.A.; Giarola, N.F.B. Resiliência física de dois latossolos vermelhos sob plantio direto. Rev. Bras. Cienc. Solo 2012, 36, 1892–1904. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Troedson, R.J.; So, H.B.; Kushwaha, B.L. The effect of compaction on the growth of pigeon pea on clay soils. II. Mechanisms of crop response and season effects on an oxisol in a humid coastal environment. Soil Tillage Res. 1992, 24, 129–147. [Google Scholar] [CrossRef]
- Arvidsson, J.; Hakansson, I. A model for estimating crop yield losses caused by soil compaction. Soil Tillage Res. 1991, 20, 319–332. [Google Scholar] [CrossRef]
- Rachman, A.; Anderson, S.H.; Gantzer, C.J.; Alberts, E.E. Soil hydraulic properties influenced by stiff-stemmed grass hedge systems. Soil Sci. Soc. Am. J. 2004, 68, 1386–1393. [Google Scholar] [CrossRef] [Green Version]
- DuPont, S.T.; Beniston, J.; Glover, J.D.; Hodson, A.; Culman, S.W.; Lal, R.; Ferris, H. Root traits and soil properties in harvested perennial grassland; annual wheat; and never-tilled annual wheat. Plant Soil 2014, 381, 405–420. [Google Scholar] [CrossRef]
- Jastrow, J.D.; Miller, R.M.; Lussenhop, J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 1998, 30, 905–916. [Google Scholar] [CrossRef]
- Nunes, M.R.; Silva, A.P.; Denardin, J.E.; Giarola, N.F.B.; Vaz, C.M.P.; van Es, H.M.; Silva, A.R. Soil chemical management drives structural degradation of Oxisols under a no-till cropping system. Soil Res. 2017, 55, 819–831. [Google Scholar] [CrossRef]
Depth1 | Tillage2 | Soil Bulk Density, g cm−3 | Soil Aggregate Stability, % | Soil Penetration Resistance, MPa | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Obs. | min | max | mean | sd | Obs. | min | max | mean | sd | Obs. | min | max | mean | sd | ||
Overall | MP | 545 | 0.28 | 1.93 | 1.36 | 0.19 | 154 | 6.0 | 99.7 | 49.9 | 26.6 | 50 | 0.29 | 5.08 | 1.53 | 1.02 |
Overall | CP | 282 | 0.27 | 1.98 | 1.38 | 0.22 | 59 | 12.0 | 93.9 | 50.6 | 21.1 | 41 | 0.18 | 4.03 | 1.44 | 0.96 |
Overall | NT | 663 | 0.27 | 1.95 | 1.39 | 0.19 | 183 | 6.0 | 99.7 | 60.5 | 24.9 | 64 | 0.24 | 5.80 | 1.66 | 1.17 |
Overall | PER | 223 | 0.74 | 1.80 | 1.27 | 0.18 | 61 | 9.5 | 95.4 | 64.0 | 24.8 | 5 | 0.19 | 1.36 | 0.72 | 0.46 |
Top | MP | 265 | 0.28 | 1.80 | 1.27 | 0.19 | 106 | 6.0 | 97.9 | 45.4 | 25.5 | 32 | 0.29 | 5.08 | 1.38 | 1.15 |
Top | CP | 132 | 0.27 | 1.98 | 1.30 | 0.23 | 37 | 12.0 | 93.9 | 50.7 | 22.2 | 26 | 0.18 | 4.03 | 1.13 | 0.93 |
Top | NT | 315 | 0.27 | 1.89 | 1.31 | 0.19 | 119 | 6.0 | 98.3 | 58.0 | 25.1 | 43 | 0.24 | 5.80 | 1.36 | 1.22 |
Top | PER | 111 | 0.74 | 1.50 | 1.18 | 0.17 | 38 | 9.5 | 95.4 | 63.3 | 25.7 | 3 | 0.19 | 1.36 | 0.83 | 0.59 |
Second | MP | 144 | 0.57 | 1.93 | 1.41 | 0.17 | 39 | 11.9 | 99.7 | 63.1 | 27.7 | 9 | 0.63 | 2.50 | 1.59 | 0.60 |
Second | CP | 83 | 0.62 | 1.98 | 1.42 | 0.21 | 21 | 15.0 | 89.7 | 50.3 | 20.0 | 10 | 0.67 | 2.86 | 1.86 | 0.68 |
Second | NT | 183 | 0.67 | 1.95 | 1.44 | 0.18 | 51 | 12.0 | 99.7 | 68.3 | 23.6 | 12 | 1.21 | 4.27 | 2.25 | 0.95 |
Second | PER | 57 | 0.95 | 1.60 | 1.32 | 0.14 | 15 | 25.0 | 95.0 | 69.0 | 25.8 | 1 | 0.38 | 0.38 | 0.38 | - |
Third | MP | 97 | 1.14 | 1.84 | 1.47 | 0.15 | 6 | 29.1 | 58.6 | 43.4 | 12.2 | 7 | 0.64 | 2.84 | 2.07 | 0.74 |
Third | CP | 39 | 1.08 | 1.67 | 1.44 | 0.16 | 1 | 49.8 | 49.8 | 49.8 | - | 5 | 0.87 | 3.70 | 2.23 | 1.01 |
Third | NT | 108 | 1.03 | 1.87 | 1.47 | 0.14 | 9 | 13.0 | 85.0 | 51.7 | 22.7 | 7 | 1.46 | 3.07 | 2.26 | 0.54 |
Third | PER | 41 | 0.95 | 1.67 | 1.38 | 0.13 | 5 | 29.0 | 85.0 | 61.2 | 20.2 | 1 | 0.73 | 0.73 | 0.73 | - |
Fourth | MP | 39 | 1.23 | 1.83 | 1.49 | 0.17 | 3 | 33.0 | 69.0 | 47.6 | 18.9 | 2 | 2.12 | 2.12 | 2.12 | 0.00 |
Fourth | CP | 28 | 1.28 | 1.72 | 1.52 | 0.15 | 0 | - | - | - | - | 0 | - | - | - | - |
Fourth | NT | 57 | 1.24 | 1.79 | 1.51 | 0.15 | 4 | 30.0 | 79.0 | 57.2 | 25.5 | 2 | 2.03 | 2.99 | 2.51 | 0.68 |
Fourth | PER | 14 | 1.23 | 1.80 | 1.52 | 0.16 | 3 | 40.0 | 74.0 | 51.3 | 19.6 | 0 | - | - | - | - |
Depth1 | Tillage Intensity2 | AS | BD | PR |
---|---|---|---|---|
Top | Perennial | 1.00 | 0.58 | 0.06 |
No-tillage | 0.61 | 0.87 | 0.81 | |
Chisel plow | 0.34 | 0.12 | 0.70 | |
Moldboard plow | 0.05 | 0.42 | 0.43 | |
Second | Perennial | 1.00 | 0.23 | - |
No-tillage | 0.67 | 0.75 | 0.42 | |
Chisel plow | 0.03 | 0.25 | 0.66 | |
Moldboard plow | 0.30 | 0.74 | 0.42 | |
Third | Perennial | 0.77 | 0.68 | - |
No-tillage | 0.53 | 0.44 | 0.00 | |
Chisel plow | - | 0.10 | 1.00 | |
Moldboard plow | 0.64 | 0.78 | 0.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis. Sustainability 2020, 12, 2071. https://doi.org/10.3390/su12052071
Nunes MR, Karlen DL, Moorman TB. Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis. Sustainability. 2020; 12(5):2071. https://doi.org/10.3390/su12052071
Chicago/Turabian StyleNunes, Márcio R., Douglas L. Karlen, and Thomas B. Moorman. 2020. "Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis" Sustainability 12, no. 5: 2071. https://doi.org/10.3390/su12052071