The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Calculations for Livestock Response to Temperature and THI Levels
- Cold year 1984
- Warm year 2003
- Hot year: 1984 plus 4.5 °C (extrapolated “hot” year following IPCC [4])
- Worst case situation (see description above).
2.2. LCA Method: Impact Categories, System Boundaries and Inventories
- Cumulative energy demand (CED; method v.1.10; in MJ)
- Global warming potential (GWP; in CO2 equivalents according to IPCC [4])
- Acidification potential (AP; CML-IA non-baseline V3.04/EU25; in SO2-eq)
- Eutrophication potential (EP; aggregating freshwater and marine eutrophication from the method ILCD 2011 Midpoint+ V1.10/EC-JRC Global, equal weighting; N-eq and P-eq in PO4−-eq).
2.2.1. Inventory Inputs
2.2.2. Inventory Outputs
2.3. Semi-Quantitative System Analysis
3. Results
3.1. Effects of Temperature Increase on Animal Performance
3.2. Effects of Temperature Increase on Resource Use and Environmental Impacts
3.3. Effects of Temperature Increase on Pig Production Systems not Directly Covered in LCA
4. Discussion
4.1. Practical Implications for Pig Production
4.2. Limitations of the Method
4.3. Implications from System Analysis
5. Conclusions
- (1)
- Pigs are kept in sufficiently thermally insulated housing systems that are at least mechanically ventilated. According to the results of this study and using a whole year perspective, air conditioning systems are not yet generally required. The environmental impacts do not increase significantly as a consequence of the predicted CCI. However, in order to prevent losses of fattening pigs and a reduced performance during the summer months, technical adaptations for improved indoor climate should be considered (e.g., pig showers for farms with sufficient water availability). As ventilation systems and other devices are dependent on electricity, a constant power supply must be ensured by an emergency power generator.
- (2)
- Attention is paid to good animal performance in order to minimise resource consumption and environmental impacts. Thereby, the production systems contribute to climate change as little as possible, i.e., low greenhouse gas emissions. Potential impacts from CCIs are considered in the farm’s breeding goals; for instance, cross breeding could be practiced with slower-growing animals that are more resistant against heat stress. A systematic observation of the animals and health plans are implemented against diseases in order to react to CCI.
- (3)
- Attention is paid to the availability of inexpensive feed and of drinking water, especially for years with droughts, floods, storms and other CCI. Efficient on-farm production of feed, using crop varieties that are adapted to CCI, reduces feed costs when prices on the feed market increase as a consequence of specific CCI. If water is available, an irrigation system should be considered as a buffer for dry years. The integrated on-farm production of feed improves the efficiency of the nutrient cycle between livestock farming and crop production via manure and thus reduces resource requirements and related environmental impacts. Climate-resilient farms practice on an efficient use of water and feed without avoidable losses.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p, Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (accessed on 13 July 2020).
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2013. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Strategy on Climate Change; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7175e.pdf (accessed on 13 July 2020).
- Robinson, T.P.; William Wint, G.R.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Vitt, R.; Weber, L.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosyst. Eng. 2017, 164, 85–97. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [Green Version]
- Bianca, W. The signifiance of meteorology in animal production. Int. J. Biometeorol. 1976, 20, 139–156. [Google Scholar] [CrossRef]
- Zumbach, B.; Misztal, I.; Tsuruta, S.; Sanchez, J.P.; Azain, M.; Herring, W.; Holl, J.; Long, T.; Culbertson, M. Genetic components of heat stress in finishing pigs: Development of a heat load function. J. Anim. Sci. 2008, 86, 2082–2088. [Google Scholar] [CrossRef] [Green Version]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef]
- Johnson, J.S. Heat stress: Impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. Anim. Prod. Sci. 2018, 58, 1404–1413. [Google Scholar] [CrossRef]
- Hafez, E.S.E. Adaptation of Domestic Animals; Harcourt Publishers: Boston, MA, USA, 1968; p. 416. [Google Scholar]
- Escarcha, J.; Lassa, J.; Zander, K. Livestock Under Climate Change: A Systematic Review of Impacts and Adaptation. Climate 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; Schönhart, M.; et al. Impacts of global warming on confined livestock systems for growing-fattening pigs: Simulation of heat stress for 1981 to 2017 in Central Europe. Int. J. Biometeorol. 2019, 63, 221–230. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, G.; Piringer, M.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Anders, I.; Andre, K.; Hennig-pauka, I.; et al. Impact of global warming on the odour and ammonia emissions of livestock buildings used for fattening pig. Biosyst. Eng. 2018, 175, 106–114. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Hennig-Pauka, I.; Schönhart, M.; et al. Climate change impact on the dispersion of airborne emissions and the resulting separation distances to avoid odour annoyance. Atmos. Environ. X 2019, 2, 100021. [Google Scholar] [CrossRef]
- Pelletier, N.; Lammers, P.; Stender, D.; Pirog, R. Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States. Agric. Syst. 2010, 103, 599–608. [Google Scholar] [CrossRef]
- de Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Dalgaard, R.; Halberg, N.; Hermansen, J.E. Danish Pork Production—An Environmental Assessment; University of Aarhus: Tjele, Denmark, 2007; Volume 82. [Google Scholar]
- Rudolph, G.; Hörtenhuber, S.; Bochicchio, D.; Butler, G.; Brandhofer, R.; Dippel, S.; Dourmad, J.Y.; Edwards, S.; Früh, B.; Meier, M.; et al. Effect of three husbandry systems on environmental impact of organic pigs. Sustainability 2018, 10, 3796. [Google Scholar] [CrossRef] [Green Version]
- Dourmad, J.Y.; Ryschawy, J.; Trousson, T.; Bonneau, M.; Gonzàlez, J.; Houwers, H.W.J.; Hviid, M.; Zimmer, C.; Nguyen, T.L.T.; Morgensen, L. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment. Animal 2014. [Google Scholar] [CrossRef] [Green Version]
- Dolman, M.A.; Vrolijk, H.C.J.; de Boer, I.J.M. Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms. Livest. Sci. 2012, 149, 143–154. [Google Scholar] [CrossRef]
- Basset-Mens, C.; van der Werf, H.M.G. Scenario-based environmental assessment of farming systems: The case of pig production in France. Agric. Ecosyst. Environ. 2005, 105, 127–144. [Google Scholar] [CrossRef]
- National Weather Service Central Region (NWSCR). Livestock Hot Weather Stress; National Weather Service Central Region (NWSCR): Kansas City, MO, USA, 1976.
- Wegner, K.; Lambertz, C.; Daş, G.; Reiner, G.; Gauly, M. Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal 2014. [Google Scholar] [CrossRef] [Green Version]
- Wegner, K.; Lambertz, C.; Daş, G.; Reiner, G.; Gauly, M. Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate. Anim. Sci. J. 2016. [Google Scholar] [CrossRef]
- White, H.M.; Richert, B.T.; Schinckel, A.P.; Burgess, J.R.; Donkin, S.S.; Latour, M.A. Effects of temperature stress on growth performance and bacon quality in grow-finish pigs housed at two densities. J. Anim. Sci. 2008, 86, 1789–1798. [Google Scholar] [CrossRef] [Green Version]
- Collin, A.; van Milgen, J.; Dubois, S.; Noblet, J. Effect of high temperature on feeding behaviour and heat production in group-housed young pigs. Br. J. Nutr. 2001, 86, 63. [Google Scholar] [CrossRef] [Green Version]
- ZAMG (Zentralanstalt für Meteorologie und Geodynamik). Klimadaten von Österreich 1971–2000. 2002. Available online: http://www.zamg.ac.at/fix/klima/oe71-00/klima2000/klimadaten_oesterreich_1971_frame1.htm (accessed on 11 September 2020).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- LfL—Bayrische Landesanstalt für Landwirtschaft. Futterberechnung für Schweine. 2020. Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/futterberechnung__fuer_schweine_lfl-information.pdf (accessed on 13 July 2020).
- Schwarz, C.; Ebner, K.M.; Furtner, F.; Duller, S.; Wetscherek, W.; Wernert, W.; Kandler, W.; Schedle, K. Influence of high inorganic selenium and manganese diets for fattening pigs on oxidative stability and pork quality parameters. Animal 2017, 11, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilo, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat stress adaptations in pigs. Anim. Fron. 2019. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Chapter 10: Emissions from Livestock and Manure Management. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf (accessed on 13 July 2020).
- Amon, B.; Hutchings, N.; Dämmgen, U.; Webb, J. Manure Management. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/4-agriculture/3-b-manure-management-2016 (accessed on 13 July 2020).
- Choptiany, J.; Graub, B.; Philips, S.; Colozza, D.; Dixon, J. Self-evaluation and Holistic Assessment of Climate Resilience of Farmers and Pastoralists. Biodivers. Ecosyst. Serv. Agric. Prod. Syst. 2016, 166. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). Coping with Change Climate Change; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2015; ISBN 9789251084410. [Google Scholar]
- Scholz, R.W.; Tietje, O. Embedded Case Study Methods. Integrating Quantitative and Qualitative Knowledge; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Tietje, O. Systemanalyse. In Qualitative Modellierung der Dynamik eines komplexen Systems; Systaim: Zürich, Switzerland, 2014. [Google Scholar]
- Cabell, J.F.; Oelofse, M. An Indicator Framework for Assessing Agroecosystem Resilience. Ecol. Soc. 2012, 17, 1–13. [Google Scholar] [CrossRef]
- Pearce, S. Evaluation of the Chronological Impact Heat Stress Has on Swine Intestinal Function and Integrity. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2014. Available online: https://lib.dr.iastate.edu/etd/14010 (accessed on 13 July 2020).
- Walter, K.; Löpmeier, F.J. Fütterung und Haltung von Hochleistungskühen 5. Hochleistungskühe und Klimawandel. VTI Agric. For. Res. 2010, 60, 17–34. [Google Scholar]
- Pig Site—Dealing with Drought and Evading Heat Stress in Swine. Available online: https://thepigsite.com/articles/dealing-with-drought-and-evading-heat-stress-in-swine (accessed on 13 July 2020).
- Myer, R.; Bucklin, R. Influence of Hot-Humid Environment on Growth Performance and Reproduction of Swine. 2001, pp. 1–6. Available online: https://edis.ifas.ufl.edu/pdffiles/AN/AN10700.pdf (accessed on 13 July 2020).
- Spencer, J.D.; Gaines, A.M.; Berg, E.P.; Allee, G.L. Diet modifications to improve finishing pig growth performance and pork quality attributes during periods of heat stress. J. Anim. Sci. 2005, 83, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Black, J.L.; Mullan, B.P.; Lorschy, M.L.; Giles, L.R. Lactation in the sow during heat stress. Livest. Prod. Sci. 1993, 35, 153–170. [Google Scholar] [CrossRef]
- BMNT (Bundesministerium für Nachhaltigkeit und Tourismus; Austrian Federal Ministry for Sustainability and Tourism; 2018) Grüner Bericht: Bericht über Die Situation der Österreichischen Land- und Forstwirtschaft. Available online: https://gruenerbericht.at/cm4/jdownload/download/2-gr-bericht-terreich/1899-gb2018pdf (accessed on 13 July 2020).
- Hansen, J.; Hellin, J.; Rosenstock, T.; Fisher, E.; Cairns, J.; Stirling, C.; Lamanna, C.; van Etten, J.; Rose, A.; Campbell, B. Climate risk management and rural poverty reduction. Agric. Syst. 2018. [Google Scholar] [CrossRef]
Significant Difference between Thermoneutral and Heat Stress Conditions | Average Change Per 1 °C Temperature Change | Average Change Per 1 THI Unit | Critical Temperatures for a Beginning Heat Stress | |
---|---|---|---|---|
Growing pigs (30–60 kg body mass) | ||||
Body mass gain | yes | −2.4% | −2.2% | from 25 °C to 21.5 °C (in steps of 0.5 °C) for body mass from 35 to 60 kg (in steps of 5 kg) |
Feed intake | yes | −1.8% | −1.6% | |
Feed conversion ratio | yes | +0.6% | +0.6% | |
Finishing pigs (>60 kg body mass) | ||||
Body mass gain | yes | −4.2% | −3.2% | from 21.5 °C to 20 °C (in steps of 0.107 °C) for body masses from 60 to ≥130 kg (in steps of 5 kg) |
Feed intake | yes | −3.2% | −2.3% | |
Feed conversion ratio | yes | +1.1% | +0.9% | |
Suckling piglets | ||||
Body mass gain | no | −0.5% | −0.5% | 30 °C No significant heat stress effect for piglets derived from literature |
Feed intake | no | −1.0% | −0.4% | |
Feed conversion ratio | no | +0.5% | +0.8% | |
Mortality | no | −1.5% | −1.6% | |
Sows | ||||
Conception rate | no (tending to significance) | −0.8% | 1.0% | 23 °C |
Growing Pig a | Finishing Pig b | |
---|---|---|
Proportion of days exceeding the critical maximum temperature for heat stress (daily average basis) | ||
Average period 1981–2010 | 13.1% | 27.9% |
Cold year (1984) | 6.3% | 19.9% |
Warm year (2003) | 21.9% | 34.8% |
Scenario hot year (1984 plus 4.5 °C increase of outdoor temperature) | 27.4% | 44.1% |
Scenario worst case year (4.5 °C temperature increase indoor (based on 1984) for March to October) | 46.8% | 64.4% |
Difference between average temperature and critical maximum temperatures for proportion of days stated above (°C) | ||
Average period 1981–2010 | 2.24 | 2.72 |
Cold year (1984) | 1.93 | 1.99 |
Warm year (2003) | 2.59 | 3.59 |
Scenario hot year (1984 + 4.5 °C outdoor temperature) | 2.40 | 3.41 |
Scenario worst case year (4.5 °C temperature increase indoor (based on 1984) for March to October) | 2.37 | 3.84 |
Growing Pig a | Finishing Pig b | Growing-Finishing Pig (Total) | |
---|---|---|---|
Feed intake (kg) | |||
Period 1981–2010 | 78.0 | 204.4 | 282.4 (100.3%) |
Year 1984 (cold) | 78.0 | 203.5 | 281.5 (100.0%) |
Year 2003 (very warm) | 78.2 | 205.4 | 283.6 (100.4%) |
Extrapolated hot year (1984 + 4.5 °C outdoor temperature) | 78.2 | 206.0 | 284.2 (101.0%) |
Worst case: 4.5 °C temperature increase indoor (based on 1984) for March to October | 78.4 | 208.2 | 286.6 (101.8%) |
Feed conversion ratio FCR (kg feed kg−1 body mass gain) | |||
Period 1981–2010 | 2.60 | 2.92 | 2.82 (100.3%) |
Year 1984 (cold) | 2.60 | 2.91 | 2.82 (100.0%) |
Year 2003 (very warm) | 2.61 | 2.93 | 2.84 (100.4%) |
Extrapolated hot year (1984 + 4.5 °C outdoor temperature) | 2.61 | 2.94 | 2.84 (101.0%) |
Worst case: 4.5 °C temperature increase indoor (based on 1984) for October to October | 2.61 | 2.97 | 2.87 (101.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hörtenhuber, S.J.; Schauberger, G.; Mikovits, C.; Schönhart, M.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems. Sustainability 2020, 12, 9442. https://doi.org/10.3390/su12229442
Hörtenhuber SJ, Schauberger G, Mikovits C, Schönhart M, Baumgartner J, Niebuhr K, Piringer M, Anders I, Andre K, Hennig-Pauka I, et al. The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems. Sustainability. 2020; 12(22):9442. https://doi.org/10.3390/su12229442
Chicago/Turabian StyleHörtenhuber, Stefan J., Günther Schauberger, Christian Mikovits, Martin Schönhart, Johannes Baumgartner, Knut Niebuhr, Martin Piringer, Ivonne Anders, Konrad Andre, Isabel Hennig-Pauka, and et al. 2020. "The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems" Sustainability 12, no. 22: 9442. https://doi.org/10.3390/su12229442