The Effect of Climate Change-Induced Temperature Increase on Animal Performance and Environmental Impact of Intensive Pig Production Systems

Stefan J. Hörtenhuber ^{1,*}, Günther Schauberger ², Christian Mikovits ^{2,3}, Johannes Baumgartner ⁴, Knut Niebuhr ^{4,†}, Martin Piringer ⁵, Ivonne Anders ⁶, Konrad Andre ⁶, Isabel Hennig-Pauka ⁷, Martin Schönhart ³, Werner Zollitsch1 ¹

	(Sow plus) Suckling Piglets	Weaned Piglets	Growing and Finishing Pigs
	GfE (2006) [1],		
Literature sources	Dyck and Swierstra	GfE (2006) [1],	GfE (2006) [1],
Literature sources	(1987) [2],	LfL (2014) [3]	LfL (2014) [3]
	LfL (2014) [3]		
Body mass gain			
	Gompertz function	Gompertz function	Gompertz function
Model assumption	C = 1.693	C = 1.466	C = 21.534
and parameters	L = 0.558	L = 0.540	L = 0.186
	K = 0.195	K = 0.130	K = 0.082
Cumulative feed in	take		
	Gompertz function ^a	Gompertz function	Gompertz function
Model assumption	C = 0.325	C = 0.279	C = 12.500
and parameters	L = 1.263	L = 0.860	L = 0.353
	K = 0.105	K = 0.118	K = 0.091
Feed conversion			
		Polynomial function	Gompertz function
Model assumption		a = 0.046	C = 2.549
and parameters		b = -0.241	L = 0.001
		c = 1.770	K = -0.235
Mortality			
	Gompertz function	Gompertz function	Linear funtion
Model assumption	$C = 4.73 \times 10^{-5}$	$C = 7.64 \times 10^{-7}$	$a = 9.20 \times 10^{-4}$
and parameters	L = 30.395	L = 6.149	b = 0.0001
	K = 3.776	K = 0.602	

 Table S1: Sources, model assumptions and parameters of functions for important production traits of confined pigs in temperate Western European agriculture

^a Including the sow's feed for the lactating phase only.

Temperature Requirements,	
Thermo-Neutral Zones and Heat Stress	Temperature Effects on Production Traits
	Kyriazakis and Whittemore, 2006 [7]
	Hyun et al., 1998 [8]
	Kouba et al., 2001 [9]
	Becker et al., 1992 [10]
	Song, et al., 2011 [11]
	Lefaucheur et al., 1991 [12]
	Le Dividich et al., 1980 [13]
Troxler and Menke (2006) [4]	Weller et al., 2013 [14]
Bracke (2011) [5]	Collin et al., 2002 [15]
Pig Site (2018) [6]	Lopez et al., 1991 [16]
Kyriazakis and Whittemore (2006) [7]	White et al., 2008 [17]
	Dividich, 1981 [18]
	Rinaldo and Le Dividich, 1991 [19]
	Rinaldo et al., 2000 [20]
	Collin et al., 2001a [21]
	Collin et al., 2001b [22]
	Ferguson and Gous, 1997 [23]
	Oliveira and Donzele, 1999 [24]

Table S1: List of literature sources defining temperature requirements, thermo-neutral zones, heat stress-temperatures and effects of increasing temperature on production traits

Table S2: Composition of the sow diet (average over the whole production cycle) plus piglet feed and
the average growing-finishing pig diet in percent (on 88 % dry matter basis)

Ingredient	Proportions in Average Sow Diet (%)	Proportions in Average Growing - Finishing Pig Diet (%)
Maize	35 %	57 %
Soybean meal, extracted	15 %	16 %
Barley	17 %	15 %
Wheat (Wheat bran)	15 % (5 %)	6 % (1 %)
Rapeseed meal, extracted	4 %	-
Sunflower seed meal, extracted	4 %	-
Soybean oil	-	1 %
Calcium carbonate and sodium chloride	3 %	2 %
Calcium phosphate, other minerals, synthetic amino acids, lignocellulose	2 %	2 %

Inputs (Unit of Measurement)	Average Values	Data Source, Comment
Electricity demand of livestock building		
including energy for the ventilation system		
(MJ per kg body mass gain piglet & growing-		Calculated based on unpublished
fattening pig),	0.3/0.4/0.5	primary data from farm surveys and
for low temperature (year 1984)/high		Mikovits et al. (2019) [25]
temperature (year 2003)/worst case		
temperature		
Electricity for heating, infrared lamp	0.6	Colordated based on Büscher (2004) [24]
(MJ per kg body mass gain piglet)	9.6 ^a	Calculated based on Büscher (2006) [26]
Electricity demand feed mill		Energy demand from GEMIS (v 4.7;
(MJ per kg body mass gain piglet & growing-	0.3	Fritsche and Schmidt, 2007) [27]
fattening pig)		multiplied by feed intake
Transports by tractor (transport of manure,		Calculated for manure application with
etc.; ton-km per kg body mass gain piglet &	0.05	5 km distance (including the return
growing-fattening pig)		path)
Drinking and cleaning water		
(m ³ per kg body mass gain piglet & growing-	0.01	Calculated based on DLG (2008) [28]
fattening pig)		
		(* · 1 1 ·

Table S3: Inputs other than feed and sources given as specific energy demand related to animal places or body mass

^a 0.6 MJ per kg body mass gain finished pig

Table S4: Biogenic emissions (kg/kg body mass) as annual mean for the low temperature scenario for reared piglet and for growing-finishing pig (at farm-gate before slaughtering)

Emissions Per kg Body Mass Gain	Annual Mean Emission for Piglets: kg/kg Reared Piglet	Annual Mean Emission for Growing- Finishing Pigs: kg/kg Finished Pig
kg NH₃	0.0269	0.0625
kg NOx	0.00001	0.00002
kg N2O	0.00031	0.00072
kg CH4	0.0094	0.0145
kg NO3	0.0306	0.0710

System Elements	The Systems Elements Describe
Active elements (showing impacts of	
Climate change impacts (abiotic CCI)	driving forces behind abiotic CCIs (increase in air temperature, etc.) and thus a significant factor influencing crop production
Genetic potential of crops (concerning CCI) Irrigation	the use of crops that are tolerant or resistant due to their genetic predisposition to diseases or abiotic CCIs the use or / and installation of irrigation systems
Passive elements (receiving impacts	* *
Crop yields	high yields as an optimisation goal in the system analysis
Dependence on technology and energy	as an undesirable situation
Ambivalent elements (having impa effects from other elements)	cts on other system elements, but at the same time receive strong
economic resilience of production systems (PS) in general	pathogen-related (harvest-) losses in crop production measures for socio-economic resilient PS; e.g., diversification of sources of income, the use of insurance options or investments into CCI-relevant infrastructure
Biogenic structures to increase agro-ecological resilience in crop production	measures to protect biodiversity or soils, e.g. hedges or permanent greening
(Change of) Factor costs for agricultural land	the impact of changing factor costs for land due to soil depletion or climate-induced yield changes
Positive farm's financial situation	the socio-economic well-being of farmers; an optimization goal in the analysis
Buffering elements (showing a buffer	ering effect on a system)
Site-specific adjustment of inputs	a specific site adaptation measure and the PS that significantly
(intensity) and outputs	contributes to maintaining or enhancing resilience
Cooperation with other companies	a specific and important measure to maintain or promote socio-economic resilience in the PS
Insurances – crops and infra- structure	a specific and significant measure to maintain or promote socio-economic resilience in the PS
The attributions ("active", "passive"	', "ambivalent" and "buffering") are automatically derived results of

Table S6: Elements related to climate change impacts in the feed production system

The attributions ("active", "passive", "ambivalent" and "buffering") are automatically derived results of the system analysis (software Systaim SystemQ). Especially categorizations for ambivalent and buffering factors are sometimes difficult, as there may be transitions between these groups.

System Elements	The Systems Elements Describe
Active elements (showing impacts of	on other system elements)
Measures against direct CCI in	the effects of, for example, fans, shading, showers, air
housing systems	conditioning, etc. on animal welfare, health and productivity
Health plans and activities against	measures that proactively tackle CCI-related animal health
diseases related to CCI	problems
Solutions to maintain farm power	to be prepared against power (electricity) failure, i.a. for
supply	ventilation, air conditioning systems and water supply
Water supply	the situation regarding the availability of sufficient drinking
	water
Passive elements (receiving impacts	from other system elements)
Farm's financial situation	the economic performance of the farm, including results of
i ann 5 marcial situation	long-term profitability
Livestock yields	the level of animal productivity
Animal welfare / health	the realized degree of animal welfare / health
Ambivalent elements (having impa	cts on other system elements, but at the same time receive strong
effects from other elements)	
Diseases and losses related to CCI	the incidence of illnesses and losses related to CCI
Buffering elements (showing a buffe	ering effect on a system)
	the use of pig genotypes that are tolerant or resistant against
Genetic potential of livestock	abiotic CCI-impacts and CCI-related diseases
Feed supply	the availability of feed of appropriate quality
Insurances	which are more or less important to maintain or promote socio-
lisulances	economic resilience (for buildings, crops and/or livestock)
Changing requirements for animal	a situation in which the demand for animal products changes,
products due to society / politics /	because, for instance, political measures have a positive or
NGOs	inhibiting effect

The attributions ("active", "passive", "ambivalent" and "buffering") are automatically derived results of the system analysis (software Systaim SystemQ). Especially categorizations for ambivalent and buffering factors are sometimes difficult, as there may be transitions between these groups. .

Animal Category	Average of Literature	Minimum	Maximum
Suckling piglets (<7 kg)	26–32	22	33
Weaned piglets (8-30 kg)	23–29	20	30
Growing pigs (30-60 kg)	19-22	18	25
Finishing pigs (>60 kg)	17–21	15	24
Sows, after weaning	16-20	15	20
Sows, lactating	18–22	16	22
Boars	18	16	19

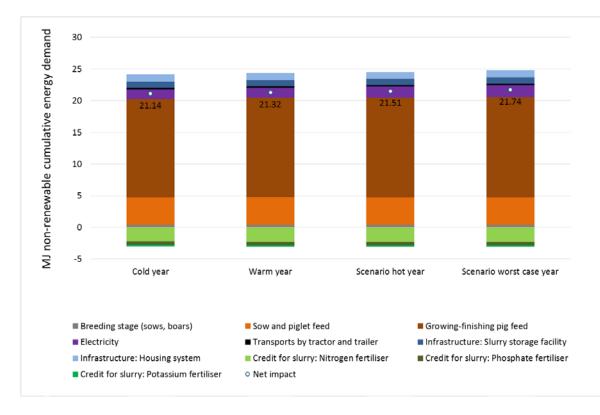


Figure S1. Use of fossil energy (CED non-renewable) in MJ per kg body mass at farm-gate.

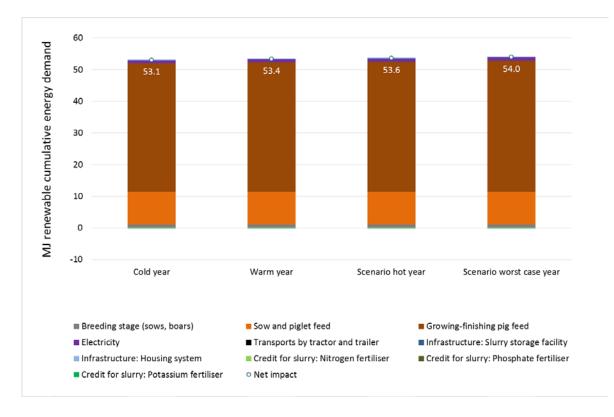


Figure S2: Use of renewable energy (CED renewable) in MJ per kg body mass at farm-gate

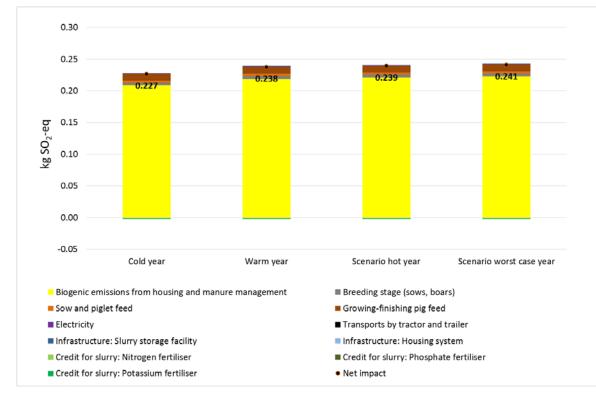
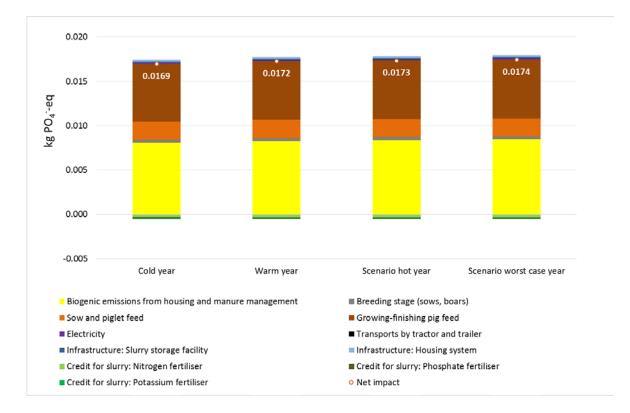



Figure S1: Acidification potential (AP) in kg SO2-eq per kg body mass at farm-gate

Figure S4: Eutrophication potential (EP) in kg PO₄-eq per kg body mass at farm-gate

References used for the Supplementary Materials

- 1. Gesellschaft für Ernährungsphysiologie, *Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen*; DLG-Verlag: Frankfurt am Main, Germany, 2006; ISBN 978-3769006834.
- 2. Dyck, G. W., Swierstra, E.E. A l A = i@! s. Can. J. Anim. Sci. 1984, 67, 543–547.
- 3. LfL Bayrische Landesanstalt für Landwirtschaft Futterberechnung für Schweine. 2014. Available online: https://docplayer.org/storage/49/25474613/1605214850/9GQHVxXu-H7AN_MshhheWw/25474613.pdf (accessed on 12 November 2020).
- 4. Troxler, J.; Menke, C. *Handbuch Schweine*; Wien, 2006. Available online: http://www.vetez.at/downloads/handbuch_schweine.pdf (accessed on 12 November 2020).
- 5. Bracke, M.B.M. Review of wallowing in pigs: Description of the behaviour and its motivational basis. *Appl. Anim. Behav. Sci.* **2011**, *132*, 1–13, doi:10.1016/j.applanim.2011.01.002
- Pig Site Dealing with drought and evading heat stress in swine.
 https://thepigsite.com/articles/dealing-with-drought-and-evading-heat-stress-in-swine
 (accessed 13 July 2020)
- 7. Kyriazakis, I.; Whittemore, C.T. *Whittemore 's Science and Practice of Pig Production*; Blackwell Publishing: Oxford, UK, 2006; ISBN 9781405124485.
- 8. Hyun, Y.; Ellis, M.; Riskowski, G.; Johnson, R.W. Growth performance of pigs subjected to multiple concurrent environmental stressors. *J. Anim. Sci.* **1998**, *76*, 721–727.
- 9. Kouba, M.; Hermier, D.; Le Dividich, J. Influence of a high ambient temperature on lipid metabolism in the growing pig. *J. Anim. Sci.* **2001**, *79*, 81–87, doi:10.2527/2001.79181x.
- 10. Becker, B.A.; Knight, C.D.; Buonomo, F.C.; Jesse, G.W.; Hedrick, H.B.; Baile, C.A. Effect of a hot environment on performance, carcass characteristics, and blood hormones and metabolites of pigs treated with porcine somatotropin. *J. Anim. Sci.* **1992**, *70*, 2732–2740, doi:10.2343/geochemj.36.333.
- 11. Song, R.; Foster, D.N.; Shurson, G.C. Effects of feeding diets containing bacitracin methylene disalicylate to heat-stressed finishing pigs. *J. Anim. Sci.* **2011**, *89*, 1830–1843, doi:10.2527/jas.2010-3218.
- 12. Lefaucheur, L.; Le Dividich, J.; Mourot, J.; Monin, G.; Ecolan, P.; Krauss, D. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. *J. Anim. Sci.* **1991**, *69*, 2844–2854, doi:10.2527/1991.6972844x.
- 13. Le Dividich, J.; Vermorel, M.; Noblet, J.; Bouvier, J.C.; Aumaitre, D.A. Effects of environmental temperature on heat production, energy retention, protein and fat gain in early weaned piglets. *Br. J. Nutr.* **1980**, *44*, 313–323, doi:10.1079/BJN19800046.
- 14. Weller, M.M.D.C.A.; Alebrante, L.; Campos, P.H.R.F.; Saraiva, A.; Silva, B.A.N.; Donzele, J.L.; Oliveira, R.F.M.; Silva, F.F.; Gasparino, E.; Lopes, P.S.; et al. Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression. *Animal* **2013**, *7*, 1985–1993, doi:10.1017/S1751731113001535.
- 15. Collin, A.; Vaz, M.-J.; Dividich, J. Le Effects of high temperature on body temperature and hormonal adjustments in piglets. *Reprod. Nutr. Dev.* **2002**, *42*, 45–53.
- 16. Lopez, J.; Jesse, G.W.; Becker, B.A.; Ellersieck, M.R. Effects of temperature on the performance of finishing swine: I. Effects of a hot, diurnal temperature on average daily gain, feed intake, and feed efficiency. *J. Anim. Sci.* **1991**, *69*, 1843–1849, doi:10.2527/1991.6951843x.
- 17. White, H.M.; Richert, B.T.; Schinckel, A.P.; Burgess, J.R.; Donkin, S.S.; Latour, M.A. Effects of temperature stress on growth performance and bacon quality in grow-finish pigs housed at two densities. *J. Anim. Sci.* **2008**, *86*, 1789–1798, doi:10.2527/jas.2007-0801.
- 18. Dividich, J.L.E. Effects of Environmental Temperature on the Growth Rates of Early-Weaned Piglets. *Livest. Pro* **1981**, *8*, 75–86.
- 19. Rinaldo, D.; Le Dividich, J. Assessment of optimal temperature for performance and chemical body composition of growing pigs. *Livest. Prod. Sci.* **1991**, *29*, 61–75, doi:10.1016/0301-6226(91)90120-F.
- 20. Rinaldo, D.; Le Dividich, J.; Noblet, J. Adverse effects of tropical climate on voluntary feed intake and performance of growing pigs. *Livest. Prod. Sci.* **2000**, *66*, 223–234, doi:10.1016/S0301-

6226(00)00181-0.

- 21. Collin, A.; van Milgen, J.; Dubois, S.; Noblet, J. Effect of high temperature on feeding behaviour and heat production in group-housed young pigs. *Br. J. Nutr.* **2001**, *86*, 63, doi:10.1079/BJN2001356.
- 22. Collin, A.; Van Milgen, J.; Dubois, S.; Noblet, J. Effect of high temperature and feeding level on energy utilization in piglets. *J. Anim. Sci.* **2001**, *79*, 1849–1857, doi:10.2527/2001.7971849x.
- 23. Ferguson, N.S.; Gous, R.M. The influence of heat production on voluntary food intake in growing pigs given protein-deficient diets. *Anim. Sci.* **1997**, *64*, 365–378, doi:10.1017/S1357729800015939.
- 24. Oliveira, R.F.M.; Donzele, J.L. Effect of environmental temperature on performance and on physiological and hormonal parameters of gilts fed at different levels of digestible energy. *Anim. Feed Sci. Technol.* **1999**, *81*, 319–331, doi:10.1016/S0377-8401(99)00068-1.
- 25. Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; Schönhart, M.; et al. Impacts of global warming on confined livestock systems for growing-fattening pigs: simulation of heat stress for 1981 to 2017 in Central Europe. *Int. J. Biometeorol.* **2019**, *63*, 221–230, doi:10.1007/s00484-018-01655-0.
- 26. Büscher, W. Energieverbraucher im Stall und Einflüsse der Klimatechnik auf Leistung und Gesundheit bei Schweinen und Geflügel. In *Energieversorgung in Geflügel- und Schweineställen, KTBL-Schrift* 445.; KTBL: Darmstadt, Germany, 2006; pp. 30–42.
- 27. Fritsche, U.R.; Schmidt, K. *Globales Emissions-Modell Integrierter Systeme (GEMIS), Handbuch zu GEMIS* 4.4; Darmstadt, Germany, 2007.
- DLG; Ratschow, J.P.; Schulte-Sutrum, R.; Westfalen-Lippe, L.; Büscher, W.; Nannen, C.; Feller, B. DLG Merkblatt 346 Kühlung von Schweineställen. 2008. Available online: https://www.dlg.org/fileadmin/downloads/landwirtschaft/themen/publikationen/merkblaetter /dlg-merkblatt_346.pdf (accessed on 12 November 2020).