An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis
Abstract
:1. Introduction
2. System Overview
2.1. Background Substraction
2.2. Object Movement Detection
2.3. Flame Color Analysis
2.4. Flame Source Analysis
2.5. Flame Flickering Analysis
2.6. Flame Texture Analysis
2.7. Flame Area Analysis
2.7.1. Extending Flame Region
2.7.2. 1-D Wavelet Analysis
2.8. Alarm Decision Unit
3. Experimental Results
3.1. Testing the Algorithm and Accuracy Discussions
3.2. Detection in Different Environments
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Haynes, H.J. Fire Loss in the United States During 2014; National Fire Protection Association, Fire Analysis and Research Division: Quincy, MA, USA, 2015. [Google Scholar]
- Quintiere, J.G. Principles of Fire Behavior; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Quintiere, J.G.; Wade, C.A. Compartment fire modeling. In SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2016; pp. 981–995. [Google Scholar]
- Hartin, E. Fire Behavior Indicators: Building Expertise. 2008. Available online: www.firehouse.com (accessed on 27 October 2020).
- Chen, J.; Mu, X.; Song, Y.; Yu, M.; Zhang, B. Flame recognition in video images with color and dynamic features of flames. J. Auton. Intell. 2019, 2, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Celik, T.; Demirel, H. Fire detection in video sequences using a generic color model. Fire Saf. J. 2009, 44, 147–158. [Google Scholar] [CrossRef]
- Horng, W.B.; Peng, J.W.; Chen, C.Y. A New Image-Based Real-Time Flame Detection Method Using Color Analysis. In Proceedings of the 2005 IEEE International Conference on Networking, Sensing and Control (ICNSC), Tucson, AZ, USA, 19–22 March 2005; pp. 100–105. [Google Scholar]
- Hong, W.B.; Peng, J.W. A Fast Image-ased Fire Flame Detection Method Using Color Analysis. Tamkang J. Sci. Eng. 2008, 11, 273–285. [Google Scholar]
- Walia, G.; Gupta, A.; Rajiv, K. Intelligent fire-detection model using statistical color models data fusion with Dezert–Smarandache method. Int. J. Image Data Fusion 2013. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Dong, E.; Chen, B.; Chen, J.; Yuan, Z.; Zhang, D. Dynamic Texture Modeling Applied on Computer Vision Based Fire Recognition. In Artificial Intelligence and Computational Intelligence; Deng, H., Miao, D., Lei, J., Wang, F.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 545–553. [Google Scholar]
- Ebert, J.; Shipley, J. Computer vision based method for fire detection color videos. Int. J. Imaging 2009, 2, 22–34. [Google Scholar]
- Toreyin, B.U.; Dedeoglu, Y.; Gudukbay, U.; Cetin, A.E. Computer Vision-Based Method for Real-Time Fire and Flame Detection. Pattern Recognit. Lett. 2006, 27, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, Z.; Han, S.; Qu, C.; Yuan, Z.; Zhang, D. SVM Based Forest Fire Detection Using Static and Dynamic Features. Comput. Sci. Inf. Syst. 2011, 8, 821–841. [Google Scholar] [CrossRef]
- Paygude, S.; Vyas, V. Unified dynamic texture segmentation system based on local and global spatiotemporal techniques. Int. J. Reason. Based Intell. Syst. 2019, 11, 170–180. [Google Scholar]
- Nguyen, T.T.; Nguyen, T.P.; Bouchara, F. Dynamic texture representation based on hierarchical local patterns. In International Conference on Advanced Concepts for Intelligent Vision Systems; Springer: Cham, Switzerland, 2020; pp. 277–289. [Google Scholar]
- Gunay, O.; Tasdemir, K.; Toreyin, B.U.; Cetin, A.E. Fire Detection in Video Using LMS Based Active Learning. Fire Technol. 2010, 46, 551–557. [Google Scholar] [CrossRef]
- Dimitropoulos, K.; Barmpoutis, P.; Grammalidis, N. Spatio-temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 339–351. [Google Scholar] [CrossRef]
- Avula, S.B.; Badri, S.J.; Reddy, G. A Novel Forest Fire Detection System Using Fuzzy Entropy Optimized Thresholding and STN-based CNN. In Proceedings of the IEEE International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 7–11 January 2020; pp. 750–755. [Google Scholar]
- Manevitz, L.M.; Yousef, M. One-class SVMs for document classification. J. Mach. Learn. Res. 2001, 139–154. [Google Scholar]
- Dai Duong, H.; Nguyen, D.D.; Ngo, L.T.; Tinh, D.T. On approach to vision based fire detection based on type-2 fuzzy clustering. In Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR), Dalian, China, 14–16 October 2011; pp. 51–56. [Google Scholar]
- Borges, P.V.K.; Izquierdo, E.A. Probabilistic Approach for Vision-Based Fire Detection in Videos. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 721–731. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, Y.; Li, Y.; Zhou, D.; Cheng, S. Image-based flame detection and combustion analysis for blast furnace raceway. IEEE Trans. Instrum. Meas. 2019, 68, 1120–1131. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Zhang, D.; Qu, C.; Ke, Y.; Cai, B. Contour-Based Forest Fire Detection using FFT and Wavelet. In Proceedings of the International Conference on Computer Science and Software Engineering, Hubei, China, 12–14 December 2008; Volume 1, pp. 760–763. [Google Scholar]
- Ko, B.C.; Ham, S.J.; Nam, J.Y. Modeling and Formalization of Fuzzy Finite Automata for Detection of Irregular Fire Flames. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 1903–1912. [Google Scholar] [CrossRef]
- Gaur, A.; Singh, A.; Kumar, A.; Kumar, A.; Kapoor, K. Video Flame and Smoke Based Fire Detection Algorithms: A Literature Review. Fire Technol. 2020, 56, 1943–1980. [Google Scholar]
- Wu, H.; Wu, D.; Zhao, J. An intelligent fire detection approach through cameras based on computer vision methods. Process Saf. Environ. Prot. 2019, 127, 245–256. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Mao, W.; Wang, W.; Dou, Z.; Li, Y. Fire recognition based on multi-channel convolutional neural network. Fire Technol. 2018, 54, 531–554. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Baik, S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 2018, 288, 30–42. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, X. Real-time video fire smoke detection by utilizing spatial-temporal ConvNet features. Multimed. Tool. Appl. 2018, 77, 29283–29301. [Google Scholar] [CrossRef]
- Govil, K.; Welch, M.L.; Ball, J.T.; Pennypacker, C.R. Preliminary Results from a Wildfire Detection System Using Deep Learning on Remote Camera Images. Remote Sens. 2020, 12, 16631. [Google Scholar] [CrossRef] [Green Version]
Analysis Method | False Alarm Rate | Detection Rate | Reaction Time (Sec) |
---|---|---|---|
Strong candidate | 3.0% | 91.2% | -- |
Variance analysis | 5.3% | 92.2% | -- |
Fire source analysis | 18.7% | 93.7% | -- |
Temporal difference analysis | 24.4% | 93.3% | -- |
Fire area analysis | 2.8% | 90.2% | 2.95 |
Fire color analysis | 35.6% | 99.2% | -- |
Analysis Method | False Alarm Rate | Detection Rate | Reaction Time (sec) |
---|---|---|---|
Local + Global analysis | 2.8% | 90.2% | 2.95 |
Local + Global analysis + ADU | 0.8% | 89.8% | 3.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.W.; Pare, S.; Meena, M.S.; Jain, D.K.; Li, D.L.; Saxena, A.; Prasad, M.; Lin, C.T. An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis. Sustainability 2020, 12, 8899. https://doi.org/10.3390/su12218899
Hsu TW, Pare S, Meena MS, Jain DK, Li DL, Saxena A, Prasad M, Lin CT. An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis. Sustainability. 2020; 12(21):8899. https://doi.org/10.3390/su12218899
Chicago/Turabian StyleHsu, Ting Wei, Shreya Pare, Mahendra Singh Meena, Deepak Kumar Jain, Dong Lin Li, Amit Saxena, Mukesh Prasad, and Chin Teng Lin. 2020. "An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis" Sustainability 12, no. 21: 8899. https://doi.org/10.3390/su12218899
APA StyleHsu, T. W., Pare, S., Meena, M. S., Jain, D. K., Li, D. L., Saxena, A., Prasad, M., & Lin, C. T. (2020). An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis. Sustainability, 12(21), 8899. https://doi.org/10.3390/su12218899