Phenotypic Dairy Cattle Trait Expressions in Dependency of Social-Ecological Characteristics along Rural–Urban Gradients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Farm Selection and Description
2.3. Cattle Trait Recording
2.4. Statistical Models
3. Results
3.1. SSI Modeling Evaluations and General SSI Impact
3.2. SSI Impact on Milk Yield and Body Condition Score
3.3. Impact of SSI on Health and Hygienic Score
3.4. Impact of SSI on Rectal Temperature
4. Discussion
4.1. Milk Yield and Body Condition Score in Dependency of SSI
4.2. Hygiene and Health in Dependency of SSI
4.3. Rectal Temperature in Dependency of SSI
4.4. Overall Social-Ecological Impacts on Dairy Cattle Farming
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Egger-Danner, C.; Cole, J.B.; Pryce, J.E.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K.F. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2015, 9, 191–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinedinst, P.L.; Wilhite, D.A.; Hahn, G.L.; Hubbard, K.G. The potential effects of climate change on summer season dairy cattle milk production and reproduction. Clim. Chang. 1993, 23, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Brügemann, K.; Gernand, E.; von Borstel, U.U.; König, S. Genetic analyses of protein yield in dairy cows applying random regression models with time-dependent and temperature x humidity-dependent covariates. J. Dairy Sci. 2011, 94, 4129–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfenson, D.; Roth, Z.; Meidan, R. Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Anim. Reprod. Sci. 2000, 60–61, 535–547. [Google Scholar] [CrossRef]
- König, S.; Dietl, G.; Raeder, I.; Swalve, H.H. Genetic relationships for dairy performance between large-scale and small-scale farm conditions. J. Dairy Sci. 2005, 88, 4087–4096. [Google Scholar] [CrossRef]
- Kolver, E.S.; Roche, J.R.; de Veth, M.J.; Thorne, P.L.; Napper, A.R. Total mixed rations versus pasture diets: Evidence for a genotype x diet on the concentration of amino acid-derived volatiles in milk. Proc. N. Z. Soc. Anim. Prod. 2002, 62, 246–251. [Google Scholar]
- Jäger, M.; Brügemann, K.; König, S. Genetic relationships and trait comparison between and within selected lines of local dual purpose cattle. In Proceedings of the Book of Abstracts EAAP-67th Annual Meeting, Belfast, UK, 29 August–2 September 2016; p. 307. [Google Scholar]
- Ivemeyer, S.; Knierim, U.; Waiblinger, S. Effect of human-animal relationship and management on udder health in Swiss dairy herds. J. Dairy Sci. 2011, 94, 5890–5902. [Google Scholar] [CrossRef]
- Breuer, K.; Hemsworth, P.H.; Barnett, J.L.; Matthews, L.R.; Coleman, G.J. Behavioural response to humans and the productivity of commercial dairy cows. Appl. Anim. Behav. Sci. 2000, 66, 273–288. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Coleman, G.J.; Barnett, J.L.; Borg, S. Relationships between human-animal interactions and productivity of commercial dairy cows. J. Dairy Sci. 2000, 78, 2821. [Google Scholar] [CrossRef]
- Manivannanan, C.; Tripathi, H. Management efficiency of dairy entrepreneurs. Indian Res. J. Ext. Educ. 2007, 7, 9. [Google Scholar]
- Lapar, M.L.A.; Choubey, M.; Patwari, P.; Kumar, A.; Baltenweck, I.; Jabbar, M.A.; Staal, S. Consumer preferences for attributes of raw and powdered milk in Assam, Northeast India. In Demand for Livestock Products in Developing Countries with a Focus on Quality and Safety Attributes: Evidence from Asia and Africa; ILRI (ILCA and ILRAD): Adis Ababa, Ethiopia, 2010; pp. 103–115. ISBN 978-92-9146-256-8. [Google Scholar]
- Reichenbach, M. Dairy Production in an Urbanizing Environment. A System Approach in Bengaluru, India. Ph.D. Dissertation, Faculty of Organic Agricultural Sciences, University of Kassel, Witzenhausen, Germany, April 2020. [Google Scholar]
- Kennedy, U.; Sharma, A.; Phillips, C.J.C. The sheltering of unwanted cattle, experiences in India and implications for cattle industries elsewhere. Animals 2018, 8, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Collado, D.; Soini, K.; Mäki-Tanila, A.; Toro, M.A.; Díaz, C. Defining farmer typology to analyze the current state and development prospects of livestock breeds: The Avileña-Negra Ibérica beef cattle breed as a case study. Livest. Sci. 2014, 169, 137–145. [Google Scholar] [CrossRef]
- Kraas, F. Megacities and global change: Key priorities. Geogr. J. 2007, 173, 79–82. [Google Scholar] [CrossRef]
- Prasad, C.S.; Anandan, S.; Gowda, N.K.S.; Schlecht, E.; Buerkert, A. Managing nutrient flows in Indian urban and peri-urban livestock systems. Nutr. Cycl. Agroecosyst. 2019, 115, 159–172. [Google Scholar] [CrossRef]
- Roessler, R.; Mpouam, S.E.; Schlecht, E. Genetic and nongenetic factors affecting on-farm performance of peri-urban dairy cattle in west Africa. J. Dairy Sci. 2019, 102, 2353–2364. [Google Scholar] [CrossRef]
- OECD-FAO Agricultural Outlook 2018–2027. Dairy and Dairy Products. Available online: http://www.agri-outlook.org/commodities/Agricultural-Outlook-2018-Dairy.pdf (accessed on 17 October 2019).
- National Dairy Development Board Dairying in Karnataka. A Statistical Profile. 2015. Available online: https://www.scribd.com/document/362262588/NDDB-Karnataka-10-March-2015-pdf (accessed on 17 October 2019).
- Nivsarkar, A.E.; Vij, P.K.; Tantia, M.S. Animal Genetic Resources of India: Cattle and Buffalo; Indian Council of Agricultural Research: New Delhi, India, 2000. [Google Scholar]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 82–83, 349–360. [Google Scholar] [CrossRef]
- Al-Kanaan, A.J.J. Heat Stress Response for Physiological Traits in Dairy and Dual Purpose Cattle Populations on Phenotypic and Genetic Scales. Ph.D. Thesis, Kassel University, Kassel, Germany, 2016. [Google Scholar]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Friggens, N.C.; Andersen, J.B.; Larsen, T.; Aaes, O.; Dewhurst, R.J. Priming the dairy cow for lactation: A review of dry cow feeding strategies. Anim. Res. 2004, 53, 453–473. [Google Scholar] [CrossRef] [Green Version]
- Young, J.R.; Rast, L.; Suon, S.; Bush, R.D.; Henry, L.A.; Windsor, P.A. The impact of best practice health and husbandry interventions on smallholder cattle productivity in southern Cambodia. Anim. Prod. Sci. 2014, 54, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Groupe SCE India Revised of Structure Plan—2031 Bangalore Metropolitan Region. Available online: http://opencity.in/documents/bmrda-revised-structure-plan-2031-draft-report (accessed on 17 October 2019).
- Indian Meteorological Department Climatological Table for the City of Bangalore. Period 1982–2000. Available online: http://www.imd.gov.in/section/climate/extreme/bangaluru2.htm (accessed on 17 October 2019).
- Hoffmann, E.M.; Jose, M.; Nölke, N.; Möckel, T. Construction and use of a simple index of urbanisation in the rural–urban interface of Bangalore, India. Sustainability 2017, 9, 2146. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Schreiner, D.A.; Ruegg, P.L. Effects of tail docking on milk quality and cow cleanliness. J. Dairy Sci. 2002, 85, 2503–2511. [Google Scholar] [CrossRef]
- Lombard, J.E.; Tucker, C.B.; von Keyserlingk, M.A.G.; Kopral, C.A.; Weary, D.M. Associations between cow hygiene, hock injuries, and free stall usage on US dairy farms. J. Dairy Sci. 2010, 93, 4668–4676. [Google Scholar] [CrossRef]
- Winckler, C.; Willen, S. The reliability and repeatability of a lameness scoring system for use as an indicator of welfare in dairy cattle. Acta Agric. Scand. A Anim. Sci. 2001, 51, 103–107. [Google Scholar] [CrossRef]
- Kandeel, S.A.; Morin, D.E.; Calloway, C.D.; Constable, P.D. Association of California mastitis test scores with intramammary infection status in lactating dairy cows admitted to a veterinary teaching hospital. J. Vet. Intern. Med. 2018, 32, 497–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Landes, M.; Cessna, J.; Kuberka, L.; Jones, K. India’s Dairy Sector: Structure, Performance, and Prospects; Economic Research Service/USDA: Washington, DC, USA, 2017; pp. 1–47.
- Gilles, P.; Tawfik, E.S. Urban and Periurban Dairy Cattle Farming in the Maseru District/Lesotho. Available online: http://ftp2.de.freebsd.org/pub/tropentag/proceedings/2001/full%20papers/11-animals/11_23_Gilles1.pdf (accessed on 22 October 2019).
- State Livestock Breeding & Training Centre, Hesaraghatta, Bengaluru. Available online: http://slbtc.kar.nic.in/ (accessed on 15 September 2020).
- Agrawal, T. Educational inequality in rural and urban India. Int. J. Educ. Dev. 2014, 34, 11–19. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Biswas, B.; Bailey, D. A study of economic efficiency of Utah dairy farmers: A system approach. Rev. Econ. Stat. 1989, 71, 595–604. [Google Scholar] [CrossRef]
- Mushtaq, A.; Qureshi, M.S.; Khan, S.; Habib, G.; Swati, Z.A.; Rahman, S.U. Body condition score as a marker of milk yield and composition in dairy animals. J. Anim. Plant Sci. 2012, 22, 169–173. [Google Scholar]
- Nunan, F. Improved Utilisation of Urban Waste by Near-Urban Farmers in the Hubli-Dharwad City-Region; Final Technical Report of Project R7099; School of Public Policy, University of Birmingham: Birmingham, UK, 1999; pp. 1–81. [Google Scholar]
- Atasever, S.; Erdem, H. Relationship between hygienic aspects and milk production characteristics of holstein cows. J. Appl. Anim. Res. 2009, 35, 185–188. [Google Scholar] [CrossRef] [Green Version]
- Solano, L.; Barkema, H.W.; Pajor, E.A.; Mason, S.; LeBlanc, S.J.; Zaffino Heyerhoff, J.C.; Nash, C.G.R.; Haley, D.B.; Vasseur, E.; Pellerin, D.; et al. Prevalence of lameness and associated risk factors in Canadian Holstein-Friesian cows housed in freestall barns. J. Dairy Sci. 2015, 98, 6978–6991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.S.; Ward, W.R.; Lautenbach, K.; Murray, R.D. Behaviour of lame and normal dairy cows in cubicles and in a straw yard. Vet. Rec. 1993, 133, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Norring, M.; Manninen, E.; de Passillé, A.M.; Rushen, J.; Munksgaard, L.; Saloniemi, H. Effects of sand and straw bedding on the lying behavior, cleanliness, and hoof and hock injuries of dairy cows. J. Dairy Sci. 2008, 91, 570–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarez, S.T.; Robinson, P.H.; DePeters, E.J.; Price, E.O. Impact of lameness on behavior and productivity of lactating Holstein cows. Appl. Anim. Behav. Sci. 2003, 83, 1–14. [Google Scholar] [CrossRef]
- Rutherford, K.M.D.; Langford, F.M.; Jack, M.C.; Sherwood, L.; Lawrence, A.B.; Haskell, M.J. Hock injury prevalence and associated risk factors on organic and nonorganic dairy farms in the United Kingdom. J. Dairy Sci. 2008, 91, 2265–2274. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Ramanoon, S.Z.; Shaik Mossadeq, W.M.; Mansor, R.; Syed-Hussain, S.S. Association between lameness and indicators of dairy cow welfare based on locomotion scoring, body and hock condition, leg hygiene and lying behavior. Animals 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Swami, S.; Patil, R.; Gadekar, S. Studies on prevalence of subclinical mastitis in dairy animals. J. Entomol. Zool. Stud. 2017, 5, 1297–1300. [Google Scholar]
- Bangar, Y.C.; Singh, B.; Dohare, A.K.; Verma, M.R. A systematic review and meta-analysis of prevalence of subclinical mastitis in dairy cows in India. Trop. Anim. Health Prod. 2015, 47, 291–297. [Google Scholar] [CrossRef]
- Joshi, S.; Gokhale, S. Status of Mastitis as an Emerging Disease in Improved and Periurban Dairy Farms in India. Ann. N.Y. Acad. Sci. 2006, 1081, 74–83. [Google Scholar] [CrossRef]
- Bareille, N.; Beaudeau, F.; Billon, S.; Robert, A.; Faverdin, P. Effects of health disorders on feed intake and milk production in dairy cows. Livest. Prod. Sci. 2003, 83, 53–62. [Google Scholar] [CrossRef]
- Firat, M.Z. An investigation into the effects of clinical mastitis on milk yield in dairy cows. Livest. Prod. Sci. 1993, 36, 311–321. [Google Scholar] [CrossRef]
- Narayan, U.; Singh, D.V.; Sharma, R.J. Physiological responses in Holstein-Friesian crossbred lactating cows under heat stress ameliorating treatments. Indian J. Anim. Res. 2007, 41, 130–133. [Google Scholar]
- Burfeind, O.; von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Short communication: Repeatability of measures of rectal temperature in dairy cows. J. Dairy Sci. 2010, 93, 624–627. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.E. Physiological approaches to animal climatology. J. Hered. 1958, 49, 52–61. [Google Scholar] [CrossRef]
- Sivakumar, T.; Suraj, P.T.; Yasotha, A.; Phukon, J. Identification of suitable housing system for dairy cattle in North East Zone of Tamil Nadu, India, with respect to microclimate. Vet. World. 2017, 10, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, C.B.; Rogers, A.R.; Schütz, K.E. Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Appl. Anim. Behav. Sci. 2008, 109, 141–154. [Google Scholar] [CrossRef]
- Berman, A.; Folman, Y.; Kaim, M.; Mamen, M.; Herz, Z.; Wolfenson, D.; Arieli, A.; Graber, Y. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. J. Dairy Sci. 1985, 68, 1488–1495. [Google Scholar] [CrossRef]
- König, S.; Fatehi, J.; Simianer, H.; Schaeffer, L.R. Assessment of Dairy Cow Profitability. In Proceedings of the Book of Abstracts-58th Annual Meeting, Dublin, Ireland, 26–29 August 2007; p. 58. [Google Scholar]
Trait | Variable Type | # Farm | # Cow | # Observation | Mean | SD | Min. | Max. |
---|---|---|---|---|---|---|---|---|
Milk yield (liter/day) | Numerical | 121 | 469 | 945 | 10.67 | 5.46 | 1 | 35 |
Body condition score | Scale (1 to 5) | 121 | 517 | 1138 | 2.75 | 0.37 | 2.00 | 4.00 |
Udder hygiene score | Scale (1 to 4) | 120 | 478 | 936 | 2.03 | 1.04 | 1.00 | 4.00 |
Upper legs hygiene score | Scale (1 to 4) | 121 | 484 | 942 | 2.61 | 1.11 | 1.00 | 4.00 |
Hock assessment score | Scale (1 to 3) | 121 | 484 | 942 | 1.55 | 0.56 | 1.00 | 3.00 |
Locomotion score | Scale (1 to 5) | 117 | 455 | 863 | 1.74 | 0.90 | 1.00 | 5.00 |
Subclinical mastitis | Binary | 119 | 465 | 870 | 0.55 | 0.50 | 0 | 1 |
Rectal temperature (°C) | Numerical | 121 | 463 | 874 | 38.51 | 0.65 | 36.2 | 41.3 |
Breed | Traits | ||||||||
---|---|---|---|---|---|---|---|---|---|
MY | BCS | UddHS | ULHS | HAS | LS | SubMast | RT | ||
All Black | LSMeans | 9.60 ab | 2.69 ab | 1.68 ab | 2.39 ab | 1.75 a | 1.67 ab | 0.56 | 38.39 |
SE | 0.55 | 0.04 | 0.12 | 0.12 | 0.06 | 0.12 | 0.06 | 0.07 | |
All Black crossbreed | LSMeans | 10.19 ab | 2.67 ab | 1.99 ab | 2.46 ab | 1.46 bc | 1.49 a | 0.64 | 38.49 |
SE | 0.63 | 0.05 | 0.13 | 0.13 | 0.07 | 0.14 | 0.07 | 0.08 | |
Holstein Friesian (HF) | LSMeans | 11.14 a | 2.8 a | 1.99 a | 2.58 a | 1.58 ac | 2.01 a | 0.61 | 38.45 |
SE | 0.38 | 0.02 | 0.08 | 0.09 | 0.04 | 0.07 | 0.03 | 0.05 | |
HF crossbreed | LSMeans | 9.51 ab | 2.78 a | 1.86 ab | 2.46 a | 1.76 a | 1.92 a | 0.61 | 38.47 |
SE | 0.56 | 0.04 | 0.12 | 0.12 | 0.07 | 0.12 | 0.06 | 0.07 | |
Jersey | LSMeans | 8.42 b | 2.59 b | 2.02 a | 2.55 a | 1.22 bd | 1.76 ab | 0.70 | 38.39 |
SE | 0.57 | 0.04 | 0.12 | 0.12 | 0.07 | 0.13 | 0.06 | 0.07 | |
Jersey crossbreed | LSMeans | 8.48 bc | 2.67 ab | 1.87 ab | 2.41 ab | 1.45 abd | 1.56 ab | 0.62 | 38.38 |
SE | 0.74 | 0.06 | 0.15 | 0.15 | 0.09 | 0.17 | 0.09 | 0.09 | |
Native | LSMeans | 5.16 c | 3.11 c | 1.35 b | 1.85 b | 1.28 be | 1.22 b | 0.57 | 38.36 |
SE | 0.91 | 0.07 | 0.19 | 0.19 | 0.11 | 0.20 | 0.11 | 0.13 | |
Native crossbreed | LSMeans | 8.04b c | 2.83 ac | 1.85 ab | 2.36 ab | 1.71 ace | 1.44 ab | 0.59 | 38.45 |
SE | 0.88 | 0.07 | 0.18 | 0.18 | 0.10 | 0.19 | 0.10 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, A.; Yin, T.; Reichenbach, M.; Bhatta, R.; Schlecht, E.; König, S. Phenotypic Dairy Cattle Trait Expressions in Dependency of Social-Ecological Characteristics along Rural–Urban Gradients. Sustainability 2020, 12, 9021. https://doi.org/10.3390/su12219021
Pinto A, Yin T, Reichenbach M, Bhatta R, Schlecht E, König S. Phenotypic Dairy Cattle Trait Expressions in Dependency of Social-Ecological Characteristics along Rural–Urban Gradients. Sustainability. 2020; 12(21):9021. https://doi.org/10.3390/su12219021
Chicago/Turabian StylePinto, Ana, Tong Yin, Marion Reichenbach, Raghavendra Bhatta, Eva Schlecht, and Sven König. 2020. "Phenotypic Dairy Cattle Trait Expressions in Dependency of Social-Ecological Characteristics along Rural–Urban Gradients" Sustainability 12, no. 21: 9021. https://doi.org/10.3390/su12219021