Association between Parameters Related to Oxidative Stress and Trace Minerals in Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Nutritional Evaluation
2.3. Incremental Test until Exhaustion
2.4. Blood Samples
2.5. Analytical Determination
2.5.1. Malondialdehyde Determination
2.5.2. Nonenzymatic Antioxidant Determination
2.5.3. Trace Mineral Determination
2.6. Statistical Evaluations
3. Results
4. Discussion
4.1. Malondialdehyde
4.2. Ascorbic Acid
4.2.1. Plasma
4.2.2. Erythrocytes
4.3. α-Tocopherol (ATC)
4.3.1. Plasma
4.3.2. Erythrocyte
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lamprecht, M. Antioxidants in Sport Nutrition; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Jamurtas, A.Z. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 2009, 490, 77–84. [Google Scholar] [CrossRef]
- Johnson, B.D.; Padilla, J.; Wallace, J.P. The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur. J. Appl. Physiol. 2012, 112, 33–42. [Google Scholar] [CrossRef]
- Muñoz, D.; Olcina, G.; TImón, R.; Robles, M.C.; Caballero, M.J.; Maynar, M.; Munoz Marin, D.; Olcina, G.; Timon, R.; Robles, M.C.; et al. Effect of different exercise intensities on oxidative stress markers and antioxidant response in trained cyclists. J. Sport. Med. Phys. Fit. 2010, 50, 93–98. [Google Scholar]
- Powers, S.K.; Duarte, J.; Kavazis, A.N.; Talbert, E.E. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Ďuračková, Z.; Gvozdjáková, A. Oxidants, Antioxidants and Oxidative Stress|SpringerLink. In Mitochondrial Medicine; Springer Science + Busines: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- He, F.; Li, J.; Liu, Z.W.; Chuang, C.C.; Yang, W.G.; Zuo, L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front. Physiol. 2016, 7, 486. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.B. Redox interventions to increase exercise performance. J. Physiol. 2016, 594, 5125–5133. [Google Scholar] [CrossRef] [Green Version]
- Fisher-Wellman, K.; Bloomer, R.J. Acute exercise and oxidative stress: A 30 year history. Dyn. Med. 2009, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl. Physiol. Nutr. Metab. 2015, 40, 582–589. [Google Scholar] [CrossRef]
- Pingitore, A.; Lima, G.P.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Vrabas, I.S. Common Questions and Tentative Answers on How to Assess Oxidative Stress after Antioxidant Supplementation and Exercise. In Antioxidants in Sport Nutrition; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015; pp. 221–246. [Google Scholar]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress/: Relationship with exercise and training. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Soria, M.; Anson, M.; Escanero, J.F. Correlation Analysis of Exercise-Induced Changes in Plasma Trace Element and Hormone Levels During Incremental Exercise in Well-Trained Athletes. Biol. Trace Elem. Res. 2016, 170, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wołonciej, M.; Milewska, E.; Roszkowska-Jakimiec, W. Pierwiastki śladowe jako aktywatory enzymów antyoksydacyjnych * Trace elements as an activator of antioxidant enzymes. Adv. Hyg. Exp. Med./Postepy Higieny I Medycyny Doswiadczalnej 2016, 70, 1483–1498. [Google Scholar]
- Verma, P.; Sharma, A.K.; Shankar, H.; Sharma, A.; Rao, D.N. Role of Trace Elements, Oxidative Stress and Immune System: A Triad in Premature Ovarian Failure. Biol. Trace Elem. Res. 2018, 184, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Rose, A.H.; Hoffmann, P.R. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2012, 16, 705–743. [Google Scholar] [CrossRef] [Green Version]
- Eugenia Letelier, M.; Sanchez-Jofre, S.; Peredo-Silva, L.; Cortes-Troncoso, J.; Aracena-Parks, P. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem. Biol. Interact. 2010, 188, 220–227. [Google Scholar] [CrossRef]
- Maynar, M.; Llerena, F.; Bartolomé, I.; Alves, J.; Robles, M.-C.; Grijota, F.-J.; Muñoz, D. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Maynar, M.; Llerena, F.; Grijota, F.J.; Alves, J.; Robles, M.C.; Bartolomé, I.; Muñoz, D. Serum concentration of several trace metals and physical training. J. Int. Soc. Sports Nutr. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Maynar, M.; Llerena, F.; Grijota, F.J.; Pérez-Quintero, M.; Bartolomé, I.; Alves, J.; Robles, M.C.; Muñoz, D. Serum concentration of cobalt, molybdenum and zinc in aerobic, anaerobic and aerobic-anaerobic sportsmen. J. Int. Soc. Sports Nutr. 2018, 15, 28. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Heidelberg, Germany, 2007; pp. 1–550. [Google Scholar] [CrossRef]
- Reilly, C. (Ed.) The Nutritional Trace Metals; Blackwell Publishing Ltd.: Oxford, UK, 2004; ISBN 9780470774786. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composiciόn de Alimentos: Guía de Prácticas; Pirámide: Madrid, Spain, 2016; ISBN 9788436836233. [Google Scholar]
- Niemelä, K.; Palatsi, I.; Takkunen, J. The oxygen uptake-work-output relationship of runners during graded cycling exercise: Sprinters vs. endurance runners. Br. J. Sports Med. 1980, 14, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Chirico, S. High-performance liquid chromatography-based thiorbarbituric acid tests. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1994; Volume 233, pp. 314–318. ISBN 0076-6879. [Google Scholar]
- Spirlandeli, A.L.; Deminice, R.; Jordao, A.A. Plasma malondialdehyde as biomarker of lipid peroxidation: Effects of acute exercise. Int. J. Sports Med. 2014, 35, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, M.; Schwille, P.O. Measurement of ascorbic acid in human plasma and urine by high-performance liquid chromatography. Results in healthy subjects and patients with idiopathic calcium urolithiasis. J. Chromatogr. B Biomed. Appl. 1994, 654, 134–139. [Google Scholar] [CrossRef]
- Lim, C.K. HPLC of Small Molecules: A Practical Approach; IRL press Oxford: Washington, DC, USA, 1986; ISBN 0947946772. [Google Scholar]
- Arrese, A.L.; Badillo, J.J.G.; Ostariz, E.S. Differences in skinfold thicknesses and fat distribution among top-class runners. J. Sports Med. Phys. Fit. 2005, 45, 512–517. [Google Scholar]
- National Research Council Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. The National Academies Collection: Reports funded by National Institutes of Health. In Recommended Dietary Allowances, 10th ed.; National Academies Press (US)Copyright (c) 1989 by the National Academy of Sciences: Washington, DC, USA, 1989. [Google Scholar]
- Potgieter, S. Sport Nutrition: A Review of the Latest Guidelines for Exercise and Sport Nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clin. Nutr. 2013, 26, 1. [Google Scholar] [CrossRef]
- Wardenaar, F.; Brinkmans, N.; Ceelen, I.; Van Rooij, B.; Mensink, M.; Witkamp, R.; De Vries, J. Micronutrient Intakes in 553 Dutch Elite and Sub-Elite Athletes: Prevalence of Low and High Intakes in Users and Non-Users of Nutritional Supplements. Nutrients 2017, 9, 142. [Google Scholar] [CrossRef]
- Aguilo, A.; Tauler, P.; Guix, M.P.; Villa, G.; Cordova, A.; Tur, J.A.; Pons, A. Effect of exercise intensity and training on antioxidants and cholesterol profile in cyclists. J. Nutr. Biochem. 2003, 14, 319–325. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Jablan, J.; Inic, S.; Stosnach, H.; Hadziabdic, M.O.; Vujic, L.; Domijan, A.M. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race. J. Trace Elem. Med. Biol. 2017, 41, 54–59. [Google Scholar] [CrossRef]
- Margaritis, I.; Rousseau, A.S.; Hininger, I.; Palazzetti, S.; Arnaud, J.; Roussel, A.M. Increase in selenium requirements with physical activity loads in well-trained athletes is not linear. BioFactors 2005, 23, 45–55. [Google Scholar] [CrossRef]
- Roberts, B.R.; Doecke, J.D.; Rembach, A.; Yevenes, L.F.; Fowler, C.J.; McLean, C.A.; Lind, M.; Volitakis, I.; Masters, C.L.; Bush, A.I.; et al. Rubidium and potassium levels are altered in Alzheimer’s disease brain and blood but not in cerebrospinal fluid. Acta Neuropathol. Commun. 2016, 4, 119. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.H. Other Elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W. In Trace Elements in Human and Animal Nutrition; Mertz, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 415–463. [Google Scholar]
- Maturu, P.; Vaddi, D.R.; Pannuru, P.; Nallanchakravarthula, V. Alterations in erythrocyte membrane fluidity and Na+/K+-ATPase activity in chronic alcoholics. Mol. Cell. Biochem. 2010, 339, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Pivovarov, A.S.; Calahorro, F.; Walker, R.J. Na+/K+-pump and neurotransmitter membrane receptors. Invertebr. Neurosci. 2019, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hong, H.; Lu, X.; Wang, W.; Liu, F.; Yang, H. l-Ascorbic Acid Protected Against Extrinsic and Intrinsic Apoptosis Induced by Cobalt Nanoparticles Through ROS Attenuation. Biol. Trace Elem. Res. 2017, 175, 428–439. [Google Scholar] [CrossRef]
- Yildirim, O.; Buyukbingol, Z. Effects of supplementation with a combination of cobalt and ascorbic acid on antioxidant enzymes and lipid peroxidation levels in streptozocin-diabetic rat liver. Biol. Trace Elem. Res. 2002, 90, 143–154. [Google Scholar] [CrossRef]
- Johnson, P.E.; Korynta, E.D. Effects of copper, iron, and ascorbic-acid on manganese availability to rats. Proc. Soc. Exp. Biol. Med. 1992, 199, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Watjen, W.; Beyersmann, D. Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometals 2004, 17, 65–78. [Google Scholar] [CrossRef]
- Bera, A.K.; Rana, T.; Das, S.; Bandyopadhyay, S.; Bhattacharya, D.; Pan, D.; De, S.; Das, S.K. L-Ascorbate protects rat hepatocytes against sodium arsenite-induced cytotoxicity and oxidative damage. Hum. Exp. Toxicol. 2010, 29, 103–111. [Google Scholar] [CrossRef]
- Donpunha, W.; Kukongviriyapan, U.; Sompamit, K.; Pakdeechote, P.; Kukongviriyapan, V.; Pannangpetch, P. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 2011, 24, 105–115. [Google Scholar] [CrossRef]
- Chang, S.I.; Jin, B.; Youn, P.; Park, C.; Park, J.-D.; Ryu, D.-Y. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol. Appl. Pharmacol. 2007, 218, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Al-Attar, A.M. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice. Saudi J. Biol. Sci. 2011, 18, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, A. Environmental cardiology—Studying mechanistic links between pollution and heart disease. Circ. Res. 2006, 99, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Temiz, M.A.; Temur, A.; Oguz, E.K. Antioxidant and hepatoprotective effects of vitamin E and melatonin against copper-induced toxicity in rats. Trop. J. Pharm. Res. 2018, 17, 1025–1031. [Google Scholar] [CrossRef]
- Paynter, D.I. The role of dietary copper, manganese, selenium, and vitamin-e in lipid peroxidation in tissues of the rat. Biol. Trace Elem. Res. 1980, 2, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Diplock, A.T. Antioxidant nutrients and disease prevention—An overview. Am. J. Clin. Nutr. 1991, 53, S189–S193. [Google Scholar]
- Hajiani, M.; Razi, F.; Golestani, A.; Frouzandeh, M.; Owji, A.A.; Khaghani, S.; Ghannadian, N.; Shariftabrizi, A.; Pasalar, P. Time- and dose-dependent differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase enzymatic activity and mRNA level by vitamin E in rat blood cells. Redox Rep. 2012, 17, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, K.H.; Lee, M. Effects of manganese and vitamin-e deficiencies on antioxidant enzymes in streptozotocin-diabetic rats. J. Nutr. Biochem. 1993, 4, 476–481. [Google Scholar] [CrossRef]
- Rodriguez, V.M.; Jimenez-Capdeville, M.E.; Giordano, M. The effects of arsenic exposure on the nervous system. Toxicol. Lett. 2003, 145, 1–18. [Google Scholar] [CrossRef]
- Sharma, A.; Kshetrimayum, C.; Sadhu, H.G.; Kumar, S. Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants Vitamin E and Coenzyme Q10. Environ. Sci. Pollut. Res. 2018, 25, 23946–23953. [Google Scholar] [CrossRef]
- Mohanta, R.K.; Garg, A.K.; Das, R.S. Effect of vitamin E supplementation on arsenic induced alteration in blood biochemical profile, oxidant/antioxidant status, serum cortisol level and retention of arsenic and selenium in goats. J. Trace Elem. Med. Biol. 2015, 29, 188–194. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Saleh, M.A.; Al-Salahy, M.B.; Sanousi, S.A. Corpuscular oxidative stress in desert sheep naturally deficient in copper. Small Rumin. Res. 2008, 80, 33–38. [Google Scholar] [CrossRef]
- Mattie, M.D.; Freedman, J.H. Protective effects of aspirin and vitamin E (alpha-tocopherol) against copper- and cadmium-induced toxicity. Biochem. Biophys. Res. Commun. 2001, 285, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Cinar, M.; Yildirim, E.; Yigit, A.A.; Yalcinkaya, I.; Duru, O.; Kisa, U.; Atmaca, N. Effects of Dietary Supplementation with Vitamin C and Vitamin E and Their Combination on Growth Performance, Some Biochemical Parameters, and Oxidative Stress Induced by Copper Toxicity in Broilers. Biol. Trace Elem. Res. 2014, 158, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Toplan, S.; Dariyerli, N.; Ozdemir, S.; Ozcelik, D.; Zengin, E.U.; Akyolcu, M.C. Lithium-Induced Hypothyroidism: Oxidative Stress and Osmotic Fragility Status in Rats. Biol. Trace Elem. Res. 2013, 152, 373–378. [Google Scholar] [CrossRef] [PubMed]
Parameters | Athletes | Range |
---|---|---|
VO2 max rel. (mL/min/kg) | 67.55 ± 4.11 | 55.15–77.03 |
RER max | 1.05 ± 0.05 | 1–1.15 |
HR max (beats/min) | 193.5 ± 7.91 | 180–200 |
Parameters (Reference Daily Intake) (n = 62) | Intake |
---|---|
Energy (kcal/d) | 2876.47 ± 657.33 |
Protein (g/d) | 117.16 ± 28.83 |
Lipids (g/d) | 105.98 ± 48.40 |
Carbohydrate (g/d) | 346.98 ± 92.82 |
Retinol (RT) (900 µg/d) | 781.34 ± 520.47 |
Ascorbic acid (AA) (90 mg/d) | 108.16 ± 71.01 |
α-tocopherol (ATC) (15 mg/d) | 4.34 ± 2.58 |
Co (200–300 µg/d) | 295.88 ± 215.28 |
Cu (2000–3000 µg/d) | 1675.69 ± 568.4 |
Mn (2500–5000 µg/d) | 3381.29 ± 1440.06 |
Mo (75–400 µg/d) | 309.26 ± 182.06 |
Se (50–200 µg/d) | 76.44 ± 45.04 |
V (10–70 µg/d) | 25.50 ± 29.26 |
Zn (10–15 mg/d) | 11.09 ± 3.74 |
B (0.75–1.35 mg/d) | 1.34 ± 1.48 |
Li (180–550 µg/d) | 366.78 ± 396.86 |
As (12–300 mg/d) | 1691 ± 834.25 |
Be (< 50 µg/d) | 9.72 ± 9.01 |
Cd (< 70 µg/d) | 23.29 ± 15.37 |
Pb (< 400 µg/d) | 209.03 ± 142.64 |
Rb (1.5–7 mg/d) | 3.903 ± 4.786 |
Sr (1000–2300 µg/d) | 1890.84 ± 1784.40 |
Parameters | Athletes | Range |
---|---|---|
MDA (µM/mL) | 0.75 ± 0.12 | 0.55–1.04 |
Ascorbic acid (AA-P) (µg/mL) | 14.49 ± 4.44 | 9.15–26.38 |
α-tocopherol (ATC-P) (µg/mL) | 7.24 ± 7.23 | 0.4–50.5 |
Retinol (RT-P) (µg/mL) | 0.14 ± 0.09 | 0–0.64 |
Ascorbic acid (AA-E) (µg/mL) | 15.71 ± 16.94 | 1.88–47.47 |
α-tocopherol (ATC-E) (µg/mL) | 9.60 ± 8.46 | 0.4–44.16 |
Retinol (RT-E) (µg/mL) | 0.77 ± 0.77 | 0.08–3.83 |
Trace Minerals | Athletes | Range |
---|---|---|
Co (µg/L) | 0.68 ± 0.10 | 0.46–0.89 |
Cu (µg/L) | 693.14 ± 133.51 | 454.5–936.97 |
Mn (µg/L) | 2.06 ± 1.52 | 0.2–5.46 |
Mo (µg/L) | 0.62 ± 0.59 | 0.1–3.32 |
Se (µg/L) | 96.48 ± 13.72 | 69.78–124.65 |
V (µg/L) | 0.29 ± 0.36 | 0–1.78 |
Zn (µg/L) | 792.24 ± 143.87 | 539.71–1212.48 |
B (µg/L) | 8.63 ± 11.08 | 0–60.66 |
Li (µg/L) | 1.38 ± 0.82 | 0.36–4.7 |
As (µg/L) | 2.35 ± 2.69 | 0.25–11.97 |
Be (µg/L) | 0.07 ± 0.03 | 0–0.14 |
Cd (µg/L) | 0.07 ± 0.05 | 0.01–0.22 |
Pb (µg/L) | 0.96 ± 1.06 | 0–4.94 |
Cs (µg/L) | 0.69 ± 0.40 | 0.31–1.87 |
Rb (µg/L) | 138.48 ± 23.03 | 98.82–185.87 |
Sr (µg/L) | 26.24 ± 8.13 | 14.83–47.47 |
Trace Minerals | MDA | AA-P | AA-E | ATC-P | ATC-E |
---|---|---|---|---|---|
Cu | - | - | - | r = –0.317 p = 0.028 | r = 0.301 p = 0.037 |
Mn | - | r = -0.324 p = 0.024 | - | r = –0.287 p = 0.048 | - |
Se | r = 0.289 p = 0.046 | - | - | - | - |
Rb | r = 0.301 p = 0.038 | - | - | - | r = 0.325 p= 0.024 |
As | - | - | r = 0.514 p = 0.000 | r = 0.348 p = 0.015 | |
Li | - | - | - | - | r = 0.601 p = 0.000 |
Co | - | r = -0.416 p = 0.003 | - | - | - |
Cd | - | r = –0.379 p = 0.008 | - | - | - |
Cs | - | - | r = 0.347 p = 0.016 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrientos, G.; Alves, J.; Pradas, F.; Robles, M.C.; Muñoz, D.; Maynar, M. Association between Parameters Related to Oxidative Stress and Trace Minerals in Athletes. Sustainability 2020, 12, 4966. https://doi.org/10.3390/su12124966
Barrientos G, Alves J, Pradas F, Robles MC, Muñoz D, Maynar M. Association between Parameters Related to Oxidative Stress and Trace Minerals in Athletes. Sustainability. 2020; 12(12):4966. https://doi.org/10.3390/su12124966
Chicago/Turabian StyleBarrientos, Gema, Javier Alves, Francisco Pradas, María Concepción Robles, Diego Muñoz, and Marcos Maynar. 2020. "Association between Parameters Related to Oxidative Stress and Trace Minerals in Athletes" Sustainability 12, no. 12: 4966. https://doi.org/10.3390/su12124966
APA StyleBarrientos, G., Alves, J., Pradas, F., Robles, M. C., Muñoz, D., & Maynar, M. (2020). Association between Parameters Related to Oxidative Stress and Trace Minerals in Athletes. Sustainability, 12(12), 4966. https://doi.org/10.3390/su12124966