Sustainability Evaluation of Municipal Solid Waste Management System for Hanoi (Vietnam)—Why to Choose the ‘Waste-to-Energy’ Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. Alternative Solutions Compared during the Research Process
2.2.1. Alternative 1: Improving the Current System for Waste Collection and Transportation
2.2.2. Alternative 2: Reducing, Reusing, and Recycling Waste at Source
2.2.3. Alternative 3: Mechanical–Biological Treatment (MBT) Plants for Classifying, Composting, and Refuse-Derived Fuel (RDF) for the Cement Industry
- Materials with high-quality recyclable characteristics for the recycling industry,
- Organic substances for a compost plant located within the MBT plant (wet, small/medium particle size),
- Small unrecyclable particle fraction for landfilling such as glass, dust, soil, gravel, and
- RDF made from the remaining burnable fraction to provide for the cement industry at zero costs or to incineration facilities.
2.2.4. Alternative 4: Mechanical–Biological Treatment (MBT) Plants for Sorting, Composting, and Refuse-Derived Fuel (RDF) for Waste-to-Energy/Incineration Plants
- Materials with high-quality recyclable characteristics for the recycling industry,
- Organic substance for a compost plant located within the MBT plant (wet, small/medium particle size),
- Small unrecyclable particle fraction for landfilling such as glass, dust, soil, gravel, and
- RDF from the remaining ignitable fraction. It is assumed to be burned at on-site waste-to-energy plants.
2.3. Application of the Analytical Hierarchy Process (AHP)
- 1.
- Goal: Choosing the best alternative for sustainable MSW management in Hanoi;.
- 2.
- Criteria:
- a-
- The waste flow in 2018 and forecasted data to 2030 (C1);
- b-
- The necessary equipment and facilities from 2018 to 2030 (C2);
- c-
- The total investments estimated for municipal solid waste collection and disposal (C3);
- d-
- The annual cost of operation and maintenance for municipal solid waste collection and disposal (C4);
- e-
- The total average costs per capita per year (C5).
- 3.
- Sub-criteria:
- a-
- Total of waste collection (t/y) (S1);
- b-
- Recycling t/y (S2);
- c-
- Residual waste for landfill (t/y) (S3);
- d-
- Transfer points in streets (no.) (S4);
- e-
- Pushcarts/containers (no.) (S5);
- f-
- Compaction trucks for collection (no.) (S6);
- g-
- Transfer stations (no.) (S7);
- h-
- New landfills needed (2 million tons capacity each) (S8);
- i-
- Investments estimated for collection (S9);
- j-
- Investments estimated for disposal (S10);
- k-
- Annual operation and maintenance costs for collection (S11);
- l-
- Annual operation and maintenance costs for disposal (S12);
- m-
- Total investments and reinvestments (S13);
- n-
- Total operation and maintenance costs (S14);
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tsydenova, N.; Vázquez Morillas, A.; Cruz Salas, A. Sustainability Assessment of Waste Management System for Mexico City (Mexico)—Based on Analytic Hierarchy Process. Recycling 2018, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012; Volume 15. [Google Scholar]
- Themelis, N.J.; Kim, Y.H.; Brady, M.H.J. Energy recovery from New York City municipal solid wastes. Waste Manag. Res. 2002, 20, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Saleem, W.; Zulfiqar, A.; Tahir, M.; Asif, F.; Yaqub, G. Latest technologies of municipal solid waste management in developed and developing countries: A review. Int. J. Adv. Sci. Res. 2016, 1, 22–29. [Google Scholar]
- Voběrková, S.; Vaverková, M.D.; Burešová, A.; Adamcová, D.; Vršanská, M.; Kynický, J.; Brtnický, M.; Adam, V. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 2017, 61, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Koda, E.; Miszkowska, A.; Sieczka, A. Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Appl. Sci. 2017, 7, 638. [Google Scholar] [CrossRef] [Green Version]
- Jovanov, D.; Vujić, B.; Vujić, G. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. J. Environ. Manag. 2018, 216, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Gworek, B.; Dmuchowski, W.; Koda, E.; Marecka, M.; Baczewska, A.; Brągoszewska, P.; Sieczka, A.; Osiński, P. Impact of the municipal solid waste Łubna Landfill on environmental pollution by heavy metals. Water 2016, 8, 470. [Google Scholar] [CrossRef] [Green Version]
- Vaverková, M.D.; Winkler, J.; Adamcová, D.; Radziemska, M.; Uldrijan, D.; Zloch, J. Municipal solid waste landfill–Vegetation succession in an area transformed by human impact. Ecol. Eng. 2019, 129, 109–114. [Google Scholar] [CrossRef]
- Sharp, A.; Sang-Arun, J. A Guide for Sustainable Urban Organic Waste Management in Thailand: Combining Food, Energy, and Climate Co-Benefits; Policy Report 12-02; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2012. [Google Scholar]
- Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Shimaoka, T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resour. Conserv. Recycl. 2017, 122, 51–65. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013, Waste; US Environmental Protection Agency: Washington, DC, USA, 2015; Chapter-7. [Google Scholar]
- Adhikari, B.K.; Barrington, S.; Martinez, J.; King, S. Effectiveness of three bulking agents for food waste composting. Waste Manag. 2009, 29, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Maulini-Duran, C.; Puyuelo, B.; Artola, A.; Font, X.; Sánchez, A.; Gea, T. VOC emissions from the composting of the organic fraction of municipal solid waste using standard and advanced aeration strategies. J. Chem. Technol. Biotechnol. 2014, 89, 579–586. [Google Scholar] [CrossRef]
- Wéry, N. Bioaerosols from composting facilities—a review. Front. Cell. Infect. Microbiol. 2014, 4, 42. [Google Scholar] [PubMed]
- Sykes, P.; Morris, R.; Allen, J.A.; Wildsmith, J.D.; Jones, K. Workers’ exposure to dust, endotoxin and β-(1–3) glucan at four large-scale composting facilities. Waste Manag. 2011, 31, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. J. Toxicol. Environ. Health Part B 2015, 18, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Moya, D.; Aldás, C.; López, G.; Kaparaju, P. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia 2017, 134, 286–295. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Waste to energy–key element for sustainable waste management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef]
- Di Matteo, U.; Nastasi, B.; Albo, A.; Astiaso Garcia, D. Energy contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to energy-environmental sustainability in urban areas at small scale. Energies 2017, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Baroutian, S.; Anyaoku, C. Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste. Renew. Sustain. Energy Rev. 2018, 90, 982–991. [Google Scholar]
- Van Fan, Y.; Klemeš, J.J.; Lee, C.T.; Perry, S. Anaerobic digestion of municipal solid waste: Energy and carbon emission footprint. J. Environ. Manag. 2018, 223, 888–897. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Fdez-Güelfo, L.; Zhou, Y.; Álvarez-Gallego, C.; Garcia, L.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Hinchliffe, D.; Frommann, J.; Gunsilius, E. Waste to Energy Options in Municipal Solid Waste Management; GIZ: Eschborn, Germany, 2017. [Google Scholar]
- Kusch, S. Understanding and managing the start-up phase in dry anaerobic digestion. In Proceedings of the in Research Conference in Technical Disciplines, Zilina, Slovak Republic, 18–22 November 2013. [Google Scholar]
- Kranert, M.; Kusch-Brandt, S.; Huang, J.; Fischer, K. Anaerobic Digestion of Waste. In Waste to Energy: Opportunities and Challenges for Developing and Transient Economies; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 128–129. [Google Scholar]
- Bosmans, A.; Vanderreydt, I.; Geysen, D.; Helsen, L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: A technology review. J. Clean. Prod. 2013, 55, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Couto, N.D.; Silva, V.B.; Rouboa, A. Thermodynamic evaluation of Portuguese municipal solid waste gasification. J. Clean. Prod. 2016, 139, 622–635. [Google Scholar] [CrossRef]
- Thakare, S.; Nandi, S. Study on potential of gasification technology for municipal solid waste (MSW) in Pune city. Energy Procedia 2016, 90, 509–517. [Google Scholar] [CrossRef]
- Mazzoni, L.; Janajreh, I. Plasma gasification of municipal solid waste with variable content of plastic solid waste for enhanced energy recovery. Int. J. Hydrogen. Energy 2017, 42, 19446–19457. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Rao, N.V.; Rao, G.C.; Priyadarshini, G.; Kumar, N.J. Energy Generation from Municipal Solid Waste by Innovative Technologies–Plasma Gasification. Procedia Mater. Sci. 2015, 10, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef]
- Dong, J.; Tang, Y.; Nzihou, A.; Chi, Y.; Weiss-Hortala, E.; Ni, M.; Zhou, Z. Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. J. Clean. Prod. 2018, 203, 287–300. [Google Scholar] [CrossRef]
- Liu, A.; Ren, F.; Lin, W.Y.; Wang, J.-Y. A review of municipal solid waste environmental standards with a focus on incinerator residues. Int. J. Sustain. Built Environ. 2015, 4, 165–188. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, R.M.; Kumar, D.; Alappat, B.J. A technique to quantify incinerability of municipal solid waste. Resour. Conserv. Recycl. 2019, 140, 286–296. [Google Scholar] [CrossRef]
- Di Nola, M.F.; Escapa, M.; Ansah, J.P. Modelling solid waste management solutions: The case of Campania, Italy. Waste Manag. 2018, 78, 717–729. [Google Scholar] [CrossRef]
- Shekdar, A.V. Sustainable solid waste management: An integrated approach for Asian countries. Waste Manag. 2009, 29, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.d.S.; Fernandino, G. Evaluation of solid waste management sustainability of a coastal municipality from northeastern Brazil. Ocean Coast. Manag. 2019, 179, 104839. [Google Scholar] [CrossRef]
- de Souza Melaré, A.V.; González, S.M.; Faceli, K.; Casadei, V. Technologies and decision support systems to aid solid-waste management: A systematic review. Waste Manag. 2017, 59, 567–584. [Google Scholar] [CrossRef]
- Rana, R.; Ganguly, R.; Gupta, A.K. An assessment of solid waste management system in Chandigarh city, India. Electron. J. Geotech. Eng. 2015, 20, 1547–1572. [Google Scholar]
- Wilson, D.C.; Rodic, L.; Cowing, M.J.; Velis, C.A.; Whiteman, A.D.; Scheinberg, A.; Vilches, R.; Masterson, D.; Stretz, J.; Oelz, B. ‘Wasteaware’benchmark indicators for integrated sustainable waste management in cities. Waste Manag. 2015, 35, 329–342. [Google Scholar] [CrossRef]
- Zaman, A.U. Identification of key assessment indicators of the zero waste management systems. Ecol. Indic. 2014, 36, 682–693. [Google Scholar] [CrossRef]
- Căilean, D.; Teodosiu, C. An assessment of the Romanian solid waste management system based on sustainable development indicators. Sustain. Prod. Consum. 2016, 8, 45–56. [Google Scholar] [CrossRef]
- Rigamonti, L.; Sterpi, I.; Grosso, M. Integrated municipal waste management systems: An indicator to assess their environmental and economic sustainability. Ecol. Indic. 2016, 60, 1–7. [Google Scholar] [CrossRef]
- Fratta, K.D.D.S.A.; Toneli, J.T.d.C.L.; Antonio, G.C. Diagnosis of the management of solid urban waste of the municipalities of ABC Paulista of Brasil through the application of sustainability indicators. Waste Manag. 2019, 85, 11–17. [Google Scholar] [CrossRef]
- Yukalang, N.; Clarke, B.; Ross, K. Solid waste management solutions for a rapidly urbanizing area in Thailand: Recommendations based on stakeholder input. Int. J. Environ. Res. Public Health 2018, 15, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Europe Zero Waste. Waste-to-Energy Is Not Sustainable Business, the EU Says-Policy Briefing; September 2019; Europe, Zero Waste: Brussels, Belgium, 2019. [Google Scholar]
- Rada, E.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. Circular economy and waste to energy. AIP Conf. Proc. 1968, 1, 030050. [Google Scholar]
- Van Fan, Y.; Klemeš, J.J.; Walmsley, T.G.; Bertók, B. Implementing Circular Economy in municipal solid waste treatment system using P-graph. Sci. Total Environ. 2020, 701, 134652. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Wu, S.; Chu, Z.; Huang, W.-C. Regional Differences in Municipal Solid Waste Collection Quantities in China. Sustainability 2019, 11, 4113. [Google Scholar] [CrossRef] [Green Version]
- Nagy, D.; Balogh, P.; Gabnai, Z.; Popp, J.; Oláh, J.; Bai, A. Economic analysis of pellet production in co-digestion biogas plants. Energies 2018, 11, 1135. [Google Scholar] [CrossRef] [Green Version]
- Milutinović, B.; Stefanović, G.; Dassisti, M.; Marković, D.; Vučković, G. Multi-criteria analysis as a tool for sustainability assessment of a waste management model. Energy 2014, 74, 190–201. [Google Scholar] [CrossRef]
- Khandelwal, H.; Dhar, H.; Thalla, A.K.; Kumar, S. Application of life cycle assessment in municipal solid waste management: A worldwide critical review. J. Clean. Prod. 2018, 209, 630–654. [Google Scholar] [CrossRef]
- Morrissey, A.J.; Browne, J. Waste management models and their application to sustainable waste management. Waste Manag. 2004, 24, 297–308. [Google Scholar] [CrossRef]
- Van Den Berg, K.D.; Thuy, C. Solid and Industrial Hazardous Waste Management Assessment: Options and Actions Areas; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Population and Employment. GSOVN (General Statistics Office of Vietnam). Available online: https://www.gso.gov.vn/Default_en.aspx?tabid=766 (accessed on 2 February 2020).
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1994, 24, 19–43. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 2000; Volume 6. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer Science & Business Media: Cham, Switzerland, 2012; Volume 175. [Google Scholar]
- Vučijak, B.; Kurtagić, S.M.; Silajdžić, I. Multicriteria decision making in selecting best solid waste management scenario: A municipal case study from Bosnia and Herzegovina. J. Clean. Prod. 2016, 130, 166–174. [Google Scholar] [CrossRef]
- Jovanovic, S.; Savic, S.; Jovicic, N.; Boskovic, G.; Djordjevic, Z. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management. Waste Manag. 2016, 34, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-P.; Chiueh, P.-T.; Hung, M.-L.; Ma, H.-W. Analyzing policy impact potential for municipal solid waste management decision-making: A case study of Taiwan. Resour. Conserv. Recycl. 2007, 51, 418–434. [Google Scholar] [CrossRef]
- Nixon, J.D.; Dey, P.; Ghosh, S.; Davies, P. Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy 2013, 59, 215–223. [Google Scholar] [CrossRef]
- Herva, M.; Roca, E. Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis. Ecol. Indic. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Contreras, F.; Hanaki, K.; Aramaki, T.; Connors, S. Application of analytical hierarchy process to analyze stakeholders preferences for municipal solid waste management plans, Boston, USA. Resour. Conserv. Recycl. 2008, 52, 979–991. [Google Scholar] [CrossRef]
- Boros, A.; Fogarassy, C. Relationship between Corporate Sustainability and Compliance with State-Owned Enterprises in Central-Europe: A Case Study from Hungary. Sustainability 2019, 11, 5653. [Google Scholar] [CrossRef] [Green Version]
Item | Year 2016 | Year 2018 | Year 2030 | The Direction and Extent of the Changes in the Given Years |
---|---|---|---|---|
Urban population (no.) | 3,699,500 | 4,286,272 | 7,618,293 | Increasing (4–7%/year) |
Rural population (no.) | 3,823,100 | 3,523,369 | 2,158,803 | Decreasing (4%/year) |
Total population (no.) | 7,522,600 | 7,809,641 | 9,777,095 | Annual growth: 1.89% |
Urban DSW generation (t/y) | 1,687,897 | 2,046,284 | 4,773,577 | Increasing |
Rural DSW generation (t/y) | 1,144,254 | 1,103,439 | 887,366 | Decreasing |
Total DSW generation (t/y) | 2,832,151 | 3,149,723 | 5,660,943 | Annual growth: 4.75% |
Urban DSW gen. (kg/cap./day) | 1.25 | 1.31 | 1.72 | Increasing |
Rural DSW gen. (kg/cap./day) | 0.82 | 0.86 | 1.13 | Increasing |
Total DSW gen. (kg/cap./day) | 1.03 | 1.10 | 1.59 | Increasing |
A1 | A2 | … | An | |
---|---|---|---|---|
A1 A2 … An | p1/p1 p2/p1 … pn/p1 | p1/p2 p2/p2 … pn/p1 | … … … … | p1/pn p2/pn … pn/pn |
Alternatives Criteria | A1 (p1…p5) | A2 (p1…p5) | A3 (p1…p5) | A4 (p1…p5) |
---|---|---|---|---|
a. C1 (a1…a4) | a1/p1 | a2/p1 | a3/p1 | a4/p1 |
b. C2 (b1…b4) | b1/p2 | b2/p2 | b3/p2 | b4/p2 |
c. C3 (c1…c4) | c1/p3 | c2/p3 | c3/p3 | c4/p3 |
d. C4 (d1…d4) | d1/p4 | d2/p4 | d3/p4 | d4/p4 |
e. C5 (e1…e4) | e1/p5 | e2/p5 | e3/p5 | e4/p5 |
Intensity of Importance | Definition |
---|---|
1 | Equal importance/preference |
3 | Moderate importance/preference |
5 | Strong importance/preference |
7 | Very Strong importance/preference |
9 | Extreme importance/preference |
2, 4, 6, 8 | Intermediate values of the judgment |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, N.H.; Fogarassy, C. Sustainability Evaluation of Municipal Solid Waste Management System for Hanoi (Vietnam)—Why to Choose the ‘Waste-to-Energy’ Concept. Sustainability 2020, 12, 1085. https://doi.org/10.3390/su12031085
Hoang NH, Fogarassy C. Sustainability Evaluation of Municipal Solid Waste Management System for Hanoi (Vietnam)—Why to Choose the ‘Waste-to-Energy’ Concept. Sustainability. 2020; 12(3):1085. https://doi.org/10.3390/su12031085
Chicago/Turabian StyleHoang, Nguyen Huu, and Csaba Fogarassy. 2020. "Sustainability Evaluation of Municipal Solid Waste Management System for Hanoi (Vietnam)—Why to Choose the ‘Waste-to-Energy’ Concept" Sustainability 12, no. 3: 1085. https://doi.org/10.3390/su12031085
APA StyleHoang, N. H., & Fogarassy, C. (2020). Sustainability Evaluation of Municipal Solid Waste Management System for Hanoi (Vietnam)—Why to Choose the ‘Waste-to-Energy’ Concept. Sustainability, 12(3), 1085. https://doi.org/10.3390/su12031085