Spatial Planning of Green Infrastructure for Mitigation and Adaptation to Climate Change at a Regional Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Ecosystem Services
- -
- More frequent extreme precipitation events in northern and continental Europe, which will increase erosive processes and floods.
- -
- Increased drought and wildfire risk in the south of Europe.
- -
- Leaching of soil nutrients and pollutants in northern and continental Europe due to an increase in winter precipitation, which will lead to water pollution, poorer water quality, and reduced soil fertility.
- -
- Increased incidence of forest and agriculture pests and diseases.
- -
- Changes in ecosystems and in the composition of animal and plant populations. In southern Europe, these changes may lead to a decrease in biodiversity and to homogenization of populations. As a consequence, ESS such as pollination, pest control, and biodiversity may be affected.
- -
- 2.1.1.2 Filtration/sequestration/storage/accumulation of pollutants by microorganisms, algae, plants and animals.
- -
- 2.2.1.1 Control of erosion rates.
- -
- 2.2.1.3 Regulation of hydrological cycle and water flow (including flood control)
- -
- 2.2.1.5 Fire protection.
- -
- 2.2.2.1 Pollination.
- -
- 2.2.2.3 Maintenance of breeding populations and habitats (including the protection of the genetic pool).
- -
- 2.2.3.1 Pest control.
- -
- 2.2.6.1 Regulation of the chemical composition of the atmosphere and the oceans.For the purposes of the present study, ESS 2.2.6.1 was split into 3 ESS depending on the capacity of the ecosystems to capture and store carbon in the mid and long term:
- -
- Carbon capture: Capacity of vegetation to capture carbon in tissues for less than 20 years.
- -
- Mid-term carbon storage: Capacity of ecosystems to capture and store carbon for 20–150 years.
- -
- Long-term carbon storage: Capacity of ecosystems to capture and store carbon for more than 150 years.
2.3. Mapping of ESS Provision Potential
2.3.1. Materials
- -
- Digital terrain model of the IGN (Spanish National Geographic Institute) provided in raster format with a resolution of 25 × 25 m
- -
- Average annual precipitation raster map, of resolution 100 × 100 m, which was obtained by 3D interpolation of meteorological data from 129 meteorological stations, reported by Martínez Cortizas et al. [55]. The 3D interpolation was carried out with the v.vol.rst module of GRASS GIS 6.3.1 software by using the DEM derived from the Shuttle Radar Topography Mission with a cell size of 100 × 100 m as the starting point.
- -
- Average annual temperature raster map of resolution 100 × 100 m, obtained by 3D interpolation of meteorological data from 129 meteorological stations, as reported by Martínez Cortizas et al. [55].
- -
- A solar irradiance raster map, of resolution 2 × 2 m, provided by the Galician Institute for Regional Planning Studies, which forms part of the Galician Regional Ministry of Environment, Territory and Housing.
- -
- An erosion risk raster map, of resolution 25 × 25 m, constructed, by the INES (Spanish National Survey on Soil Erosion), using the Universal Soil Loss Equation (USLE) and provided by the Spanish Ministry of Agriculture, Fisheries and Food.
- -
- The 2012 Spanish Survey of Terrestrial Species from the Spanish Ministry of Ecological Transition, which uses a grid of cells of 10 × 10 km.
- -
- The Lithological Map of Galicia, scale 1:50,000, provided by the Galician Institute for Regional Planning Studies, which forms part of the Galician Regional Ministry of Environment, Territory, and Housing.
- -
- Cartography on bogs, wet shrublands, and dry shrublands provided by the Institute of Agricultural Biodiversity and Rural Development (IBADER) of the University of Santiago de Compostela.
- -
- Vector map of flood plains for a return period of 100 years provided by the Spanish Ministry of Ecological Transition.
- -
- Raster map of soil sand content, of resolution 500 × 500 m, extracted from a study of the Spanish National Institute of Agriculture Research (INIA) on the occurrence of heavy metals in agriculture soils [56].
2.3.2. Methods
2.3.3. Regulation of the Hydrological Cycle
+ normalized TWI × 0.35 + normalized soil sand % × 0.15 + flood plains × 0.15
2.3.4. Fire Protection
normalized irradiance × 0.2 + normalized precipitation × 0.1
2.3.5. Pollination
2.3.6. Maintenance of Breeding Populations/Habitats and Pest Control
2.4. Delimitation of Multifunctional GI Zones
3. Results
3.1. Maps of ESS Provision Potential
3.2. Delineation of Multifunctional Buffer Zones
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- European Commission Communication of the Commission to the European Parliament, the Council, the European Economic and Social Committeee and the Committee of the Regions. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives 2020. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2020/EN/COM-2020-380-3-EN-MAIN-PART-1.PDF (accessed on 25 November 2020).
- Naumann, S.; Anzaldua, G.; Berry, P.; Burch, S.; McKenna, D.; Frelih-Larsen, A.; Gerdes, H.; Sanders, M. Assessment of the Potential of Ecosystem-Based Approaches to Climate Change Adaptation and Mitigation in Europe. Final report to the European Commission, DG Environment, Contract No. 070307/2010/580412/SER/B2, Ecologic institute and Environmental Change Institute, Oxford University Centre for the Environment. 2011. Available online: https://ec.europa.eu/environment/nature/climatechange/pdf/EbA_EBM_CC_FinalReport.pdf (accessed on 16 December 2020).
- European Commission Communication of the Commission to the European Parliament, the Council, the European Economica and Social Committee and the Committee of the Regions: Green Infrastructure (GI) —Enhancing Europe’s Natural Capital 2013. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 25 November 2020).
- Rosenberg, E. Public Works and Public Space: Rethinking the Urban Park. J. Archit. Educ. 1996, 50, 89–103. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006; ISBN 978-1-59726-027-5. [Google Scholar]
- Wright, H. Understanding green infrastructure: The development of a contested concept in England. Local Environ. 2011, 16, 1003–1019. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green infrastructure: Smart conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- DB Advisors. Economic Stimulus: The Case of “Green” Infrastructure, Energy Security and “Green” Jobs. Available online: http://www.dbadvisors.com/content/_media/1113_GreenEconomicEstimulus.pdf (accessed on 5 May 2010).
- Plymouth City Council. Plymouth’s Green Infrastructure Delivery Plan 2010. Available online: https://www.plymouth.gov.uk/sites/default/files/GreenInfrastructurePlan.pdf (accessed on 24 November 2020).
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemelä, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Ahern, J. Green infrastructure for cities: The spatial dimention. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; Novotny, V., Brown, P., Eds.; IWA Publishing: London, UK, 2007; pp. 267–283. [Google Scholar]
- Kambites, C.; Owen, S. Renewed prospects for green infrastructure planning in the UK 1. Plan. Pr. Res. 2006, 21, 483–496. [Google Scholar] [CrossRef]
- ECOTEC. City Region Green Infrastructure Strategic Planning: Raising the Quality of the North’s City Regions. Available online: http://www.thenorthernway.co.uk/downloaddoc.asp?id=545 (accessed on 29 May 2010).
- Collinge, G. Valuing green infrastructure: Developing a toolbox. In Presentation at the Yorkshire Conference Series: Green Space, Green Belt and Green Infrastructure; Royal Town Planning Institute (RTPI): Leeds, UK, 2010. [Google Scholar]
- European Commission. Green Infrastructure and Climate Adaptation. Available online: https://ec.europa.eu/environment/nature/ecosystems/pdf/Green%20Infrastructure/GI_climate_adaptation.pdf (accessed on 24 November 2020).
- Mell, I.C. Can you tell a green field from a cold steel rail? Examining the “green” of Green Infrastructure development. Local Environ. 2013, 18, 152–166. [Google Scholar] [CrossRef]
- Mell, I.C.; Henneberry, J.; Hehl-Lange, S.; Keskin, B. Promoting urban greening: Valuing the development of green infrastructure investments in the urban core of Manchester, UK. Urban For. Urban Green. 2013, 12, 296–306. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Sussams, L.W.; Sheate, W.R.; Eales, R.P. Green infrastructure as a climate change adaptation policy intervention: Muddying the waters or clearing a path to a more secure future? J. Environ. Manag. 2015, 147, 184–193. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.Y.; Byrne, J.A. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Snäll, T.; Lehtomäki, J.; Arponen, A.; Elith, J.; Moilanen, A. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. Environ. Manag. 2016, 57, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J.; et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl. Acad. Sci. USA 2015, 112, 7390–7395. [Google Scholar] [CrossRef] [Green Version]
- Ruckelshaus, M.; McKenzie, E.; Tallis, H.; Guerry, A.; Daily, G.; Kareiva, P.; Polasky, S.; Ricketts, T.; Bhagabati, N.; Wood, S.A.; et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 2015, 115, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- Schägner, J.P.; Brander, L.; Maes, J.; Hartje, V. Mapping ecosystem services’ values: Current practice and future prospects. Ecosyst. Serv. 2013, 4, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales. Environ. Res. Lett. 2015, 10, 094014. [Google Scholar] [CrossRef]
- Maes, J.; Crossman, N.D.; Burkhard, B. Mapping ecosystem services. In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2016; pp. 188–204. [Google Scholar]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Portman, M.E. Ecosystem services in practice: Challenges to real world implementation of ecosystem services across multiple landscapes—A critical review. Appl. Geogr. 2013, 45, 185–192. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Geneletti, D.; Zardo, L. Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53750-4. [Google Scholar]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Forest fragments modulate the provision of multiple ecosystem services. J. Appl. Ecol. 2014, 51, 909–918. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Q.; Li, X.; Huang, X.; Wu, J. A GIS-based Green Infrastructure Planning for Sustainable Urban Land Use and Spatial Development. Procedia Environ. Sci. 2012, 12, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana. Sci. Total Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Kopperoinen, L.; Itkonen, P.; Niemelä, J. Using expert knowledge in combining green infrastructure and ecosystem services in land use planning: An insight into a new place-based methodology. Landsc. Ecol. 2014, 29, 1361–1375. [Google Scholar] [CrossRef]
- Dige, G.; Liquete, C.; Kleeschulte, S.; Banko, G.; European Environment Agency; European Topic Centre for Spatial Information and Analysis (ETC/SIA). Spatial Analysis of Green Infrastructure in Europe; Publications Office: Luxembourg, 2014; ISBN 978-92-9213-421-1. [Google Scholar]
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- Hu, H.; Fu, B.; Lü, Y.; Zheng, Z. SAORES: A spatially explicit assessment and optimization tool for regional ecosystem services. Landsc. Ecol. 2015, 30, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Vallecillo, S.; Polce, C.; Barbosa, A.; Castillo, C.P.; Vandecasteele, I.; Rusch, G.M.; Maes, J. Spatial alternatives for Green Infrastructure planning across the EU: An ecosystem service perspective. Landsc. Urban Plan. 2018, 174, 41–54. [Google Scholar] [CrossRef]
- Schröter, M.; Remme, R.P. Spatial prioritisation for conserving ecosystem services: Comparing hotspots with heuristic optimisation. Landsc. Ecol. 2016, 31, 431–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanish Directorate General for Cadastre Cadastral Statistics. Technical Report; Ministry of Treasury and Economics: Madri, Spain, 2010.
- Spanish National Institute of Statistics Nomenclator. Available online: https://www.ine.es/nomen2/index.do (accessed on 15 December 2020).
- Spanish National Geographic Institute. Database of Administrative Divisions of Spain. Available online: https://datos.gob.es/gl/catalogo/e00125901-spaignllm (accessed on 15 December 2020).
- Corbelle-Rico, E.; Crecente-Maseda, R. Urbanización, forestación e abandono. Cambios recentes na paisaxe de Galicia, 1985–2005. Revista Galega de Economía 2014, 23, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Bas López, S.; Guitián Rivera, J.; Sobral, M. Biodiversidad en plantaciones de eucalipto y en robledales del sur de Galicia: Plantas y aves. Nova Acta Científica Compostelana Bioloxía 2018, 25, 71–81. [Google Scholar]
- Macías, F.; Calvo de Anta, R.; Rodríguez Lado, L.; Verde, R.; Pena Pérez, X.; Camps Arbestain, M. El sumidero de carbono de los suelos de Galicia. Edafología 2004, 11, 341–376. [Google Scholar]
- Álvarez, V.; Taboada, J.; Lorenzo, M. Cambio climático en Galicia en el siglo XXI: Tendencias y variabilidad en temperaturas y precipitaciones. Revista Avances en Ciencias de la Tierra 2011, 2, 65–85. [Google Scholar]
- Barreal, J.; Loureiro, M.L.; Picos, J. Estudio de la causalidad de los incendios forestales en Galicia. Economía Agraria y Recursos Naturales 2012, 12, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; European Environemnt Agency: Copenhaguen, Denmark, 2018. [Google Scholar]
- Martínez Cortizas, A.; Pérez Alberti, A. Atlas climático de Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 1999.
- Rodríguez Martín, J.A.; López Arias, M.; Grau Corbí, J.M. Metales Pesados, Materia Orgánica y Otros Parámetros de Los Suelos Agrícolas y Pastos de España; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2009; ISBN 978-84-491-0980-5. [Google Scholar]
- García, A.M.; Santé, I.; Loureiro, X.; Miranda, D. Green infrastructure spatial planning considering ecosystem services assessment and trade-off analysis. Application at landscape scale in Galicia region (NW Spain). Ecosyst. Serv. 2020, 43, 101115. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes‘ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landsc. Online 2010, 15, 1–22. [Google Scholar] [CrossRef]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Proença, V.; Pereira, H.M.; Vicente, L. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecologica 2010, 36, 626–633. [Google Scholar] [CrossRef]
- González, J.R.; Palahí, M.; Trasobares, A.; Pukkala, T. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. For. Sci. 2006, 63, 169–176. [Google Scholar] [CrossRef]
- Makowski, K.; Jaeger, E.B.; Chiacchio, M.; Wild, M.; Ewen, T.; Ohmura, A. On the relationship between diurnal temperature range and surface solar radiation in Europe. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Creed, I.F.; Sass, G.Z. Digital Terrain Analysis Approaches for Tracking Hydrological and Biogeochemical Pathways and Processes in Forested Landscapes. In Forest Hydrology and Biogeochemistry; Levia, D.F., Carlyle-Moses, D., Tanaka, T., Eds.; Ecological Studies Volume 216; Springer: Dordrecht, The Netherlands, 2011; pp. 69–100. ISBN 978-94-007-1362-8. [Google Scholar]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Pollinator Abundance: Crop Pollination (INVEST). Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/croppollination.html (accessed on 24 November 2020).
- Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient. Ecol. Appl. 2010, 20, 1678–1692. [Google Scholar] [CrossRef]
- Carré, G.; Roche, P.; Chifflet, R.; Morison, N.; Bommarco, R.; Harrison-Cripps, J.; Krewenka, K.; Potts, S.G.; Roberts, S.P.M.; Rodet, G.; et al. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric. Ecosyst. Environ. 2009, 133, 40–47. [Google Scholar] [CrossRef]
- Potts, S.G.; Vulliamy, B.; Roberts, S.; O’Toole, C.; Dafni, A.; Ne’eman, G.; Willmer, P. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 2005, 30, 78–85. [Google Scholar] [CrossRef]
- Olivero, J.; Toxopeus, A.G.; Skidmore, A.K.; Real, R. Testing the efficacy of downscaling in species distribution modelling: A comparison between MaxEnt and Favourability Function models. Anim. Biodivers. Conserv. 2016, 39, 99–114. [Google Scholar] [CrossRef]
- Keil, P.; Belmaker, J.; Wilson, A.M.; Unitt, P.; Jetz, W. Downscaling of species distribution models: A hierarchical approach. Methods Ecol. Evol. 2013, 4, 82–94. [Google Scholar] [CrossRef]
- Keil, P.; Jetz, W. Downscaling the environmental associations and spatial patterns of species richness. Ecol. Appl. 2014, 24, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Consul, P.C.; Famoye, F. Generalized poisson regression model. Commun. Stat. Theory Methods 1992, 21, 89–109. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002. Available online: https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 25 November 2020).
- Civantos, E.; Thuiller, W.; Maiorano, L.; Guisan, A.; Araújo, M.B. Potential Impacts of Climate Change on Ecosystem Services in Europe: The Case of Pest Control by Vertebrates. BioScience 2012, 62, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Xunta de Galicia, Consellaría de Medio Ambiente, Territorio e Vivenda. Catálogo das Paisaxes de Galicia. Available online: https://cmatv.xunta.gal/seccion-organizacion/c/CMAOT_Instituto_Estudos_Territorio?content=Direccion_Xeral_Sostibilidade_Paisaxe/Catalogo_paisaxe_galicia/seccion.html&std=Descarga.html (accessed on 24 November 2020).
- Walz, U.; Syrbe, R.-U.; Grunewald, K. Where to map? In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 159–165. ISBN 978-954-642-829-5. [Google Scholar]
Land Cover Type | Fire Protection | Hydro. Cycle Reg. | Pollination (RA) | Pollination (HN) |
---|---|---|---|---|
Bare rock | 1 | 0 | 0 | 1 |
Bodies of continental water | 1 | 0.2 | 0 | 0 |
Bodies of salt water | 1 | 0.2 | 0 | 0 |
Cliffs | 1 | 0 | 0 | 1 |
Artificial land cover | 0 | 0 | 0 | 1 |
Coniferous forest | 0.1 | 0.6 | 0.3 | 0 |
Crops & fields | 0.9 | 0.2 | 0.7 | 0.7 |
Crops | 0.9 | 0.2 | 0.3 | 1 |
Deciduous forest | 0.6 | 0.8 | 0.8 | 1 |
Eucalyptus plantations | 0.3 | 0.6 | 0.3 | 0 |
Eucalyptus & conif. | 0.1 | 0.6 | 0.4 | 0 |
Wetlands | 1 | 1 | 0 | 0 |
Sport facilities | 0 | 0 | 0 | 0 |
Shrub land | 0.6 | 0.4 | 1 | 0.3 |
Shrubs and trees | 0.1 | 0.4 | 0.8 | 0,5 |
Shrubs and rocks | 0.7 | 0.2 | 0.7 | 0.5 |
Mixed forests | 0.5 | 0.6 | 0.8 | 1 |
Crops & shrubs | 0.7 | 0.2 | 0.7 | 0.5 |
Crops & urban | 1 | 0.2 | 0.3 | 1 |
Crops & trees | 0.7 | 0.2 | 0.5 | 0.7 |
Fields | 0.9 | 0.2 | 1 | 0.5 |
Beaches | 1 | 0 | 0 | 1 |
Afforested land | 0.2 | 0.2 | 0.3 | 0.5 |
Transportation inf. | 0 | 0 | 0 | 0 |
Landfill | 0 | 0 | 0 | 1 |
Vine yards & woody crops | 0.7 | 0.2 | 0.3 | 0.5 |
Mineral extraction sites | 0 | 0 | 0 | 1 |
Burnt areas | 0 | 0 | 0 | 1 |
Urban areas | 0 | 0 | 0 | 1 |
Urban green areas | 0.7 | 0.2 | 0.8 | 0.5 |
SIOSE 2014 Land Cover Categories | Grouped Land Cover Type |
---|---|
Agriculture and urban, urban green areas | Semi-natural areas |
Bushes and trees | Shrubs with trees |
Bush land, bushes and rocks | Shrubs |
Sport facilities, transportation infrastructure, landfills, mineral extraction sites, urban areas, artificial land cover | Artificial land cover |
Deciduous forest, mixed forest | Forests |
Crops, vine yards and woody crops. | Agriculture |
Agriculture land and bushes, agriculture land and trees, fields | Low intensity agriculture |
Coniferous forests, eucalyptus plantations, mixed eucalyptus and coniferous forests, forested land. | Productive forest |
Continental water bodies, salt water bodies, wetlands | Wetland |
Bare rock, cliffs, beaches, burnt areas | Barren land |
ESS: Filtration | ESS: Erosion | ||
Land Cover Type | Avg. Provision pot. | Land Cover Type | Avg. Provision pot. |
Deciduous forest | 0.55 | Mixed forest | 0.91 |
Mixed forest | 0.53 | Deciduous forest | 0.90 |
Shrubs and trees | 0.42 | Eucalyptus plantations | 0.84 |
Eucalyptus & conif. | 0.42 | Eucalyptus & conif. | 0.83 |
Eucalyptus plantations | 0.42 | Coniferous forest | 0.81 |
ESS: Hydrological cycle reg. | ESS: Carbon capture | ||
Land cover type | Avg. provision pot. | Land cover type | Avg. provision pot. |
Wetland | 0.64 | Eucalyptus plantations | 0.93 |
Beaches | 0.54 | Afforested land | 0.62 |
Deciduous forest | 0.52 | Eucalyptus & conif. | 0.62 |
Eucalyptus plantations | 0.44 | Mixed forest | 0.45 |
Mixed forests | 0.43 | Coniferous forest | 0.29 |
ESS: Fire protection | ESS: Pollination | ||
Land cover type | Avg. provision pot. | Land cover type | Avg. provision pot. |
Crops & urban | 0.94 | Bare rock | 0.59 |
Bare rock | 0.94 | Deciduous forests | 0.52 |
Crops | 0.93 | Crops | 0.49 |
Wetlands | 0.93 | Mixed forests | 0.48 |
Crops & fields | 0.92 | Crops & urban | 0.45 |
ESS: Long-term carbon storage | ESS: Short-term carbon storage | ||
Land cover type | Avg. provision pot. | Land cover | Avg. provision pot. |
Wetland | 0.69 | Deciduous forest | 0.79 |
Bodies of salt water | 0.52 | Wetland | 0.48 |
Bare rock | 0.36 | Coniferous forest | 0.43 |
Shrubs and rocks | 0.33 | Mixed forest | 0.42 |
Afforested land | 0.32 | Shrubs and rocks | 0.42 |
ESS: Breeding populations | ESS: Pest control | ||
Land cover type | Avg. provision pot. | Land cover | Avg. provision pot. |
Bodies of continental water | 0.81 | Wetland | 0.74 |
Bodies of salt water | 0.81 | Bodies of salt water | 0.73 |
Wetland | 0.81 | Bodies of continental water | 0.71 |
Crops & urban | 0.80 | Bare rock | 0.67 |
Beaches | 0.79 | Beaches | 0.67 |
Land Cover Type | Average ESS Provision Potential |
Deciduous forest | 0.551 |
Mixed forest | 0.526 |
Eucalyptus plantations | 0.464 |
Wetland | 0.445 |
Eucalyptus and coniferous | 0.440 |
Coniferous forest | 0.426 |
Shrubland | 0.423 |
Shrubs and trees | 0.404 |
Afforested land | 0.401 |
Great Landscape Area | ED SIOSE Land Cover Types | FRAC_MN Multifunctional Buffer Areas |
---|---|---|
Lugo flats and trenches | 118.2 | 1.18 |
Western flats and trenches | 100.02 | 1.14 |
Ourense flats and trenches | 87.69 | 1.15 |
Central Galicia | 113.06 | 1.16 |
Northern Galicia | 89.36 | 1.15 |
Artabric gulf | 116.88 | 1.16 |
A Mariña and Eo | 79.26 | 1.14 |
Miño Sil | 106.66 | 1.16 |
Rías Baixas | 114.23 | 1.18 |
Eastern ranges | 101.78 | 1.2 |
Southeastern ranges | 87.78 | 1.16 |
South Miño | 118.49 | 1.19 |
Average ESS Provision Potential | |
---|---|
Core areas | 0.49 |
Corridors | 0.50 |
Multifunctional buffer zones | 0.59 |
Areas outside GI | 0.45 |
Breeding Populations | Pest Control | Long-Term Carbon Storage | Fire Protection | |
---|---|---|---|---|
Core areas | 0.78 | 0.64 | 0.34 | 0.88 |
Corridors | 0.78 | 0.65 | 0.34 | 0.89 |
Multifunctional buffer areas | 0.77 | 0.62 | 0.29 | 0.89 |
Areas outside GI | 0.75 | 0.61 | 0.29 | 0.89 |
Carbon capture | Hydrological cycle | Erosion | Filtration | |
Core areas | 0.11 | 0.37 | 0.66 | 0.34 |
Corridors | 0.13 | 0.39 | 0.68 | 0.37 |
Multifunctional buffer areas | 0.27 | 0.45 | 0.92 | 0.49 |
Areas outside GI | 0.19 | 0.34 | 0.61 | 0.27 |
Pollination | Short-term carbon storage | |||
Core areas | 0.35 | 0.42 | ||
Corridors | 0.36 | 0.46 | ||
Multifunctional buffer areas | 0.54 | 0.63 | ||
Areas outside GI | 0.29 | 0.27 |
% Cover in Multifunctional Buffer Zones | |
---|---|
Deciduous forest | 47.87% |
Mixed forest | 41.49% |
Shrubland | 4.8% |
Crops and fields | 1.08% |
Crops | 0.89% |
Zone | Area (ha) | Area (%) |
---|---|---|
Core areas | 358,895 | 12.14 |
Corridors | 263,254 | 8.90 |
Multifunctional zones | 116,742 | 3.95 |
Total GI | 738,891 | 24.99 |
Galicia | 2,957,127 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, A.M.; Santé, I.; Loureiro, X.; Miranda, D. Spatial Planning of Green Infrastructure for Mitigation and Adaptation to Climate Change at a Regional Scale. Sustainability 2020, 12, 10525. https://doi.org/10.3390/su122410525
García AM, Santé I, Loureiro X, Miranda D. Spatial Planning of Green Infrastructure for Mitigation and Adaptation to Climate Change at a Regional Scale. Sustainability. 2020; 12(24):10525. https://doi.org/10.3390/su122410525
Chicago/Turabian StyleGarcía, Andrés M., Inés Santé, Xurxo Loureiro, and David Miranda. 2020. "Spatial Planning of Green Infrastructure for Mitigation and Adaptation to Climate Change at a Regional Scale" Sustainability 12, no. 24: 10525. https://doi.org/10.3390/su122410525
APA StyleGarcía, A. M., Santé, I., Loureiro, X., & Miranda, D. (2020). Spatial Planning of Green Infrastructure for Mitigation and Adaptation to Climate Change at a Regional Scale. Sustainability, 12(24), 10525. https://doi.org/10.3390/su122410525