A Bibliometric Analysis of COVID-19 across Science and Social Science Research Landscape
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis across Different Subject-Area Categories
3.2. Bibliometric Analysis across Different Subject-Area Classifications and Fields
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Subject Area | Research Hotspots | Keywords |
---|---|---|
Health Sciences | Pandemics | Humans, Pandemics, Pneumonia, Epidemic, China, Infection Control, Virus Transmission, Health Care Personnel, Procedures, Practice Guideline |
Risk Factors and Symptoms | Female, Male, Adult, Fever, Middle Aged, Aged, Clinical Article, Coughing, Case Report, Computer Assisted Tomography | |
Mortality | Nonhuman, Disease Severity, Virology, Complication, Risk Factor, Intensive Care Unit, Mortality, Mortality Rate, Hospitalization, Comorbidity | |
Life Sciences | Pandemics | Humans, Pandemics, Pneumonia, China, Epidemic, Virus Transmission, Disease Severity, Female, Male, Adult |
Virology | Nonhuman, Angiotensin Converting Enzyme 2, Virology, Genetics, Controlled Study, Animals, Animal, Drug Effect, Physiology, Metabolism | |
Immunology | Immunology, Virus Replication, Immune Response, Inflammation, Protein Expression, Interleukin 6, Pathophysiology, Pathology, Signal Transduction, Pathogenicity | |
Drug Efficiency | Unclassified Drug, Antivirus Agent, Remdesivir, Hydroxychloroquine, Antiviral Activity, Antiviral Agents, Virus Genome, Drug Efficacy, Chloroquine, Lopinavir Plus Ritonavir | |
Physical Sciences | Pandemics | Pandemics, Humans, Pneumonia, Virus, Viral Disease, Diseases, Epidemic, Respiratory Disease, Epidemiology, Disease Transmission |
China and Disease Transmission | China, Infectious Diseases, Transmissions, Temperature, Humidity, Italy, Environmental Temperature, Population Statistics, Major Clinical Study, Air Temperature | |
Air Pollution | Air Quality, Air Pollution, Particulate Matter, Nitrogen Dioxide, Concentration (Composition), Nitrogen Oxides, Quarantine, Atmospheric Pollution, City, Environmental Monitoring | |
Social Sciences and Humanities | Pandemics | Pandemics, Crisis, Resilience, Inequality, Lockdown, India, Tourism, Globalization, Learning, Teaching |
Epidemics | Epidemic, Human Resource Management, Analytics, Critical Care, Differential Equations, Discrete Time Markov Chains, Forecasting, Forecasting Models, Hubei Province, Intensive Care Units | |
Viral Disease and China | Viral Disease, China, Public Health, Infectious Diseases, Virus, Disease Spread, Australia, Disease Control, Migration, South Korea | |
Respiratory Disease | Respiratory Disease, Health Care, Health Care Personnel, Health Equity, Supply Chain Management, Vulnerability, Disease, Predisposition, Government, Health Care Availability, Health Care Planning | |
Social Distancing * | Social Distancing, Consumer Behavior, Social Media, Digital Technology, Health Care Workers | |
Mental Health | Mental Health, Humans, Pneumonia, Trauma, Psychology, PTSD, Anxiety, Female, Male, Stress |
Binary Logistic Model | Health Sciences | Life Sciences | Physical Sciences | Social Sciences & Humanities | ||||
---|---|---|---|---|---|---|---|---|
(1-Yes, 0-No) | (1-Yes, 0-No) | (1-Yes, 0-No) | (1-Yes, 0-No) | |||||
Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | |
acute | 1.682 | 0.000 | 0.426 | 0.107 | −2.123 | 0.000 | −3.483 | 0.000 |
admission | 0.758 | 0.234 | 0.089 | 0.811 | −1.206 | 0.188 | −1.055 | 0.445 |
age | 0.673 | 0.131 | 0.324 | 0.365 | −1.339 | 0.018 | −0.648 | 0.299 |
antiviral | −0.459 | 0.172 | 0.415 | 0.180 | −0.133 | 0.765 | −1.134 | 0.226 |
april | 0.243 | 0.529 | −0.878 | 0.022 | 0.120 | 0.779 | −1.234 | 0.025 |
area | −0.683 | 0.051 | −0.618 | 0.086 | 1.666 | 0.000 | −0.769 | 0.098 |
cancer | 1.369 | 0.006 | 0.992 | 0.001 | −1.129 | 0.091 | −1.745 | 0.049 |
cell | −0.145 | 0.591 | 0.073 | 0.760 | −1.538 | 0.000 | −2.561 | 0.005 |
challenge | −0.322 | 0.287 | −1.007 | 0.002 | −0.605 | 0.095 | 0.178 | 0.606 |
change | −1.022 | 0.001 | −0.835 | 0.008 | 0.016 | 0.964 | 0.669 | 0.060 |
characteristic | 0.041 | 0.925 | 0.277 | 0.429 | −0.162 | 0.760 | −0.341 | 0.630 |
chest | 0.627 | 0.247 | −1.417 | 0.000 | −0.282 | 0.660 | −1.338 | 0.319 |
child | 1.693 | 0.000 | −0.966 | 0.001 | −1.996 | 0.000 | −0.734 | 0.100 |
china | 0.202 | 0.576 | −0.193 | 0.582 | −0.395 | 0.322 | −1.075 | 0.046 |
clinical | 1.262 | 0.000 | 0.928 | 0.000 | −2.986 | 0.000 | −2.940 | 0.000 |
community | 0.441 | 0.155 | −0.277 | 0.392 | −0.564 | 0.128 | −0.089 | 0.810 |
compared | −0.141 | 0.713 | 0.372 | 0.253 | 0.418 | 0.341 | −1.564 | 0.015 |
concern | 0.132 | 0.718 | −0.056 | 0.870 | −0.239 | 0.587 | −0.034 | 0.943 |
condition | −0.737 | 0.034 | −0.431 | 0.186 | 0.958 | 0.015 | 0.274 | 0.569 |
confirmed | −0.209 | 0.530 | −0.633 | 0.038 | 0.191 | 0.604 | −1.899 | 0.004 |
country | 0.434 | 0.090 | −0.838 | 0.003 | −0.291 | 0.306 | −0.642 | 0.053 |
crisis | −1.847 | 0.000 | −1.789 | 0.000 | −1.659 | 0.000 | 2.022 | 0.000 |
death | −0.306 | 0.301 | −0.473 | 0.097 | −0.124 | 0.713 | −0.287 | 0.536 |
december | 0.960 | 0.046 | 0.699 | 0.089 | −0.941 | 0.095 | −1.074 | 0.243 |
diabetes | 1.701 | 0.000 | 0.194 | 0.511 | −1.101 | 0.045 | −1.634 | 0.027 |
diagnosis | 1.281 | 0.004 | 0.224 | 0.455 | −0.938 | 0.090 | −1.712 | 0.072 |
disease | 1.182 | 0.000 | −0.767 | 0.004 | −0.843 | 0.021 | −4.145 | 0.000 |
drug | −1.286 | 0.000 | 0.648 | 0.007 | 0.166 | 0.629 | −1.387 | 0.033 |
emergency | 0.824 | 0.023 | −0.548 | 0.099 | −0.903 | 0.043 | −0.849 | 0.066 |
epidemic | 0.049 | 0.844 | −1.169 | 0.000 | 0.734 | 0.005 | −0.780 | 0.028 |
experience | 0.871 | 0.012 | −0.537 | 0.110 | −1.950 | 0.000 | 1.131 | 0.004 |
factor | −0.990 | 0.001 | 0.305 | 0.281 | 1.791 | 0.000 | 0.064 | 0.878 |
february | −0.072 | 0.870 | 0.124 | 0.752 | −0.089 | 0.855 | −1.157 | 0.125 |
finding | −0.312 | 0.358 | −0.978 | 0.002 | −0.534 | 0.206 | −0.414 | 0.413 |
global | −1.355 | 0.000 | −0.290 | 0.312 | 0.723 | 0.018 | −0.001 | 0.998 |
government | −1.147 | 0.000 | −1.592 | 0.000 | 0.014 | 0.967 | 1.442 | 0.000 |
group | 0.077 | 0.789 | −0.302 | 0.227 | −2.053 | 0.000 | 1.129 | 0.003 |
guideline | 1.860 | 0.000 | −0.723 | 0.069 | −1.242 | 0.039 | −0.713 | 0.219 |
health | 2.374 | 0.000 | −0.805 | 0.014 | −1.108 | 0.004 | −2.080 | 0.000 |
healthcare | 2.292 | 0.000 | −0.816 | 0.010 | −1.054 | 0.009 | −1.688 | 0.000 |
hospital | 1.935 | 0.000 | −1.115 | 0.000 | −1.513 | 0.003 | −2.350 | 0.000 |
human | −1.028 | 0.000 | 1.463 | 0.000 | 0.254 | 0.411 | −0.591 | 0.189 |
illness | 0.621 | 0.160 | −0.319 | 0.354 | −1.083 | 0.061 | 0.135 | 0.833 |
immune | 0.766 | 0.026 | 1.410 | 0.000 | −1.450 | 0.004 | −1.787 | 0.038 |
individual | −0.465 | 0.110 | −0.504 | 0.097 | −0.102 | 0.765 | 0.136 | 0.721 |
infected | −0.507 | 0.153 | −0.146 | 0.636 | 0.651 | 0.112 | −1.188 | 0.078 |
infection | 1.416 | 0.000 | 0.127 | 0.575 | −1.750 | 0.000 | −2.919 | 0.000 |
infectious | −0.035 | 0.923 | −0.080 | 0.812 | 1.031 | 0.010 | −0.821 | 0.220 |
information | −0.527 | 0.061 | −0.784 | 0.010 | 0.557 | 0.069 | −0.664 | 0.067 |
international | −0.176 | 0.593 | −0.264 | 0.435 | −1.361 | 0.002 | 0.752 | 0.065 |
intervention | −0.106 | 0.760 | −0.736 | 0.044 | −0.447 | 0.282 | −0.420 | 0.388 |
laboratory | 1.041 | 0.026 | 1.294 | 0.000 | −1.128 | 0.062 | −1.371 | 0.138 |
lockdown | −1.602 | 0.000 | −1.198 | 0.000 | 1.298 | 0.000 | −0.802 | 0.010 |
lung | −0.020 | 0.955 | −0.758 | 0.008 | −0.761 | 0.141 | −1.745 | 0.122 |
march | 0.282 | 0.383 | −1.068 | 0.001 | −0.288 | 0.429 | −0.875 | 0.052 |
mechanism | −0.222 | 0.509 | 0.039 | 0.897 | −0.487 | 0.267 | −1.097 | 0.128 |
medical | 1.023 | 0.001 | −1.302 | 0.000 | −1.453 | 0.000 | −0.991 | 0.013 |
medicine | 1.542 | 0.000 | −0.302 | 0.387 | −1.839 | 0.001 | −1.671 | 0.008 |
mental | 0.171 | 0.593 | 0.511 | 0.112 | −2.091 | 0.000 | 1.615 | 0.000 |
method | 1.561 | 0.000 | −1.008 | 0.002 | −0.307 | 0.444 | −2.900 | 0.000 |
mortality | 0.468 | 0.193 | 0.221 | 0.427 | −0.827 | 0.067 | −2.068 | 0.005 |
organization | −0.575 | 0.158 | 0.094 | 0.824 | −0.296 | 0.533 | −0.201 | 0.689 |
outbreak | −0.533 | 0.046 | −0.087 | 0.741 | 0.294 | 0.318 | −0.380 | 0.312 |
outcome | 0.227 | 0.551 | −0.239 | 0.415 | −0.326 | 0.515 | −0.631 | 0.292 |
pandemic | −1.071 | 0.000 | −1.643 | 0.000 | −1.439 | 0.000 | 1.610 | 0.000 |
patient | 4.775 | 0.000 | −0.323 | 0.154 | −5.349 | 0.000 | −6.197 | 0.000 |
people | 0.207 | 0.452 | −0.694 | 0.019 | −0.682 | 0.034 | 0.737 | 0.026 |
pneumonia | 1.144 | 0.005 | −0.872 | 0.003 | −0.894 | 0.077 | −1.727 | 0.073 |
procedure | 1.678 | 0.002 | −1.587 | 0.000 | −0.986 | 0.101 | −1.336 | 0.068 |
protective | 0.495 | 0.238 | −0.680 | 0.075 | −0.489 | 0.321 | −1.232 | 0.033 |
protein | −0.366 | 0.178 | 1.866 | 0.000 | −0.571 | 0.087 | −2.245 | 0.005 |
public | −0.629 | 0.137 | −0.260 | 0.589 | −0.051 | 0.911 | 1.054 | 0.032 |
public health | 0.886 | 0.102 | 0.282 | 0.626 | −0.211 | 0.727 | −0.655 | 0.315 |
recommendation | 1.746 | 0.000 | −0.937 | 0.015 | −1.270 | 0.034 | −1.035 | 0.082 |
resource | 0.311 | 0.416 | −0.932 | 0.017 | −0.716 | 0.118 | 0.187 | 0.666 |
risk | 1.089 | 0.000 | −0.648 | 0.015 | −0.541 | 0.122 | 0.998 | 0.008 |
rna | −0.973 | 0.003 | 1.103 | 0.000 | −0.143 | 0.714 | −1.569 | 0.098 |
service | 0.913 | 0.008 | −0.751 | 0.036 | −0.825 | 0.048 | 1.163 | 0.001 |
social | −0.261 | 0.287 | −1.589 | 0.000 | −0.363 | 0.198 | 0.589 | 0.032 |
society | 0.407 | 0.169 | −1.848 | 0.000 | −1.129 | 0.002 | −0.469 | 0.198 |
spread | −0.728 | 0.012 | −0.808 | 0.007 | 0.718 | 0.023 | −0.150 | 0.717 |
strategy | 0.083 | 0.771 | −0.583 | 0.049 | 0.048 | 0.882 | −0.167 | 0.648 |
surgery | 2.642 | 0.000 | −2.302 | 0.000 | −2.106 | 0.005 | −2.433 | 0.001 |
surgical | 1.701 | 0.008 | −1.420 | 0.006 | −1.240 | 0.092 | −1.955 | 0.020 |
symptom | 1.454 | 0.000 | −0.439 | 0.075 | −1.855 | 0.000 | −1.266 | 0.044 |
testing | 0.303 | 0.391 | 0.784 | 0.007 | −0.790 | 0.073 | −1.005 | 0.069 |
therapeutic | −0.750 | 0.025 | 1.103 | 0.000 | −0.538 | 0.264 | −1.638 | 0.067 |
therapy | 0.897 | 0.021 | −0.191 | 0.502 | −1.433 | 0.017 | −1.322 | 0.113 |
transmission | −0.143 | 0.608 | −1.139 | 0.000 | 1.010 | 0.001 | −1.949 | 0.000 |
treatment | 0.078 | 0.802 | 0.314 | 0.210 | −0.993 | 0.021 | −2.274 | 0.001 |
trial | 0.254 | 0.524 | −0.281 | 0.375 | −1.240 | 0.088 | −1.038 | 0.278 |
vaccine | 0.456 | 0.126 | 1.618 | 0.000 | −0.211 | 0.561 | −1.318 | 0.017 |
viral | 0.281 | 0.366 | 0.048 | 0.854 | −0.591 | 0.134 | −2.356 | 0.005 |
virus | −0.184 | 0.454 | −0.009 | 0.968 | 0.574 | 0.041 | −0.700 | 0.101 |
woman | 1.509 | 0.000 | −1.243 | 0.001 | −1.847 | 0.001 | −0.766 | 0.125 |
worker | 0.493 | 0.251 | −0.108 | 0.776 | −0.846 | 0.093 | 0.405 | 0.403 |
world | −0.548 | 0.071 | −0.356 | 0.253 | 0.210 | 0.537 | 0.497 | 0.191 |
worldwide | 0.465 | 0.190 | 0.694 | 0.032 | −0.357 | 0.399 | −0.753 | 0.147 |
wuhan | 0.612 | 0.161 | 0.467 | 0.228 | −0.757 | 0.122 | −1.402 | 0.076 |
year | 0.025 | 0.948 | −0.965 | 0.007 | −0.537 | 0.224 | −0.360 | 0.462 |
Pseudo R2 | 0.256 | 0.146 | 0.217 | 0.403 | ||||
LLR p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||
AUC | 0.824 | 0.750 | 0.822 | 0.910 | ||||
CA | 0.807 | 0.761 | 0.881 | 0.912 | ||||
Precision | 0.793 | 0.740 | 0.858 | 0.900 | ||||
Recall | 0.807 | 0.761 | 0.881 | 0.912 |
Subject Area | Clusters | Fields |
---|---|---|
Health Sciences | Internal Medicine | Internal Medicine; Endocrinology, Diabetes and Metabolism; Psychiatry and Mental Health; Health Policy; General Nursing |
Radiology and Hematology | Radiology, Nuclear Medicine and Imaging; Hematology; Pediatrics, Perinatology and Child Health; Oncology; Obstetrics and Gynecology | |
Dermatology and Neurology | Dermatology; Neurology (Clinical); Pathology and Forensic; Medicine; Histology; Anatomy | |
Cardiology, Pulmonary and Anesthesiology | Cardiology and Cardiovascular Medicine; Pulmonary and Respiratory Medicine; Anesthesiology and Pain Medicine; Critical Care and Intensive Care Medicine; Emergency Medicine | |
Surgery | Surgery; Otorhinolaryngology; Gastroenterology; Hepatology; General Dentistry | |
Pharmacology | Pharmacology (Medical); Ophthalmology; Immunology and Allergy; Transplantation; Optometry | |
Epidemiology | Infectious Diseases; Microbiology (Medical); Epidemiology; Health Informatics; Health Information Management | |
Sports Medicine and Rehabilitation | Orthopedics and Sports Medicine; Physical Therapy, Sports Therapy and Rehabilitation; Rehabilitation; Complementary and Alternative Medicine; Occupational Therapy | |
Public Health * | Public Health, Environmental and Occupational Health; Family Practice; Community and Home Care | |
Life Sciences | Pharmacology and Genetics | Pharmacology; Genetics; Molecular Medicine; Drug Discovery; Clinical Biochemistry |
Biotechnology and Toxicology | Biotechnology; Toxicology; Food Science; Neurology; Aging | |
Biochemistry and Pharmacology | General Biochemistry, Genetics and Molecular Biology; General Pharmacology, Toxicology and Pharmaceutics; General Neuroscience; General Immunology and Microbiology; General Agricultural and Biological Sciences | |
Microbiology and Ecology * | Cell Biology; Ecology, Evolution, Behavior and Systematics; Applied Microbiology and Biotechnology; Developmental Biology | |
Molecular Biology and Biochemistry * | Molecular Biology; Biochemistry; Structural Biology; Biophysics | |
Immunology, Neuroscience and Endocrine Systems * | Immunology; Behavioral Neuroscience; Endocrine and Autonomic Systems | |
Virology and Microbiology * | Virology; Microbiology; Parasitology | |
Physical Sciences | Electrical/Electronic and Mechanical Engineering | Electrical and Electronic Engineering; General Materials Science; Mechanical Engineering; Condensed Matter Physics; Materials Chemistry |
General Computer Science and Engineering | General Computer Science; General Engineering; General Energy; General Chemistry; General Chemical Engineering | |
Mathematics and Physics * | Applied Mathematics; General Physics and Astronomy; Statistical and Nonlinear Physics; General Mathematics | |
Environment and Pollution * | Environmental Chemistry; Pollution; Environmental Engineering; Waste Management and Disposal | |
Social Sciences and Humanities | Business, Management and Economics | Marketing; Strategy and Management; Business and International Management; Economics and Econometrics; Finance |
Health, Philosophy and Psychology | Health (Social Science); Philosophy; Social Sciences (Miscellaneous); General Psychology; History | |
Education and Applied Psychology | Education; Applied Psychology; Organizational Behavior and Human Resource Management; Public Administration; Library and Information Sciences | |
Geography and Tourism | Geography, Planning and Development; Tourism, Leisure and Hospitality Management; General Business, Management and Accounting; General Social Sciences; Urban Studies | |
Humanities and Anthropology * | Arts and Humanities (Miscellaneous); Anthropology; Developmental and Educational Psychology | |
Sociology and Economics * | Sociology and Political Science; Political Science and International Relations; General Economics, Econometrics and Finance | |
Social and Clinical Psychology * | Social Psychology; Clinical Psychology | |
Law and Safety * | Law; Safety Research |
References
- Fan, Y.; Zhao, K.; Shi, Z.L.; Zhou, P. Bat Coronaviruses in China. Viruses 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 1 September 2020).
- Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.; Khan, K. Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. J. Travel Med. 2020, 27, 1–3. [Google Scholar] [CrossRef]
- Lin, Q.; Zhao, S.; Gao, D.; Lou, Y.; Yang, S.; Musa, S.S.; Wang, M.H.; Cai, Y.; Wang, W.; Yang, L.; et al. A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 2020, 93, 211–216. [Google Scholar] [CrossRef]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yu, J. Public governance mechanism in the prevention and control of the COVID-19: Information, decision-making and execution. J. Chin. Gov. 2020, 5, 178–197. [Google Scholar] [CrossRef] [Green Version]
- ECDC. COVID-19 Situation Update Worldwide, as of 1 July 2020. Available online: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 1 July 2020).
- IMF. World Economic Outlook, April 2020: The Great Lockdown; IMF: Washington, DC, USA, 2020. [Google Scholar]
- OECD. OECD Economic Outlook, June 2020; OECD: Paris, France, 2020. [Google Scholar]
- Hu, Y.; Chen, M.; Wang, Q.; Zhu, Y.; Wang, B.; Li, S.; Xu, Y.; Zhang, Y.; Liu, M.; Wang, Y.; et al. From SARS to COVID-19: A bibliometric study on emerging infectious diseases with natural language processing technologies. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Zhai, F.; Zhai, Y.; Cong, C.; Song, T.; Xiang, R.; Feng, T.; Liang, Z.; Zeng, Y.; Yang, J.; Yang, J.; et al. Research Progress of Coronavirus Based on Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3766. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L. Twenty-Year Span of Global Coronavirus Research Trends: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3082. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Viedma, E.; López-Robles, J.R.; Guallar, J.; Cobo, M.J. Global trends in coronavirus research at the time of Covid-19: A general bibliometric approach and content analysis using SciMAT. El Profesional de la Información 2020, 29. [Google Scholar] [CrossRef]
- Ram, S. Coronavirus Research Trends: A 50–Year Bibliometric Assessment. Sci. Tech. Libr. 2020, 39, 210–266. [Google Scholar] [CrossRef] [Green Version]
- Joshua, V.; Sivaprakasam, S. Coronavirus: Bibliometric analysis of scientific publications from 1968 to 2020. Med. J. Islam. Repub. Iran 2020, 34, 456–463. [Google Scholar] [CrossRef]
- Chahrour, M.; Assi, S.; Bejjani, M.; Nasrallah, A.A.; Salhab, H.; Fares, M.; Khachfe, H.H. A bibliometric analysis of Covid-19 research activity: A call for increased output. Cureus 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Zhou, S.; Yao, R.; Wen, K.; Da, W.; Meng, Y.; Yang, K.; Liu, H.; Tao, L. COVID-19 will stimulate a new coronavirus research breakthrough: A 20-year bibliometric analysis. Ann. Transl. Med. 2020, 8, 528. [Google Scholar] [CrossRef]
- CORD-19. COVID-19 Open Research Dataset. Available online: https://www.semanticscholar.org/cord19 (accessed on 28 June 2020).
- Colavizza, G.; Costas, R.; Traag, V.A.; Van Eck, N.J.; Van Leeuwen, T.; Waltman, L. A scientometric overview of CORD-19. BioRxiv 2020. [Google Scholar] [CrossRef]
- Odone, A.; Salvati, S.; Bellini, L.; Bucci, D.; Capraro, M.; Gaetti, G.; Amerio, A.; Signorelli, C. The runaway science: A bibliometric analysis of the COVID-19 scientific literature. Acta Biomed 2020, 91, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Locher, C.; Moher, D.; Cristea, I.; Florian, N. Publication by association: The Covid-19 pandemic reveals relationships between authors and editors. MetaArXiv 2020. [Google Scholar] [CrossRef]
- Lee, J.J.; Haupt, J.P. Scientific Globalism during A Global Crisis: Research Collaboration and Open Access Publications on COVID-19. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Sa’ed, H.Z.; Al-Jabi, S.W. Mapping the situation of research on coronavirus disease-19 (COVID-19): A preliminary bibliometric analysis during the early stage of the outbreak. BMC Infect. Dis. 2020, 20, 561. [Google Scholar] [CrossRef]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Shi, G.; Tian, J.; Chen, C.; Hambly, B.D.; et al. Bibliometric analysis on COVID-19: A comparison of research between English and Chinese studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef]
- Andersen, J.P.; Nielsen, M.W.; Simone, N.L.; Lewiss, R.E.; Jagsi, R. Meta-Research: COVID-19 medical papers have fewer women first authors than expected. Elife 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Vasantha Raju, N.; Patil, S.B. Indian Publications on SARS-CoV-2: A bibliometric study of WHO COVID-19 database. Diabetes Metab. Syndr. 2020, 14, 1171. [Google Scholar] [CrossRef]
- ElHawary, H.; Salimi, A.; Diab, N.; Smith, L. Bibliometric Analysis of Early COVID-19 Research: The Top 50 Cited Papers. Infect. Dis. Res. Treat. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.L.; Jin, X.Y.; Gao, Y.; Xie, J.; Liu, M.; Zhang, J.H.; Tian, J.H. Bibliometric analysis of researches on traditional Chinese medicine for coronavirus disease 2019 (COVID-19). Integr. Med. Res. 2020, 9, 100490. [Google Scholar] [CrossRef]
- Mahi, M.; Mobin, M.A.; Habib, M.; Akter, S. Knowledge Mapping of Pandemic and Epidemic Studies in Economics: Future Agenda for COVID-19 Research. SSRN 2020. [Google Scholar] [CrossRef]
- Verma, S.; Gustafsson, A. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. J. Bus. Res. 2020, 118, 253–261. [Google Scholar] [CrossRef]
- Dehghanbanadaki, H.; Seif, F.; Vahidi, Y.; Razi, F.; Hashemi, E.; Khoshmirsafa, M.; Aazami, H. Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Med. J. Islam. Repub. Iran 2020, 34, 354–362. [Google Scholar] [CrossRef]
- Hamidah, I.; Sriyono, S.; Hudha, M.N. A Bibliometric Analysis of Covid-19 Research using VOSviewer. Indones. J. Sci. Technol. 2020, 5, 34–41. [Google Scholar] [CrossRef]
- Hossain, M.M. Current status of global research on novel coronavirus disease (Covid-19): A bibliometric analysis and knowledge mapping. F1000Research 2020. [Google Scholar] [CrossRef]
- Lou, J.; Tian, S.J.; Niu, S.M.; Kang, X.Q.; Lian, H.X.; Zhang, L.X.; Zhang, J.J. Coronavirus disease 2019: A bibliometric analysis and review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3411–3421. [Google Scholar] [CrossRef]
- Nasab, F.R. Bibliometric Analysis of Global Scientific Research on SARSCoV-2 (COVID-19). MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Kambhampati, S.B.; Vaishya, R.; Vaish, A. Unprecedented surge in publications related to COVID-19 in the first three months of pandemic: A bibliometric analytic report. J. Clin. Orthop. Trauma 2020, 11, S304–S306. [Google Scholar] [CrossRef]
- McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012. [Google Scholar]
- Wang, C.; Lim, M.K.; Zhao, L.; Tseng, M.L.; Chien, C.F.; Lev, B. The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview. Omega 2020, 93, 102098. [Google Scholar] [CrossRef]
- De Felice, F.; Polimeni, A. Coronavirus Disease (COVID-19): A Machine Learning Bibliometric Analysis. In Vivo 2020, 34, 1613–1617. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. El profesional de la información 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- VanderPlas, J. Python Data Science Handbook: Essential Tools for Working with Data; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Levandowsky, M.; Winter, D. Distance between sets. Nature 1971, 234, 34–35. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with Python. In Proceedings of the 9th Python in Science Conference (SciPy 2010), Austin, TX, USA, 28 June—3 July 2010; van der Walt, S., Millman, J., Eds.; pp. 62–96. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Ye, Z.; Tafti, A.P.; He, K.Y.; Wang, K.; He, M.M. Sparktext: Biomedical text mining on big data framework. PLoS ONE 2016, 11, e0162721. [Google Scholar] [CrossRef] [Green Version]
- Loper, E.; Bird, S. NLTK: The natural language toolkit. arXiv 2002, arXiv:cs/0205028. [Google Scholar]
- Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar] [CrossRef]
- Perkins, J. Python Text Processing with NLTK 2.0 Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2010. [Google Scholar]
- Lilleberg, J.; Zhu, Y.; Zhang, Y. Support vector machines and word2vec for text classification with semantic features. In Proceedings of the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Beijing, China, 6–8 July 2015; pp. 136–140. [Google Scholar] [CrossRef]
- Windmeijer, F.A. Goodness-of-fit measures in binary choice models. Econom. Rev. 1995, 14, 101–116. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
- Darsono, D.; Rohmana, J.A.; Busro, B. Against COVID-19 Pandemic: Bibliometric Assessment of World Scholars’ International Publications related to COVID-19. Jurnal Komunikasi Ikatan Sarjana Komunikasi Indonesia 2020, 5, 75–89. [Google Scholar] [CrossRef]
- Homolak, J.; Kodvanj, I.; Virag, D. Preliminary analysis of COVID-19 academic information patterns: A call for open science in the times of closed borders. Preprints 2020. [Google Scholar] [CrossRef]
- Tran, B.X.; Ha, G.H.; Nguyen, L.H.; Vu, G.T.; Hoang, M.T.; Le, H.T.; Latkin, C.A.; Ho, C.S.; Ho, R.C. Studies of Novel Coronavirus Disease 19 (COVID-19) Pandemic: A Global Analysis of Literature. Int. J. Environ. Res. Public Health 2020, 17, 4095. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sarwar, S.A.; McKyer, E.L.J.; Ma, P. Applications of Artificial Intelligence Technologies in COVID-19 Research: A Bibliometric Study. Preprints 2020. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Fawzy, M.; Elaswad, A.; Sobieh, A.; Kenney, S.P.; Shehata, A.A. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J. Clin. Med. 2020, 9, 1225. [Google Scholar] [CrossRef]
Database Summary | Findings |
---|---|
Bibliometric Items | Number |
Total documents | 16,866 |
Total authors | 66,504 |
Total journals | 2548 |
Total citations | 100,683 |
Cited documents | 7422 |
Average citations | 13.57 |
Average authors | 3.94 |
Document Type | Number (Share) |
Article | 6998 (41.5%) |
Letter | 4467 (26.5%) |
Review | 1713 (10.2%) |
Editorial | 1698 (10.1%) |
Note | 1593 (9.4%) |
Other | 397 (2.4%) |
Subject Area | Subject Area Classification (All) | Fields (Top 10) |
---|---|---|
Health Sciences (65.2%) | Medicine (91.0%); Nursing (4.9%); Health Professions (2.1%); Dentistry (1.2%); Veterinary (0.8%) | Infectious Diseases (10.2%); General Medicine (9.7%); Public Health, Environmental and Occupational Health (5.3%); Surgery (4.8%); Microbiology (medical) (4.4%); Cardiology and Cardiovascular Medicine (4.2%); Psychiatry and Mental Health (3.7%); Radiology, Nuclear Medicine and Imaging (3.1%); Neurology (clinical) (2.9%); Immunology and Allergy (2.9%) |
Life Sciences (19.0%) | Biochemistry, Genetics and Molecular Biology (35.3%); Immunology and Microbiology (31.4%); Neuroscience (15.2%); Pharmacology, Toxicology and Pharmaceutics (13.0%); Agricultural and Biological Sciences (5.1%) | Virology (11.6%); Immunology (10.2%); General Biochemistry, Genetics and Molecular Biology (5.9%); Pharmacology (5.3%); Cancer Research (4.9%); Neurology (4.6%); Molecular Biology (4.5%); Biochemistry (3.7%); Microbiology (3.6%); Biological Psychiatry (3.6%) |
Physical Sciences (7.5%) | Environmental Science (31.4%); Engineering (15.4%); Computer Science (10.5%); Mathematics (9.4%); Chemical Engineering (8.6%); Physics and Astronomy (8.0%); Chemistry (6.9%); Energy (5.1%); Material Science (3.0%); Earth and Planetary Sciences (1.7%) | Pollution (10.7%); Health, Toxicology and Mutagenesis (6.8%); Environmental Engineering (6.1%); Environmental Chemistry (5.9%); Waste Management and Disposal (5.5%); Applied Mathematics (4.6%); General Physics and Astronomy (3.6%); Biomedical Engineering (3.4%); Statistical and Nonlinear Physics (3.0%); General Mathematics (2.9%) |
Social Sciences and Humanities (8.3%) | Social Sciences (44.2%); Psychology (24.6%); Business, Management and Accounting (11.4%); Arts and Humanities (9.6%); Economics, Econometrics and Finance (8.8%); Decision Sciences (1.3%) | Sociology and Political Science (9.2%); Clinical Psychology (6.3%); Geography, Planning and Development (6.3%); Health (social science) (5.7%); Social Psychology (5.6%); Education (5.1%); Political Science and International Relations (5.0%); General Psychology (4.9%); Arts and Humanities (miscellaneous) (4.2%); Applied Psychology (3.7%) |
Source Title | Number of Documents | Number of Citations | Subject Area (Classification) | Sub-Subject Area/Field (Ranking) 2019 | SNIP 2019 | Country |
---|---|---|---|---|---|---|
Journal of Medical Virology | 293 | 3657 | Life Sciences (Immunology and Microbiology) Health Sciences (Medicine) | Virology (37/66, Q3) Infectious Diseases (108/283, Q2) | 0.780 | USA |
The BMJ | 261 | 1358 | Health Sciences (Medicine) | General Medicine (21/529, Q1) | 3.999 | UK |
The Lancet | 239 | 13,755 | Health Sciences (Medicine) | General Medicine (1/529, Q1) | 21.313 | UK |
Medical Hypotheses | 227 | 107 | Health Sciences (Medicine) | General Medicine (99/529, Q1) | 0.509 | USA |
Science of the Total Environment | 174 | 948 | Physical Sciences (Environmental Science) | Environmental Engineering (10/132, Q1) Pollution (13/120, Q1) Waste Management and Disposal (10/100, Q1) Environmental Chemistry (17/115, Q1) | 1.977 | Netherlands |
International Journal of Environmental Research and Public Health | 155 | 490 | Health Sciences (Medicine) Physical Sciences (Environmental Science) | Public Health, Environmental and Occupational Health (174/516, Q2) Health, Toxicology and Mutagenesis (68/128, Q3) Pollution (58/120, Q2) | 1.248 | Switzerland |
Journal of Infection | 155 | 1049 | Health Sciences (Medicine) | Microbiology (medical) (13/115, Q1) Infectious Diseases (21/238, Q1) | 1.587 | UK |
International Journal of Infectious Diseases | 148 | 1503 | Health Sciences (Medicine) | Microbiology (medical) (26/115, Q1) Infectious Diseases (59/283, Q1) | 1.426 | Netherlands |
Psychiatry Research | 130 | 314 | Health Sciences (Medicine) Life Sciences (Neuroscience) | Psychiatry and Mental Health (154/506, Q2) Biological Psychiatry (25/38, Q3) | 0.968 | Ireland |
Journal of Clinical Virology | 120 | 239 | Life Sciences (Immunology and Microbiology) Health Sciences (Medicine) | Virology (19/66, Q2) Infectious Diseases (44/283, Q1) | 1.238 | Netherlands |
Diabetes and Metabolic Syndrome: Clinical Research and Reviews | 119 | 462 | Health Sciences (Medicine) | Internal Medicine (75/128, Q3) Endocrinology, Diabetes and Metabolism (135/217, Q3) | 0.982 | Netherlands |
Infection Control and Hospital Epidemiology | 118 | 172 | Health Sciences (Medicine) | Microbiology (medical) (39/115, Q2) Epidemiology (40/93, Q2) Infectious Diseases (91/283, Q2) | 1.358 | UK |
Travel Medicine and Infectious Disease | 113 | 621 | Health Sciences (Medicine) | Public Health, Environmental and Occupational Health (73/516, Q1) Infectious Diseases (82/283, Q2) | 1.184 | Netherlands |
Critical Care | 112 | 244 | Health Sciences (Medicine) | Critical Care and Intensive Care Medicine (4/81, Q1) | 2.508 | UK |
The Lancet Infectious Diseases | 111 | 2280 | Health Sciences (Medicine) | Infectious Diseases (4/283, Q1) | 7.234 | UK |
New England Journal of Medicine | 106 | 11,768 | Health Sciences (Medicine) | General Medicine (2/529, Q1) | 13.212 | USA |
Asian Journal of Psychiatry | 101 | 433 | Health Sciences (Medicine) Social Sciences and Humanities (Psychology) | Psychiatry and Mental Health (217/506, Q2) General Psychology (71/204, Q2) | 1.022 | Netherlands |
Dermatologic Therapy | 100 | 153 | Health Sciences (Medicine) | Dermatology (74/123, Q3) | 0.883 | UK |
Chaos, Solitons and Fractals | 97 | 132 | Physical Sciences (Mathematics) Physical Sciences (Physics and Astronomy) | Applied Mathematics (25/510, Q1) General Mathematics (9/368, Q1) General Physics and Astronomy (27/224, Q1) Statistical and Nonlinear Physics (4/44, Q1) | 1.380 | UK |
Science | 97 | 1918 | Multidisciplinary (Multidisciplinary) | Multidisciplinary (2/111, Q1) | 7.521 | USA |
Health Sciences | Life Sciences | Physical Sciences | Social Sciences and Humanities |
---|---|---|---|
patient, health, healthcare, infection, acute, hospital, child, method, surgery, symptom, disease, medicine, guideline, woman, risk, diabetes, recommendation, clinical, medical, procedure, diagnosis, pneumonia, cancer, surgical, service, experience, therapy, emergency, immune, laboratory, December | protein, human, vaccine, immune, laboratory, RNA, therapeutic, clinical, cancer, drug, testing, worldwide | factor, lockdown, area, transmission, epidemic, infectious, condition, global, spread, virus | crisis, pandemic, mental, government, service, group, experience, risk, people, social, public |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aristovnik, A.; Ravšelj, D.; Umek, L. A Bibliometric Analysis of COVID-19 across Science and Social Science Research Landscape. Sustainability 2020, 12, 9132. https://doi.org/10.3390/su12219132
Aristovnik A, Ravšelj D, Umek L. A Bibliometric Analysis of COVID-19 across Science and Social Science Research Landscape. Sustainability. 2020; 12(21):9132. https://doi.org/10.3390/su12219132
Chicago/Turabian StyleAristovnik, Aleksander, Dejan Ravšelj, and Lan Umek. 2020. "A Bibliometric Analysis of COVID-19 across Science and Social Science Research Landscape" Sustainability 12, no. 21: 9132. https://doi.org/10.3390/su12219132