Higher Levels of Physical Fitness Are Associated with Lower Peak Plantar Pressures in Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Peak Plantar Pressures
2.3. Physical Fitness Assessment
3. Covariates
4. Data Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2004 Revision; UN: New York, NY, USA, 2005. [Google Scholar]
- Fong, J.H. Disability incidence and functional decline among older adults with major chronic diseases. BMC Geriatr. 2019, 19, 323. [Google Scholar] [CrossRef] [Green Version]
- Rimmer, J.H. Fitness and Rehabilitation Programs for Special Populations; Brown Benchmark: Madison, WI, USA, 1994. [Google Scholar]
- Ciprandi, D.; Zago, M.; Bertozzi, F.; Sforza, C.; Galvani, C. Influence of energy cost and physical fitness on the preferred walking speed and gait variability in elderly women. J. Electromyogr. Kinesiol. 2018, 43, 1–6. [Google Scholar] [CrossRef]
- Nygård, L.; Mundal, I.; Dahl, L.; Šaltytė Benth, J.; Rokstad, A. Nutrition and physical performance in older people-effects of marine protein hydrolysates to prevent decline in physical performance: A randomised controlled trial protocol. BMJ Open 2018, 8, e023845. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.K.A.; Pillai, S.G.K.; Tan, S.T.; Tai, C.C.; Shahar, S. Association between physiological falls risk and physical performance tests among community-dwelling older adults. Clin. Interv. Aging 2015, 10, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Booth, F.W.; Roberts, C.K. Linking performance and chronic disease risk: Indices of physical performance are surrogates for health. Br. J. Sports Med. 2008, 42, 950–952. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Fontana, L.; Trevisan, C.; Boltezza, F.; Rui, M.; Sartori, L.; Musacchio, E.; Zambon, S.; Maggi, S.; et al. A comparison of objective physical performance tests and future mortality in the elderly people. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Kostić, R.; Pantelić, S.; Uzunović, S.; Djuraskovic, R. A comparative analysis of the indicators of the functional fitness of the elderly. Facta Univ. Ser. Phys. Educ. Sport 2011, 9, 161–171. [Google Scholar]
- Riebe, D.; Blissmer, B.J.; Greaney, M.L.; Garber, C.E.; Lees, F.D.; Clark, P.G. The relationship between obesity, physical activity, and physical function in older adults. J. Aging Health 2009, 21, 1159–1178. [Google Scholar] [CrossRef]
- Tuna, H.D.; Edeer, A.O.; Malkoc, M.; Aksakoglu, G. Effect of age and physical activity level on functional fitness in older adults. Eur. Rev. Aging Phys. Act. 2009, 6, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Scott, G.; Menz, H.B.; Newcombe, L. Age-related differences in foot structure and function. Gait Posture 2007, 26, 68–75. [Google Scholar] [CrossRef]
- Menz, H.B.; Fotoohabadi, M.R.; Munteanu, S.E.; Zammit, G.V.; Gilheany, M.F. Plantar pressure and relative metatarsal lengths in older people with and without forefoot pain. J. Orthop. Res. 2013, 31, 427–433. [Google Scholar] [CrossRef]
- Mickle, K.J.; Cliff, D.P.; Munro, B.J.; Okely, A.D.; Steele, J.R. Relationship between plantar pressures, physical activity and sedentariness among preschool children. J. Sci. Med. Sports 2011, 14, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Mohd Said, A.; Justine, M.; Manaf, H. Plantar pressure distribution among older persons with different types of foot and its correlation with functional reach distance. Scientifica (Cairo) 2016, 2016, 8564020. [Google Scholar] [CrossRef] [Green Version]
- Riddiford-Harland, D.L.; Steele, J.R.; Cliff, D.P.; Okely, A.D.; Morgan, P.J.; Jones, R.A.; Baur, L.A. Lower activity levels are related to higher plantar pressures in overweight children. Med. Sci. Sports. Exerc. 2015, 47, 357–362. [Google Scholar] [CrossRef]
- Martínez-Vizcaíno, V.; Sánchez-López, M. Relationship between physical activity and physical fitness in children and adolescents. Rev. Esp. Cardiol. 2008, 61, 108–111. [Google Scholar] [CrossRef]
- Lenzi, T.; Carrozza, M.C.; Agrawal, S.K. Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013, 21, 938–948. [Google Scholar] [CrossRef]
- Chen, B.; Ma, H.; Qin, L.-Y.; Gao, F.; Chan, K.-M.; Law, S.-W.; Qin, L.; Liao, W.-H. Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Kasović, M.; Štefan, L.; Zvonar, M. Domain-specific and total sedentary behavior associated with gait velocity in older adults: The mediating role of physical fitness. Int. J. Environ. Res. Public Health 2020, 17, 593. [Google Scholar] [CrossRef] [Green Version]
- Rikli, R.E.; Jones, J. Functional fitness normative scores for community-resident older adults, 60–94. J. Phys. Act. Health 1999, 7, 162–181. [Google Scholar]
- Rosendhal, E.; Lundin-Olsson, L.; Kallin, K.; Jensen, J.; Gustafson, Y.; Nyberg, L. Prediction of falls among older people in residential care facilities by the Downton index. Aging Clin. Exp. Res. 2003, 15, 142–147. [Google Scholar] [CrossRef]
- Awale, A.; Hagedorn, T.J.; Dufour, A.B.; Menz, H.B.; Casey, V.A.; Hannan, M.T. Foot function, foot pain, and falls in older adults: The Framingham Foot Study. Gerontology 2017, 63, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Kritchevsky, S.B.; Goodpaster, B.H.; Newman, A.B.; Stamm, E.; Harris, T.B. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: The health, aging and body composition study. J. Am. Geriatr. Soc. 2002, 50, 897–904. [Google Scholar] [CrossRef]
- Ferrucci, L.; Penninx, B.W.; Leveille, S.G.; Corti, M.C.; Pahor, M.; Wallace, R.; Harris, T.B.; Havlik, R.J.; Guralnik, J.M. Characteristics of nondisabled older persons who perform poorly in objective tests of lower extremity performance. J. Am. Geriatr. Soc. 2000, 48, 1102–1110. [Google Scholar] [CrossRef]
- Verghese, J.; Mahoney, J.; Ambrose, A.F.; Wang, C.; Holtzer, R. Effect of aging remedation on gait in sedentary seniors. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1338–1343. [Google Scholar] [CrossRef] [Green Version]
- Haskell, W.L.; Blair, S.N.; Hill, J.O. Physical activity: Health outcomes and importance for public health policy. Prev. Med. 2009, 49, 280–282. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations of Physical Activity for Health; WHO Press: Geneva, Switzerland, 2011. [Google Scholar]
Study Variables | Mean ± SD |
---|---|
Age (years) | 71.01 ± 6.77 |
Height (cm) | 158.92 ± 21.41 |
Weight (kg) | 70.29 ± 12.97 |
Peak plantar pressure beneath the forefoot (N/cm2) | 46.73 ± 10.65 |
Peak plantar pressure beneath the midfoot (N/cm2) | 16.94 ± 7.41 |
Peak plantar pressure beneath the hindfoot (N/cm2) | 31.57 ± 7.44 |
Body-mass index (kg/m2) | 26.79 ± 4.42 |
Chair stand in 30 s (#) | 16.53 ± 4.14 |
Arm curl in 30 s (#) | 19.35 ± 4.68 |
2-min step test (#) | 170.36 ± 43.70 |
Chair sit–and-reach test (cm) * | 7.00 (1.00–11.00) |
Back scratch test (cm) * | 0.75 (−7.75–4.00) |
8 feet up–and-go test (s) | 5.37 ± 0.96 |
Downtown Fall Risk Index * | 2.00 (1.00–3.00) |
Foot pain (% of “Yes” response) ** | 54.2 |
Study Variables | Model 1 | Model 2 * | ||||
---|---|---|---|---|---|---|
β Coefficient | 95% CI | p-Value | β Coefficient | 95% CI | p-Value | |
Body-mass index | 0.11 | −0.29 to 0.56 | 0.576 | 0.19 | −0.18 to 0.66 | 0.354 |
Chair stand in 30 s | −1.22 | −1.65 to −0.79 | <0.001 | −1.02 | −1.53 to −0.50 | <0.001 |
Arm curl in 30 s | −1.04 | −1.33 to −0.75 | <0.001 | −0.87 | −1.20 to −0.53 | <0.001 |
2-min step test | −0.11 | −0.14 to −0.08 | <0.001 | −0.09 | −0.12 to −0.05 | <0.001 |
Chair sit-and-reach test | −0.33 | −0.54 to −0.12 | 0.002 | −0.18 | −0.41 to −0.05 | 0.130 |
Back scratch test | −0.13 | −0.32 to 0.07 | 0.198 | 0.01 | −0.18 to 0.21 | 0.895 |
8 feet up-and-go test | 3.14 | 1.17 to 5.11 | 0.002 | 2.22 | 0.08 to 4.35 | 0.042 |
Physical fitness index | −1.84 | −2.31 to −1.37 | <0.001 | −1.75 | −2.42 to −1.08 | <0.001 |
Study Variables | Model 1 | Model 2 * | ||||
---|---|---|---|---|---|---|
β Coefficient | 95% CI | p-Value | β Coefficient | 95% CI | p-Value | |
Body-mass index | 0.37 | 0.13 to 0.68 | 0.007 | 0.39 | 016 to 0.71 | 0.006 |
Chair stand in 30 s | −0.62 | −0.94 to −0.30 | <0.001 | −0.57 | −0.88 to −0.25 | <0.001 |
Arm curl in 30 s | −0.38 | −0.76 to −0.01 | 0.046 | −0.30 | −0.71 to 0.10 | 0.143 |
2-min step test | −0.03 | −0.06 to 0.01 | 0.081 | −0.01 | −0.05 to 0.02 | 0.354 |
Chair sit-and-reach test | −0.19 | −0.31 to −0.07 | 0.002 | −0.14 | −0.28 to −0.01 | 0.036 |
Back scratch test | −0.22 | −0.37 to −0.08 | 0.003 | −0.19 | −0.31 to −0.06 | 0.004 |
8 feet up-and-go test | 1.09 | −0.28 to 2.45 | 0.120 | 0.82 | −0.63 to 2.27 | 0.266 |
Physical fitness index | −0.84 | −1.44 to −0.24 | 0.006 | −0.90 | −1.62 to −0.17 | 0.015 |
Study Variables | Model 1 | Model 2 * | ||||
---|---|---|---|---|---|---|
β Coefficient | 95% CI | p-Value | β Coefficient | 95% CI | p-Value | |
Body-mass index | −0.17 | −0.53 to 0.15 | 0.316 | −0.15 | −0.53 to 0.20 | 0.422 |
Chair stand in 30 s | −0.48 | −0.67 to −0.28 | <0.001 | −0.34 | −0.60 to −0.08 | 0.011 |
Arm curl in 30 s | −0.31 | −0.57 to −0.05 | 0.021 | −0.13 | −0.47 to 0.21 | 0.448 |
2-min step test | −0.03 | −0.06 to −0.01 | 0.046 | −0.01 | −0.05 to 0.02 | 0.486 |
Chair sit-and-reach test | −0.26 | −0.36 to −0.16 | <0.001 | −0.20 | −0.31 to −0.09 | <0.001 |
Back scratch test | −0.11 | −0.27 to 0.06 | 0.206 | −0.04 | −0.18 to 0.11 | 0.622 |
8 feet up-and-go test | 1.46 | 0.01 to 2.92 | 0.048 | 0.96 | −0.48 to 2.39 | 0.191 |
Physical fitness index | −0.97 | −1.23 to −0.71 | <0.001 | −0.93 | −1.48 to 0.37 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štefan, L.; Kasović, M.; Zvonař, M. Higher Levels of Physical Fitness Are Associated with Lower Peak Plantar Pressures in Older Women. Sustainability 2020, 12, 4119. https://doi.org/10.3390/su12104119
Štefan L, Kasović M, Zvonař M. Higher Levels of Physical Fitness Are Associated with Lower Peak Plantar Pressures in Older Women. Sustainability. 2020; 12(10):4119. https://doi.org/10.3390/su12104119
Chicago/Turabian StyleŠtefan, Lovro, Mario Kasović, and Martin Zvonař. 2020. "Higher Levels of Physical Fitness Are Associated with Lower Peak Plantar Pressures in Older Women" Sustainability 12, no. 10: 4119. https://doi.org/10.3390/su12104119
APA StyleŠtefan, L., Kasović, M., & Zvonař, M. (2020). Higher Levels of Physical Fitness Are Associated with Lower Peak Plantar Pressures in Older Women. Sustainability, 12(10), 4119. https://doi.org/10.3390/su12104119