Urban Horticulture for Food Secure Cities through and beyond COVID-19
Abstract
:1. Introduction
- RQ1: what are the socioeconomic features of urban horticulture?
- RQ2: what are the traditional and innovative sustainable crop production approaches that can be used in urban horticulture?
- RQ3: how can information technology (IT) play a role in providing fresh food supply during (and beyond) COVID-19?
2. Materials and Methods
- (1)
- Significant features of urban horticulture;
- (2)
- Traditional and innovative cropping systems used in urban horticulture;
- (3)
- Modern cropping systems;
- (4)
- Smart cities and urban horticulture.
3. Results and Discussion
3.1. Significant Features of Urban Horticulture
3.1.1. Source of Income Generation
3.1.2. Control of Environmental Pollution and Waste Management
3.1.3. Ensures Food Supply and Sustainability in the Era of COVID-19 and beyond
3.1.4. Food Security
City/Country | Horticulture Products Grown | Land Utilized | References |
---|---|---|---|
Havana/Cuba | Vegetables (beans, tomatoes, lettuce, okra, eggplant) Fruits (Papaya, pineapple, avocado, guava, coconut) | Community gardens, vacant spaces, green spaces, parking, highways, rooftops | [50] |
Jakarta/Indonesia | Cabbages, ginger, chilies, pineapples, and mangoes | Vacant land, uneven spaces, riverside, roadside, and coastal lands | [52] |
Rubi/Spain | Tomatoes and green houses | Rooftops | [53] |
Munich/Germany | White cabbages, grapes, and apples | Green spaces, building facades, rooftops, and car parking | [46] |
Boston/USA | Dark green vegetables and fruit trees (according to climate and cultural practices) | Vacant residential areas, vacant commercial areas, and rooftops | [43] |
Montreal/Canada | Vegetables (according to climate and consumer preferences) | Vacant spaces, residential gardens and rooftops | [16] |
Toronto/Canada | Summer vegetables | Residential gardens and rooftops | [54] |
London/UK | Strawberries, lettuce | Farmlands, private gardens, and small plots | [52] |
Maputo/Mozambique | Lettuce, kale, cabbages, tomatoes, and carrots | Green belts and small plots | [55] |
New Town/Singapore | Vegetables and hydroponic products | Rooftops and public buildings | [44] |
3.1.5. Improvement of Climate and Microclimate
3.1.6. Conservation of Biodiversity
3.1.7. Source of Recreation and Reduction of Gender Inequality
3.1.8. Self-Reliance and Land Management of Cities
3.1.9. Public Health
4. Traditional and Innovative Cropping Systems Used in Urban Horticulture
4.1. Home Gardening
4.2. Community Gardens
4.3. Urban Edible Horticulture Landscape
5. Modern Cropping Systems
5.1. Indoor Growing Systems—Overview
5.2. Living Edible Wall or Vertical Gardening
5.3. Rooftop Gardens and Greenhouses
5.4. Use of Soilless Culture
5.4.1. Hydroponics
5.4.2. Aeroponics
5.4.3. Aquaponics
5.4.4. Organoponics
6. Smart Cities and Urban Horticulture
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suman, M. Urban Horticulture Prospective to Secure Food Provisions in Urban and Peri-Urban Environments. Int. J. Pure Appl. Biosci. 2019, 7, 133–140. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- UN–United Nations. UN Press Release. 2013. Available online: http://esa.un.org/wpp/Documentation/pdf/WPP2012_Press_Release.pdf (accessed on 10 October 2020).
- Nwosisi, S.; Nandwani, D. Urban horticulture: Overview of recent developments. In Urban Horticulture, Sustainable Development and Biodiversity; Nandwani, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–29. [Google Scholar]
- Wheeler, T.; Braun, J.V. Climate Change impacts on global food security. Science 2013, 134, 508–513. [Google Scholar] [CrossRef]
- Fanelli, R.M.; Romagnol, L. Annual food waste per capita as influenced by geographical variations. Riv. Studi Sulla Sostenibilità 2019. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Beltrami, S. How to Minimize the Impact of Coronavirus on Food Security. 2020. Available online: https://insight.wfp.org/how-to-minimize-the-impact-of-coronavirus-on-food-security-be2fa7885d7e (accessed on 16 March 2020).
- Madagow, C.D.C. Food Security and the Corona Virus. Health Express. 2020. Available online: https://www.orfonline.org/expert-speak/food-security-and-the-corona-virus-64185/ (accessed on 6 April 2020).
- Chandran, R. ANALYSIS-Urban Farms to Traffic Bans: Cities Prep for Post-Coronavirus Future. Thomson Reuters Foundation. 2020. Available online: https://news.trust.org/item/20200421073605-d7mba (accessed on 21 April 2020).
- Jawaharlal, M.; Kumar, C.S.R. Innovation in Roof Top and Terrace Gardening. In Urban and Peri-Urban Horticulture-A Perspective; Sumangla, H.P., Malhotra, S.K., Chowdappa, P., Eds.; Confederation of Horticulture Associations of India: New Delhi, India, 2013; pp. 12–15. [Google Scholar]
- Chandran, R. Urban Farming Flourishes in Coronavirus Lockdowns. 2020. Available online: https://www.hortidaily.com/article/9208403/urban-farming-flourishes-in-coronavirus-lockdowns/ (accessed on 16 April 2020).
- Dubbeling, M.; Zeeuw, D.H.; Veenhuizen, V.R. Cities, Poverty and Food Multi-Stakeholder Policy and Planning in Urban Agriculture; RUAF Foundation: Rugby, UK, 2010; p. 152. [Google Scholar]
- Tenkouano, A. The nutritional and economic potential of vegetables. In The World Watch Institute, State of the World 2011: Innovations that Nourish the Planet; Norton, W.W., Ed.; W.W Norton & Company: New York, NY, USA; London, UK, 2011; pp. 27–37. [Google Scholar]
- Nugent, R. The impact of urban agriculture on the household and local economies. Themat. Paper. 2000, 3, 67–97. [Google Scholar]
- Haberman, D.; Gillies, L.; Canter, A.; Rinner, V.; Pancrazi, L.; Martellozzo, F. The Potential of Urban Agriculture in Montréal: A Quantitative Assessment. ISPRS Int. J. Geo Inform. 2014, 3, 1101–1117. [Google Scholar] [CrossRef] [Green Version]
- Artmann, M.; Sartison, K. The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Hardman, M.; Larkham, P.J. The rise of the ‘food charter’: A mechanism to increase urban agriculture. Land Use Policy 2014, 39, 400–402. [Google Scholar] [CrossRef]
- Martellozzo, F.; Landry, J.-S.; Plouffe, D.; Seufert, V.; Rowhani, P.; Ramankutty, N. Urban agriculture: A global analysis of the space constraint to meet urban vegetable demand. Environ. Res. Lett. 2014, 9, 064025. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- De Bon, H.; Parrot, L.; Moustier, P. Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 2010, 30, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, E.; Nijkamp, P.; De Noronha, T. The multifunctional use of urban greenspace. Int. J. Agric. Sustain. 2010, 8, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Zezza, A.; Tasciotti, L. Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food Policy 2010, 35, 265–273. [Google Scholar] [CrossRef]
- Cofie, O.; Kranjac-Berisavljevic, G.; Drechsel, P. The use of human waste for peri-urban agriculture in Northern Ghana. Renew. Agric. Food Syst. 2005, 20, 73–80. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Mok, H.-F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? Urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Galhena, D.H.; Freed, R.; Maredia, K.M. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Kekana, D.S. A Social Economic Analysis of Urban Agriculture: The Soshanguve Case Study. 2006. Available online: http://upetd.up.ac.za/thesis/available/etd-08272007-154407 (accessed on 10 October 2020).
- Harris, T.B.; Manning, W.J. Nitrogen dioxide in the urban forest. Acta Hortic. 2010, 881, 505–509. [Google Scholar]
- Gomez, C.; Currey, C.J.; Dickson, R.W.; Kim, H.J.; Hernandez, R.; Sabeh, N.C.; Raudales, R.E.; Brumfield, R.G.; Laury-Shaw, A.; Wilke, A.K.; et al. Controlled Environment Food Production for Urban Agriculture. HortScience 2019, 54, 1448–1458. [Google Scholar] [CrossRef]
- Fanelli, R.M.; Di Nocera, A. How to implement new educational campaigns against food waste: An analysis of best practices in European Countries. Econ. Agro Aliment. 2017, 19, 223–244. [Google Scholar] [CrossRef]
- Thyberg, K.L.; Tonjes, D.J. Drivers of food waste and their implications for sustainable policy development. Resour. Conserv. Recycl. 2016, 106, 110–123. [Google Scholar] [CrossRef]
- Orsini, F.; Michelon, N.; Scocozza, F.; Gianquinto, G. Farmers-to-consumers: An example of sustainable soilless horticulture in urban and peri-URBAN areas. Acta Hortic. 2009, 809, 209–220. [Google Scholar] [CrossRef]
- Buechler, S.; Mekala, G.D.; Keraita, B. Wastewater use for urban and peri-urban agriculture. In Cities Farming for the Future. Urban Agriculture for Sustainable Cities; Veenhuizen, V.R., Ed.; RUAF Foundation: Ottawa, ON, Canada, 2006; pp. 241–272. [Google Scholar]
- Smit, J.; Bailkey, M. Urban Agriculture and the Building of Communities. In Cities Farming for the Future. Urban Agriculture for Sustainable Cities; Veenhuizen, V.R., Ed.; RUAF Foundation: Ottawa, ON, Canada, 2006; pp. 145–170. [Google Scholar]
- Aprilia, A.; Tezuka, T.; Spaargaren, G. Inorganic and hazardous solid waste management: Current status and challenges for Indonesia. Procedia Environ. Sci. 2013, 17, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Kessler, A.; Helbig, J. Adding value to compost from urban household and market refuse in Lomé. In Waste Composting for Urban and Peri-Urban Agriculture: Closing the Rural Urban Nutrient Cycle in Sub-Saharan Africa; Drechesel, P., Kunze, D., Eds.; IWMI and FAO: Wallingford, CT, USA; Oxon, UK, 2001; pp. 133–136. [Google Scholar]
- Kumar, K.; Hundal, L.S. Soil in the City: Sustainably Improving Urban Soils. J. Environ. Qual. 2016, 45, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.L.; Chaney, R.L.; Hettiarachchi, G.M. Lead in urban soils: A real or perceived concern for urban agriculture? J. Environ. Qual. 2016, 45, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Urban Food Systems and COVD-19: The Role of Cities and Local Governments in Responding to the Emergency; FAO: Rome, Italy, 2020; pp. 1–6. Available online: https://doi.org/10.4060/ca8600en (accessed on 26 April 2020).
- Dutt, A. The Future of Food in Cities: Urban Agriculture. 2020. Available online: http://www.ipsnews.net/2016/07/the-future-of-food-in-cities-urban-agriculture/ (accessed on 11 October 2020).
- Food and Agriculture Organization of the United Nations. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)–Managing Systems at Risk; FAO: Rome, Italy; Earthscan: London, UK, 2011. [Google Scholar]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Astee, L.Y.; Kishnani, N.T. Building Integrated Agriculture: Utilising Rooftops for Sustainable Food Crop Cultivation in Singapore. J. Green Build. 2010, 5, 105–113. [Google Scholar] [CrossRef]
- Ward, J.D.; Ward, P.J.; Mantzioris, E.; Saint, C.P. Optimising diet decisions and urban agriculture using linear programming. Food Secur. 2014, 6, 701–718. [Google Scholar] [CrossRef]
- Gondhalekar, D.; Ramsauer, T. Nexus City: Operationalizing the urban Water-Energy-Food Nexus for climate change adaptation in Munich, Germany. Urban Clim. 2017, 19, 28–40. [Google Scholar] [CrossRef]
- Poulsen, M.N. Cultivating citizenship, equity, and social inclusion? Putting civic agriculture into practice through urban farming. Agric. Hum. Values 2017, 34, 135–148. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Metcalf, S.S.; Widener, M.J. Growing Buffalo’s capacity for local food: A systems framework for sustainable agriculture. Appl. Geogr. 2011, 31, 1242–1251. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Burry, K.; Mok, H.-F.; Barker, S.F.; Grove, J.R.; Williamson, V.G. Give peas a chance? Urban agriculture in developing countries. A review. Agron. Sustain. Dev. 2014, 34, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Rogus, S.; Dimitri, C. Agriculture in urban and peri-urban areas in the United States: Highlights from the Census of Agriculture. Renew. Agric. Food Syst. 2014, 30, 64–78. [Google Scholar] [CrossRef]
- Athul, V.S.; Thilagam, N.L. Selection of suitable urban agricultural practice for Indian cities: A sustainable method for city planners. Int. J. Recent Technol. 2019, 8, 842–848. [Google Scholar]
- Nadal, A.; Alamús, R.; Pipia, L.; Ruiz, A.; Corbera, J.; Cuerva, E.; Rieradevall, J.; Josa, A. Urban planning and agriculture. Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors. Sci. Total. Environ. 2017, 601, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Waffle, A.D.; Corry, R.C.; Gillespie, T.J.; Brown, R.D. Urban heat islands as agricultural opportunities: An innovative approach. Landsc. Urban Plan. 2017, 161, 103–114. [Google Scholar] [CrossRef]
- Cairns, J.; Tschirley, D.; Cachomba, I. Typology of the Horticultural Producers of Maputo. Flash 70E. Minist. Agric. Maputo. 2013. Available online: Citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.9071&rep=rep1&type=pdf (accessed on 16 November 2020).
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Song, W.; Zhang, H.; Yang, X.; Wang, L. Effects of Mulching on Soil Properties and Growth of Tea Olive (Osmanthus fragrans). PLoS ONE 2016, 11, e0158228. [Google Scholar] [CrossRef] [PubMed]
- Deelstra, T.; Girardet, H. Urban agriculture and sustainable cities. In Growing Cities, Growing Food: Urban Agriculture on the Policy Agenda; Bakker, N., Dubelling, M., Gundel, S., Sabel-Koschella, V., Zeeuw, A., Eds.; Food and Agriculture Development Centre: Feldafing, Germany, 2000; pp. 43–66. [Google Scholar]
- Nilon, C.H.; Aronson, M.F.J.; Cilliers, S.S.; Dobbs, C.; Frazee, L.J.; Goddard, M.A.; O’Neill, K.M.; Roberts, D.; Stander, E.K.; Werner, P.; et al. Planning for the Future of Urban Biodiversity: A Global Review of City-Scale Initiatives. Bioscience 2017, 67, 332–342. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Clilliers, S.; Clarkson, B.D.; et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 2014, 281, 20133330. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nat. Cell Biol. 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L.; et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 2015, 25, 117–126. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Thomaier, S.; Freisinger, U.B.; Sawicka, M.; Dierich, A.; Henckel, D.; Busse, M. Zero-Acreage Farming in the City of Berlin: An Aggregated Stakeholder Perspective on Potential Benefits and Challenges. Sustainability 2015, 7, 4511–4523. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, J.L.; Cunningham, H.; Tingley, D.O.D.; Dobson, M.C.; Grafius, D.R.; Leake, J.R.; McHugh, N.; Nickles, J.; Phoenix, G.K.; Ryan, A.J.; et al. The hidden potential of urban horticulture. Nat. Food 2020, 1, 155–159. [Google Scholar] [CrossRef]
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Futaisi, A.; Prathapar, S.; Al Harrasi, A. Evaluating greywater reuse potential for sustainable water resources management in Oman. Environ. Monit. Assess. 2007, 137, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, A.H.; Reyes-Borja, W.; Tase, N. Flow and patterns of nitrate pollution in groundwater: A case study of an agricultural area in Tsukuba City, Japan. Environ. Earth Sci. 2005, 48, 908–919. [Google Scholar] [CrossRef]
- Iwafune, T.; Yokoyama, A.; Nagai, T.; Horio, T. Evaluation of the risk of mixtures of paddy insecticides and their transformation products to aquatic organisms in the Sakura River, Japan. Environ. Toxicol. Chem. 2011, 30, 1834–1842. [Google Scholar] [CrossRef]
- Martínez-Bravo, M.; Martínez-del-Río, J. Urban Pollution and Emission Reduction. In Sustainable Cities and Communities; Leal, F.W., Azul, A., Brandli, L., Özuyar, P., Wall, T., Eds.; Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Engemann, K.; Pedersen, C.B.; Arge, L.; Tsirogiannis, C.; Mortensen, P.B.; Svenning, J.-C. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. USA 2019, 116, 5188–5193. [Google Scholar] [CrossRef] [Green Version]
- Purtle, J.; Nelson, K.L.; Yang, Y.; Langellier, B.A.; Stankov, I.; Roux, A.V.D. Urban–Rural Differences in Older Adult Depression: A Systematic Review and Meta-analysis of Comparative Studies. Am. J. Prev. Med. 2019, 56, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Song, C.; Kuronuma, T.; Ikei, H.; Miyazaki, Y.; Takagaki, M. The Possibility of Sustainable Urban Horticulture Based on Nature Therapy. Sustainability 2020, 12, 5058. [Google Scholar] [CrossRef]
- Tsunetsugu, Y.; Lee, J.; Park, B.-J.; Tyrväinen, L.; Kagawa, T.; Miyazaki, Y. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 2013, 113, 90–93. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Kagawa, T.; Miyazaki, Y. Physiological and Psychological Effects of Viewing Forests on Young Women. Forests 2019, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Park, B.-J.; Tsunetsugu, Y.; Kasetani, T.; Kagawa, T.; Miyazaki, Y. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Park, B.-J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-A.; Song, C.; Choi, J.-Y.; Son, K.-C.; Miyazaki, Y. Foliage Plants Cause Physiological and Psychological Relaxation as Evidenced by Measurements of Prefrontal Cortex Activity and Profile of Mood States. HortScience 2016, 51, 1308–1312. [Google Scholar] [CrossRef]
- Yang, D.S.; Pennisi, S.V.; Son, K.-C.; Kays, S.J. Screening Indoor Plants for Volatile Organic Pollutant Removal Efficiency. HortScience 2009, 44, 1377–1381. [Google Scholar] [CrossRef]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Commun. Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, S.T. Multifunctional Urban Agriculture for Sustainable Land Use Planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef] [Green Version]
- Oluoch, M.O.; Pichop, G.N.; Silué, D.; Abukutsa-Onyango, M.O.; Diouf, M.; Shackleton, C.M. Production and harvesting Systems for African indigenous vegetables. In African Indigenous Vegetables in Urban Agriculture; Pasquini, C.M., Drescher, M.W., Shackleton, A.W., Eds.; Earthscan: London, UK, 2009; pp. 145–170. [Google Scholar]
- Bohn, K.; Viljoen, A. The edible city: Envisioning the continuous productive urban landscape. Field J. 2011, 4, 149–161. [Google Scholar]
- Al Mayahi, A.; Ismaily, S.A.; Gibreel, K.A.; Maktoumi, A.A. Home gardening in Musca, Oman: Gardeners’ practices, perceptions and motivations. Urban Urban Green 2019, 38, 286–294. [Google Scholar] [CrossRef]
- Kortright, R.; Wakefield, S. Edible backyards: A qualitative study of household food growing and its contributions to food security. Agric. Hum. Values 2011, 28, 39–53. [Google Scholar] [CrossRef]
- Senate Department for Urban Development and the Environment Berlin. Data and Facts. 2015. Available online: http://www.stadtentwicklung.berlin.de/umwelt/stadtgruen/kleingaerten/en/daten_fakten/index.shtml (accessed on 10 October 2020).
- McLain, R.; Poe, M.; Hurley, P.T.; Mastenbrook, J.L.M.; Emery, M.R. Producing edible landscapes in Seattle’s urban forest. Urban Urban Green 2012, 11, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Nandwani, D. Urban Horticulture. In Sustainability for the Future; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ali, F.; Srivastava. C. Futuristic Urbanism-An overview of Vertical farming and urban agriculture for future cities in India. Int. J. Adv. Res. Sci. Eng. Technol. 2017, 4, 3767–3775. [Google Scholar]
- Caplow, T. Building integrated agriculture: Philosophy and practice. In Urban Future 2030; Heinrich Böll Foundation: Berlin, Germany, 2009. [Google Scholar]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming. Renew. Agric. Food Syst. 2014, 30, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Komisar, J.; Nasr, J.; Gorgolewski, M. Designing for Food and Agriculture: Recent Explorations at Ryerson University. Open House Int. 2009, 34, 61–70. [Google Scholar]
- Nelkin, J.; Caplow, T. Sustainable controlled environment agriculture for urban areas. Acta Hortic. 2008, 801, 449–456. [Google Scholar]
- Banerjee, C.; Adenaeuer, L. Up, Up and Away! The Economics of Vertical Farming. J. Agric. Stud. 2014, 2, 40. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Attenborough, K.; Maennel, M.; Defrance, J.; Horoshenkov, K.V.; Kang, J.; Bashir, I.; Taherzadeh, S.; Altreuther, B.; Khan, A.; et al. Measured light vehicle noise reduction by hedges. Appl. Acoust. 2014, 78, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Greening the building envelope, facade greening and living wall systems. Open J. Ecol. 2011, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Whitlow, T.H.; Walter, M.T.; Bassuk, N.; Russell-Anelli, J.; Schindelbeck, R.R. Hydrology of the Brooklyn Grange, an urban rooftop farm. Urban Ecosyst. 2018, 21, 673–689. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Mackay, R. Vegetation development over four years on two green roofs in the UK. Urban Urban Green. 2013, 12, 98–108. [Google Scholar] [CrossRef]
- Jafari, N.; Yunos, M.Y.M.; Mydin, A.O.; Tahir, O.M. Assessing the Residents’ Preference of Awareness Regarding Urban Agriculture at Rooftop Garden. Appl. Mech. Mater. 2015, 747, 180–183. [Google Scholar] [CrossRef]
- Grayson, R.; Campbell, F. Improved Kokorako Keeping; Kastom Gaden Association and Terra Circle Association Inc.: Honiara, Solomon Islands, 2004. [Google Scholar]
- Chen, C.F. Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Tam, V.W.; Lee, W.W.Y. Barriers to implement extensive green roof systems: A Hong Kong study. Renew. Sustain. Energy Rev. 2012, 16, 314–319. [Google Scholar] [CrossRef]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
- Liu, K.K.Y. Energy efficiency and environmental benefits of rooftop gardens NRCC-45345 energy efficiency and environmental benefits of rooftop gardens. Construct. Can. 2002, 44, 20–23. [Google Scholar]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience 2017, 57, 823. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Contreras, E.; Castillo, I. Guide to living roofs and green roofs. In City Hall of Barcelona; Heinrich Böll Foundation: Berlin, Germany, 2015; Available online: http://hdl.handle.net/11703/86542 (accessed on 10 October 2020).
- Brenneisen, S. Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats 2006, 4, 27–36. [Google Scholar]
- Gruda, N.; Tanny, J. Protected crops. In Horticulture: Plants for People and Places; Dixon, G., Aldous, D., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 327–405. [Google Scholar]
- Bridgewood, L. Hydroponics: Soilless Gardening Explained; The Crowood Press: Ramsbury Marlborough, UK, 2003. [Google Scholar]
- Chalmers, G.A. Aquaponics and Food Safety; Cover, Aquaculture Journal: Lethbridge, AB, Canada, 2004. [Google Scholar]
- AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Von-Seggern, L.; Jillian, S.; Andrew, Z.; Frank, R.; Roberto, Q.A.S.L. Urban Farming-The Black Pearl gardens. Dow Sustainability Fellowship Programmes, University of Michigan. 2015. Available online: http://sustainability.umich.edu/media/files/dow/Dow-Black-PearlGarden.pdf (accessed on 8 October 2020).
- Goddek, S.; Schmautz, Z.; Scott, B.; Delaide, B.; Keesman, K.; Wuertz, S.; Junge, R. The effect of anaerobic and aerobic fish sludge supernatant on hydroponic lettuce. Agronomy 2016, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Differentiated Cost of Production in the Northwest: An Analysis of Six Food Categories. Leafy Greens; ECOTRUST: Portland, OR, USA, 2016; p. 52. Available online: https://ecotrust.org/media/CFFP_leafy_greens_8_16_16.pdf (accessed on 8 October 2020).
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Al-Kodmany, K. Sustainable Tall Buildings: Cases from the Global South. ArchNet IJAR 2016, 10, 52–66. [Google Scholar] [CrossRef]
- Birkby, J. Vertical farming. In ATTRA Sustainable Agriculture; NCAT IP516; National Center for Appropriate Technology (NCAT): Butte, MT, USA, 2016; p. 12. [Google Scholar]
- Boston, M.H. Indoor Farms: Making Light Work of City Dining. The Economist. 2014. Available online: http://www.economist.com/blogs/babbage/2014/04/indoor-farms (accessed on 10 October 2020).
- Anonymous. From Out of the Blue, Green Farming. Recirculating Farms Coalition. The Recirculating Farms Coalition. 2013, p. 32. Available online: http://www.recirculatingfarms.org/wpcontent/uploads/2013/06/RFCreport_FINALFINAL.pdf (accessed on 6 October 2020).
- Perkins, C. A Koi-Fueled Nursery in New Orleans Yields Tasty Profits. Wired.com; Conde Nast Digital: Boone, IA, USA., 2013; Available online: http://www.wired.com/2013/12/veggi/ (accessed on 6 October 2020).
- Anonymous. Endless Food Systems; Aquaponics FAQ: Forestburg, TX, USA, 2016; Available online: https://www.endlessfoodsystems.com/faq/ (accessed on 8 October 2020).
- McCollow, K. Aquaponics Revives an Ancient Farming Technique to Feed the World. Newsweek Magazine. 2014. Available online: http://www.newsweek.com/2014/05/23/aquaponics-revives-ancientfarming-technique-feed-world-251020.html (accessed on 8 October 2020).
- Diver, S. Integration of Hydroponics with Aquaculture; National Sustainable Agriculture Information Service, National Center for Appropriate Technology (NCAT): Butte, MT, USA, 2006; Available online: http://www.backyardaquaponics.com/Travis/aquaponic.pdf (accessed on 10 October 2020).
- Yue, C.; Grebitus, C.; Bruhn, M.; Jensen, H.H. Potato Marketing–Factors Affecting Organic and Conventional Potato Consumption Patterns. In Proceedings of the 12th Congress of the European Association of Agricultural Economists–EAAE, Ghent, Belgium, 26–29 August 2008. [Google Scholar]
- Willer, H.; Lernoud, J. The World of Organic Agriculture. In Statistics and Emerging Trends 2016; FiBL and IFOAM Report: Frick, Switzerland; Bonn, Germany, 2016; p. 340. [Google Scholar]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- Lindholst, A.C.; Bosch, C.C.K.V.D.; Kjøller, C.P.; Sullivan, S.; Kristoffersson, A.; Fors, H.; Nilsson, K.; Konijnendijk, C.C. Urban green space qualities reframed toward a public value management paradigm: The case of the Nordic Green Space Award. Urban Urban Green. 2016, 17, 166–176. [Google Scholar] [CrossRef]
- Berti, G.; Mulligan, C. Competitiveness of Small Farms and Innovative Food Supply Chains: The Role of Food Hubs in Creating Sustainable Regional and Local Food Systems. Sustainability 2016, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Linn, J.; Woltering, L.; Boa, M.; Donovan, M. Don’t Forget about the Impact of COVID-19 on the Rural Poor and on Food Security. CIMMYT. 2020. Available online: https://www.cimmyt.org/blogs/dont-forget-about-the-impact-of-covid-19-on-the-rural-poor-and-on-food-security/ (accessed on 10 October 2020).
- Brown, K.H.; Jameton, A.L. Public Health Implications of Urban Agriculture. J. Public Health Policy 2000, 21, 20. [Google Scholar] [CrossRef] [PubMed]
Social Sustainability | Economic Sustainability | Environmental Sustainability |
---|---|---|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.M.; Akram, M.T.; Janke, R.; Qadri, R.W.K.; Al-Sadi, A.M.; Farooque, A.A. Urban Horticulture for Food Secure Cities through and beyond COVID-19. Sustainability 2020, 12, 9592. https://doi.org/10.3390/su12229592
Khan MM, Akram MT, Janke R, Qadri RWK, Al-Sadi AM, Farooque AA. Urban Horticulture for Food Secure Cities through and beyond COVID-19. Sustainability. 2020; 12(22):9592. https://doi.org/10.3390/su12229592
Chicago/Turabian StyleKhan, Muhammad Mumtaz, Muhammad Tahir Akram, Rhonda Janke, Rashad Waseem Khan Qadri, Abdullah Mohammed Al-Sadi, and Aitazaz A. Farooque. 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19" Sustainability 12, no. 22: 9592. https://doi.org/10.3390/su12229592