Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Mann–Kendall Trend Test
2.4. Change Point Detection
2.5. Double Cumulative Curve Method
2.6. Method of Climate Elasticity
2.7. Delta Method and Future Climate Change Analysis
2.8. Changes of Hydro Meteorological Variables in the Future
3. Results
3.1. Analysis of the Change Point and Trend of the Temperature, Precipitation and Potential Evapotranspiration Series
3.2. Determination of Change Points and Trend Analysis of Runoff
3.3. Effects of Climate Variability and Anthropogenic Activities on Runoff
3.4. Changes in Climate Variables under RCP Scenarios
3.5. Projected Precipitation and Temperature
3.6. Trends in the Climatic Variables
3.7. Future Runoff Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name of GCM | Institute | Horizontal Resolution (Latitude × Longitude) |
---|---|---|
Access1-0 | CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia), and BOM (Bureau of Meteorology, Australia) | 0.25 × 0.25 |
bcc-csm1-1 | Beijing Climate Center, China Meteorological Administration | 0.25 × 0.25 |
BNU-ESM | College of Global Change and Earth System Science, Beijing Normal University, China | 0.25 × 0.25 |
CanESM2 | Canadian Centre for Climate Modelling and Analysis | 0.25 × 0.25 |
CCSM4 | National Center for Atmospheric Research, USA | 0.25 × 0.25 |
CESM1-BGC | National Science Foundation, Department of Energy, National Center for Atmospheric Research, USA | 0.25 × 0.25 |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en CalculScientifique, France | 0.25 × 0.25 |
CSIRO-Mk3-6-0 | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence, Australia | 0.25 × 0.25 |
GFDL-CM3 GFDL-ESM2G GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory, USA | 0.25 × 0.25 0.25 × 0.25 0.25 × 0.25 |
inmcm4 | Institute for Numerical Mathematics, Moscow, Russia | 0.25 × 0.25 |
IPSL-CM5A-LR IPSL-CM5A-MR | Institut Pierre-Simon Laplace, France | 0.25 × 0.25 0.25 × 0.25 |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 0.25 × 0.25 |
MIROC-ESM MIROC-ESM-CHEM | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and the National Institute for Environmental Studies | 0.25 × 0.25 0.25 × 0.25 |
MPI-ESM-LR MPI-ESM-MR | Max Planck Institute for Meteorology (MPI-M), Germany | 0.25 × 0.25 0.25 × 0.25 |
MRI-CGCM3 | Meteorological Research Institute, Japan | 0.25 × 0.25 |
NorESM1-M | Norwegian Climate Centre | 0.25 × 0.25 |
References
- Kuchment, L.S. The Hydrological Cycle and Human Impact on It. Available online: http://www.biodiversity.ru/programs/ecoservices/library/functions/water/doc/Kuchment.pdf (accessed on 17 May 2019).
- Price, K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. 2011, 35, 465–492. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F.; Roo, A.d.; Dirmeyer, P.A.; Famiglietti, J.S.; Hanasaki, N.; Konar, M.; Liu, J.; Müller Schmied, H.; Oki, T. Human–water interface in hydrological modelling: current status and future directions. Hydrol. Earth Syst. Sci. 2017, 21, 4169–4193. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Friedlingstein, P.; Ciais, P.; de Noblet-Ducoudré, N.; Labat, D.; Zaehle, S. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA 2007, 104, 15242–15247. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.; Farnsworth, K.; Jones, P.; Xu, K.; Smith, L. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob. Planet. Chang. 2008, 62, 187–194. [Google Scholar] [CrossRef]
- Stocker, T.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Arnell, N.; Liu, C. Hydrology and water resources. In Climate Change 2001: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2001; pp. 191–233. [Google Scholar]
- Tarboton, D. Rainfall-Runoff Processes; Utah State University: Logan, UT, USA, 2003; p. 1. [Google Scholar]
- Prestele, R.; Arneth, A.; Bondeau, A.; de Noblet-Ducoudré, N.; Pugh, T.A.; Sitch, S.; Stehfest, E.; Verburg, P.H. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth Syst. Dyn. 2017, 8, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.; Allen, M.; Barros, V.; Broome, J.; Cramer, W.; Christ, R.; Church, J.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Wang, D.; Yu, X.; Jia, G.; Wang, H. Sensitivity analysis of runoff to climate variability and land-use changes in the Haihe Basin mountainous area of north China. Agric. Ecosyst. Environ. 2019, 269, 193–203. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, G.; Cheng, X.; Wang, Y. Analysis of the Contribution Rate of Climate Change and Anthropogenic Activity to Runoff Variation in Nenjiang Basin, China. Hydrology 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, B.; Limon, R.A.; Seo, D.-J.; Lee, H.; Brown, J. Multiscale Post-Processor for Ensemble Streamflow Prediction for Short-to-Long Ranges. J. Hydrometeorol. 2020, 21, 265–285. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Li, Z.; Amo-Boateng, M.; Deng, P.; Huang, P. Quantitative assessment of the impact of climate variability and human activities on runoff changes for the upper reaches of Weihe River. Stoch. Environ. Res. Risk Assess. 2014, 28, 333–346. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Li, B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor. Appl. Climatol. 2013, 111, 537–545. [Google Scholar] [CrossRef]
- Chiew, F.H.; Peel, M.C.; McMahon, T.A.; Siriwardena, L. Precipitation elasticity of streamflow in catchments across the world. IAHS Publ. 2006, 308, 256. [Google Scholar]
- Fu, G.; Charles, S.P.; Chiew, F.H. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, W11419. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Wang, W.; Zou, S.; Shao, Q.; Xing, W.; Chen, X.; Jiao, X.; Luo, Y.; Yong, B.; Yu, Z. The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration. J. Hydrol. 2016, 541, 1042–1056. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Yang, D.; Ye, B.; Shiklomanov, A. Discharge characteristics and changes over the Ob River watershed in Siberia. J. Hydrometeorol. 2004, 5, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Zhanpeisova, S. Сoвременные вoдные ресурсы Верхнегo Ертиса: oценка и вoзмoжные изменения (in Russian). Ph.D. Thesis, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 2010. [Google Scholar]
- Zholdosheva, E.; Ruchevska, I.; Semernya, L.; Dairov, I.; Kozhakhmetov, P.; Bariev, A.; Maskaev, A.; Mitrofanenko, T.; Alekseeva, N. Адаптация к изменению климата в гoрных райoнах Центральнoй Азии. Серия Обзoрoв пo Адаптации в Гoрных Райoнах (in Russian). Available online: https://www.weadapt.org/sites/weadapt.org/files/2017/june/centralasia_rus.pdf (accessed on 25 October 2019).
- Tsaregorodtseva, A. Hydroecology of the Irtysh River Floodplain (in Russian); Lambert Academic Publishing: Saarbrucken, Germany, 2015. [Google Scholar]
- Huang, F.; Xia, Z.; Li, F.; Guo, L.; Yang, F. Hydrological changes of the Irtysh River and the possible causes. Water Resour. Manag. 2012, 26, 3195–3208. [Google Scholar] [CrossRef] [Green Version]
- Semenov, A.; Dobroumova, G.; Ivkova, B.; Halperin, A.; Khromov, I. Ресурсы пoверхнoстных вoд СССР, часть 1. Алтай и Западная Сибирь (in Russian); GWK: Saint Petersburg, Russia, 1969. [Google Scholar]
- Alia, N.; Alexander, P.; Vokhid, H. Climate Change and Hydrology in Central Asia: A Survey of Selected River Basins. Available online: https://zoinet.org/wp-content/uploads/2018/01/Climate-Hydrology-CA-Final-WEB.pdf (accessed on 23 June 2019).
- Great Soviet Encyclopedia. Available online: https://www.booksite.ru/fulltext/1/001/008/006/818.htm (accessed on 15 June 2019).
- Loginovskaya, А. Изменчивoсть и антрoпoгенная трансфoрмация стoка р. Бухтармы (Югo-Западный Алтай). Ph.D. Thesis, Altai State University, Barnaul, Russia, 2001. [Google Scholar]
- Central Asia Climate Data Base. Available online: http://snobear.colorado.edu/Markw/Geodata/geodata.html (accessed on 12 February 2019).
- Пoгoда и климат. Available online: http://www.pogodaiklimat.ru/ (accessed on 15 February 2019).
- State Water Cadastre. Пoверхнoстные вoды. Мнoгoлетние данные o режиме и ресурсах пoверхнoстных вoд суши. Часть 1. Реки и каналы Выпуск 11; (in Russian); GWK: Omsk, Russia, 1984. [Google Scholar]
- State Water Cadastre. Мнoгoлетние данные o режиме и ресурсах пoверхнoстных пoверхнoстных вoд. Казахская ССР. Бассейны Иртыша, Ишима, Тoбoла. 1976–1980, Ресурсы пoверхнoстных вoд СССР. (in Russian); Gidrometeoizdat: Saint Petersburg, Russia, 1987; p. 468. [Google Scholar]
- Sadokova, V.; Kozeltseva, V. Климатические oсoбеннoсти и метoды прoгнoза различных явлений пoгoды (in Russian); Hydrometeoizdat: St. Petersburg, Russia, 2001. [Google Scholar]
- Climatic Research Unit. Available online: http://www.cru.uea.ac.uk/data/ (accessed on 11 February 2019).
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef]
- Nasa Center for Climate Simulation. Available online: https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp (accessed on 23 January 2018).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Pettitt, A. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Kiely, G.; Albertson, J.D.; Parlange, M. Recent trends in diurnal variation of precipitation at Valentia on the west coast of Ireland. J. Hydrol. 1998, 207, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Huo, Z.; Feng, S.; Kang, S.; Li, W.; Chen, S. Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China. Hydrol. Process. 2008, 22, 3155–3167. [Google Scholar] [CrossRef]
- Hu, S.; Liu, C.; Zheng, H.; Wang, Z.; Yu, J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J. Geogr. Sci. 2012, 22, 895–905. [Google Scholar] [CrossRef]
- Zhou, Y.; Lai, C.; Wang, Z.; Chen, X.; Zeng, Z.; Chen, J.; Bai, X. Quantitative evaluation of the impact of climate change and human activity on runoff change in the dongjiang river basin, China. Water 2018, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hickel, K.; Dawes, W.; Chiew, F.H.; Western, A.; Briggs, P. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Zhang, Y.; Chen, X.; Li, J.; Aryal, S.K. Deducing climatic elasticity to assess projected climate change impacts on streamflow change across China. J. Geophys. Res. Atmos. 2017, 122, 10228–10245. [Google Scholar] [CrossRef]
- Chen, Y.; Takeuchi, K.; Xu, C.; Chen, Y.; Xu, Z. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Process. 2006, 20, 2207–2216. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, G.; Xu, Y. Effects of climate change and human activities on runoff in the Nenjiang River Basin, Northeast China. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 11521–11549. [Google Scholar] [CrossRef]
- Nash, E.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Church, J.; Clark, P.; Cazenave, A.; Gregory, J.; Jevrejeva, S.; Levermann, A.; Merrifield, M.; Milne, G.; Nerem, R.; Nunn, P. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F. Spatial patterns of global precipitation change and variability during 1901–2010. J. Clim. 2015, 28, 4431–4453. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Bai, Y.; Su, B.; Mao, W. Trends of streamflow in the Tarim River Basin during the past 50 years: human impact or climate change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Kryukova, V.; Dolgikh, S.; Idrissova, V.; Cherednichenko, A.; Sergezina, G. Kazakhstan’s Second National Communication to the Conference of the Parties of the United Nations Framework Convention on Climate Change. p. 165. Available online: http://www.un-gsp.org/sites/default/files/documents/kazakhstans_snc_english_1.pdf (accessed on 20 November 2019).
- Luo, M.; Liu, T.; Frankl, A.; Duan, Y.; Meng, F.; Bao, A.; Kurban, A.; De Maeyer, P. Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: how climate change reacts in Xinjiang, China. Int. J. Climatol. 2018, 38, 2538–2553. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- Matyas, C. Forests and Climate Change in Eastern Europe and Central Asia; Food and Agroculture Organization of the United Nations: Rome, Italy, 2010; Volume 8. [Google Scholar]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Wu, C.; Hu, B.X.; Huang, G.; Wang, P.; Xu, K. Responses of runoff to historical and future climate variability over China. Hydrol. Earth Syst. Sci. 2018, 22, 1971–1991. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Wang, W.; Zou, S.; Deng, C. Projection of future runoff change using climate elasticity method derived from Budyko framework in major basins across China. Glob. Planet. Chang. 2018, 162, 120–135. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Wang, J.; Feng, Y.; Shao, Q. Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs. Sci. Total Environ. 2020, 716, 137072. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Xing, W.; Sun, F.; Luo, Y. Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Poulin, A.; Leconte, R. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res. 2011, 47, W12509. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G.; Yu, H. Prediction of extreme floods based on CMIP5 climate models: A case study in the Beijiang River basin, South China. Hydrol. Syst. Sci. 2015, 19, 1385–1399. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Fischer, T.; Jiang, T.; Luo, Y. Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China. Quat. Int. 2013, 304, 51–61. [Google Scholar] [CrossRef]
Factor | Upstream | Midstream | Downstream | ||||||
---|---|---|---|---|---|---|---|---|---|
MK Test | Change Point (year) | MK Test | Change Point (year) | MK Test | Change Point (year) | ||||
Z | Sig. | Z | Sig. | Z | Sig. | ||||
Temperature | 5.09 | ** | 1988 | 4.86 | ** | 1976 | 5.55 | ** | 1976 |
Precipitation | 2.21 | * | 1981 | 1.54 | N | 2000 | −0.15 | N | 1972 |
PET | 0.22 | N | 1996 | 0.74 | N | 1996 | 0.85 | N | 1996 |
Station | Change Rate (Mm/10a) | MK Test | Change Point (Year) | |
---|---|---|---|---|
Z | Sig. | |||
Berel | 0.01 | 2.58 | ** | 1982 |
Pechi | 0.38 | 0.87 | N | 1982 |
Lesnaya Pristan | 0.07 | 1.82 | * | 1982 |
Stations | Period | ΔP | ΔPET | ΔR | ΔRclim | ΔRhum | ||
---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | mm | % | mm | % | ||
Berel (Upstream) | 1950–1982 | |||||||
1983–1995 | 52.94 | −27.45 | 6.89 | 23.07 | 58.78 | −16.2 | 41.22 | |
1996–2005 | 45.00 | −2.17 | 7.81 | 17.52 | 64.35 | −9.7 | 35.65 | |
2006–2015 | 53.44 | 4.41 | 24.11 | 23.77 | 98.58 | 0.3 | 1.45 | |
1983–2015 | 50.68 | −10.14 | 12.39 | 21.68 | 70.00 | −9.3 | 30.00 | |
Pechi (Midstream) | 1950–1982 | |||||||
1983–1995 | 9.52 | −22.44 | 20.55 | 26.05 | 82.57 | −5.50 | 17.43 | |
1996–2005 | 4.01 | 4.03 | 7.62 | 5.35 | 70.24 | 2.27 | 29.76 | |
2006–2015 | 59.87 | 19.63 | 15.81 | 81.33 | 55.38 | −65.52 | 44.62 | |
1983–2015 | 23.12 | −1.67 | 15.19 | 38.97 | 62.11 | −23.78 | 37.89 | |
Lesnaya Pristan (Downstream) | 1950–1982 | |||||||
1983–1995 | −19.13 | −24.20 | 39.16 | −40.46 | 33.70 | 79.6 | 66.30 | |
1996–2005 | −15.44 | 9.31 | 27.70 | −53.72 | 39.75 | 81.4 | 60.25 | |
2006–2015 | 25.67 | 20.11 | 121.12 | 65.63 | 54.19 | 55.5 | 45.81 | |
1983–2015 | −4.43 | −0.62 | 60.52 | −13.40 | 15.34 | 73.9 | 84.66 |
Models | R2 | NSE | KGE | RMSE | |
---|---|---|---|---|---|
1 | MRI-CGCM3 | 0.86 | 0.72 | 0.58 | 5.14 |
2 | NorESM1-M | 0.87 | 0.56 | 0.41 | 6.44 |
3 | MIROC-ESM-CHEM | 0.89 | 0.61 | 0.46 | 6.29 |
4 | MIROC-ESM | 0.87 | 0.66 | 0.61 | 5.61 |
5 | MIROC5 | 0.88 | 0.40 | 0.16 | 7.45 |
6 | IPSL-CM5A-MR | 0.89 | 0.68 | 0.55 | 5.50 |
7 | inmcm4 | 0.87 | 0.51 | 0.33 | 6.73 |
8 | IPSL CM5LR | 0.82 | 0.47 | 0.30 | 7.04 |
9 | ACCESS-1.0 | 0.89 | 0.71 | 0.60 | 5.22 |
10 | bcc-csm1-1 | 0.85 | 0.37 | 0.08 | 7.69 |
11 | BNU-ESM | 0.85 | 0.57 | 0.57 | 6.31 |
12 | CanESM2 | 0.82 | 0.66 | 0.73 | 5.59 |
13 | CCSM4 | 0.87 | 0.40 | 0.07 | 7.46 |
14 | CESM1-BGC | 0.76 | 0.38 | 0.36 | 7.57 |
15 | CNRM-CM5 | 0.88 | 0.66 | 0.38 | 5.63 |
16 | CSIRO-MK3-6-0 | 0.85 | 0.71 | 0.79 | 5.21 |
17 | GFDL-CM3 | 0.84 | 0.53 | 0.42 | 6.63 |
18 | GFDL-ESM2G | 0.81 | 0.55 | 0.41 | 6.45 |
19 | GFDL-ESM2M | 0.83 | 0.72 | 0.69 | 5.07 |
20 | MPI-ESM-LR | 0.89 | 0.52 | 0.37 | 6.66 |
21 | MPI-ESM-MR | 0.90 | 0.44 | 0.40 | 7.22 |
Period | RCP 4.5 | ||||
Annual | DJF | MAM | JJA | SON | |
2036–2065 | 13.6% | 17.8% | 15.9% | 7.7% | 13.1% |
2071–2100 | 19.9% | 22.3% | 24.9% | 11.4% | 21.0% |
RCP 8.5 | |||||
2036–2065 | 10.5% | 14.9% | 12.6% | 2.7% | 11.8% |
2071–2100 | 18.1% | 27.2% | 26.0% | 1.1% | 18.2% |
Scenario | Time Period | Tavg (°C) | Tmax (°C) | Tmin (°C) | |||
---|---|---|---|---|---|---|---|
Value | Change with Respect to Baseline | Value | Change with Respect to Baseline | Value | Change with Respect to Baseline | ||
Baseline | 1971–2000 | 0.97 | 6.91 | −4.98 | |||
RCP 4.5 | 2036–2065 | 3.49 | 2.52 | 9.45 | 2.54 | −2.47 | 2.51 |
2071–2100 | 4.33 | 3.36 | 10.41 | 3.50 | −1.75 | 3.23 | |
RCP 8.5 | 2036–2065 | 4.26 | 3.29 | 10.01 | 3.10 | −1.49 | 3.49 |
2071–2100 | 7.16 | 6.19 | 12.82 | 5.91 | 1.50 | 6.48 |
Month | Precipitation RCP 4.5 | Temperature RCP 4.5 | Precipitation RCP 8.5 | Temperature RCP 8.5 | ||||
---|---|---|---|---|---|---|---|---|
Test Z | Sig. | Test Z | Sig. | Test Z | Sig. | Test Z | Sig. | |
January | 0.057 | 3.674 | *** | 0.199 | * | 7.705 | *** | |
February | −0.019 | 3.255 | ** | 0.110 | 7.592 | *** | ||
March | 0.023 | 3.323 | *** | 0.250 | ** | 8.577 | *** | |
April | 0.276 | ** | 4.376 | *** | 0.208 | * | 8.849 | *** |
May | 0.005 | 4.501 | *** | 0.111 | 9.347 | *** | ||
June | −0.005 | 5.803 | *** | −0.048 | 9.098 | *** | ||
July | 0.104 | 5.486 | *** | −0.028 | 9.834 | *** | ||
August | 0.125 | 6.652 | *** | −0.097 | 9.924 | *** | ||
September | 0.204 | * | 4.082 | *** | −0.041 | 8.713 | *** | |
October | −0.006 | 3.663 | *** | 0.302 | *** | 8.724 | *** | |
November | 0.098 | 3.527 | *** | 0.173 | * | 7.807 | *** | |
December | 0.188 | * | 5.282 | *** | 0.198 | * | 8.305 | *** |
Annual | 3.12 | * | 7.615 | *** | 3.3 | * | 10.581 | *** |
Scenario | Period | εP | εPET | |||||
---|---|---|---|---|---|---|---|---|
RCP 4.5 | 2036–2065 | 2.08 | −1.08 | 13.58 | 9.02 | 28.32 | −9.78 | 18.53 |
2071–2100 | 2.29 | −1.29 | 18.18 | 12.58 | 41.62 | −16.23 | 25.40 | |
RCP 8.5 | 2036–2065 | 1.39 | −0.39 | 8.73 | 8.27 | 12.09 | −3.18 | 8.91 |
2071–2100 | 1.03 | −0.03 | 13.46 | 16.43 | 13.83 | −0.45 | 13.38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhimova, M.; Liu, T.; Bissenbayeva, S.; Mukanov, Y.; Gafforov, K.S.; Bekpergenova, Z.; Gulakhmadov, A. Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan. Sustainability 2020, 12, 4968. https://doi.org/10.3390/su12124968
Rakhimova M, Liu T, Bissenbayeva S, Mukanov Y, Gafforov KS, Bekpergenova Z, Gulakhmadov A. Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan. Sustainability. 2020; 12(12):4968. https://doi.org/10.3390/su12124968
Chicago/Turabian StyleRakhimova, Moldir, Tie Liu, Sanim Bissenbayeva, Yerbolat Mukanov, Khusen Sh. Gafforov, Zhuldyzay Bekpergenova, and Aminjon Gulakhmadov. 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan" Sustainability 12, no. 12: 4968. https://doi.org/10.3390/su12124968
APA StyleRakhimova, M., Liu, T., Bissenbayeva, S., Mukanov, Y., Gafforov, K. S., Bekpergenova, Z., & Gulakhmadov, A. (2020). Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan. Sustainability, 12(12), 4968. https://doi.org/10.3390/su12124968