Are Opera Singers Fit or Not?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Body Composition Analysis
2.2.2. Cardiorespiratory Fitness
2.2.3. Physical Effort during Singing
2.2.4. Theory/Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Claiborne Ray, C. Singing and fitness. New York Times, 1 April 2008. Available online: http://www.nytimes.com/2008/04/01/science/01qna.html (accessed on 4 March 2020).
- Vickhoff, B.; Malmgren, H.; Aström, R.; Nyberg, G.; Ekström, S.R.; Engwall, M.; Snygg, J.; Nilsson, M.; Jörnsten, R. Music structure determines heart rate variability of singers. Front. Psychol. 2013, 4, 334. [Google Scholar] [CrossRef] [PubMed]
- Grape, C.; Sandgren, M.; Hansson, L.O.; Ericson, M.; Theorell, T. Does singing promote well-being?: An empirical study of professional and amateur singers during a singing lesson. Integr. Physiol. Behav. Sci. 2003, 38, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Schorr-Lesnick, B.; Teirstein, A.S.; Brown, L.K.; Miller, A. Pulmonary function in singers and wind-instrument players. Chest 1985, 88, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Moritz, E.D.; Loke, J. Ventilatory responses at rest and during exercise in marathon runners. J. Appl. Physiol. 1982, 52, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Ksinopoulou, H.; Hatzoglou, C.; Daniil, Z.; Gourgoulianis, K.; Karetsi, H. Ergospirometry Findings in Wind Instrument Players and Opera Singers. Int. J. Occup. Environ. Med. 2017, 8, 60–61. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mascherini, G.; Petri, C.; Galanti, G. Integrated total body composition and localized fat-free mass assessment. Sport Sci. Health 2015, 11, 217–225. [Google Scholar] [CrossRef]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. ESPEN, Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef] [PubMed]
- Redlich, C.A.; Tarlo, S.M.; Hankinson, J.L.; Townsend, M.C.; Eschenbacher, W.L.; Von Essen, S.G.; Sigsgaard, T.; Weissman, D.N. American Thoracic Society Committee on Spirometry in the Occupational Setting. Official American Thoracic Society technical standards: Spirometry in the occupational setting. Am. J. Respir. Crit. Care Med. 2014, 189, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Miller, A. Pulmonary Function Test in Clinical and Occupational Disease; Grune & Stratton: Philadelphia, PA, USA, 1986. [Google Scholar]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.R.; Johns, D.P.; Bailey, M.; Raven, J.; Walters, E.H.; Abramson, M.J. Prediction equations for single breath diffusing capacity (Tlco) in a middle aged caucasian population. Thorax 2008, 63, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Maiolo, C.; Mohamed, E.I.; Carbonelli, M.G. Body composition and respiratory function. Acta Diabetol. 2003, 40, S32–S38. [Google Scholar] [CrossRef] [PubMed]
- Usaj, A.; Kandare, F. The oxygen uptake threshold during incremental exercise test. Pflugers Arch. 2000, 440, R200–R201. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Samra, J.K.; Mullainathan, S. Individual differences in normal body temperature: Longitudinal big data analysis of patient records. BMJ 2017, 359, j5468. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.E.; Ganong, W.F. Ganong’s Review of Medical Physiology, 25th ed.; McGraw-Hill Medical: New York, NY, USA, 2012; p. 619. [Google Scholar]
- Franklin, B.A.; Whaley, M.H. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- McArdle, W.; Katch, F.I.; Katch, V.L. Exercise Physiology: Nutrition, Energy, and Human Performance, 8th ed.; Wolters Kluwer Health: Riverwoods, IL, USA, 2014. [Google Scholar]
- Eller, N.; Skylv, G.; Ostri, B.; Dahlin, E.; Suadicani, P.; Gyntelberg, F. Health and lifestyle characteristics of professional singers and instrumentalists. Occup. Med. 1992, 42, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Amann, M. Central and peripheral fatigue: Interaction during cycling exercise in humans. Med. Sci. Sports Exerc. 2011, 43, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
Female | Normal Range | Male | Normal Range | |
---|---|---|---|---|
Age (yrs) | 28.1 ± 4.6 | 34.1 ± 6.2 | ||
Height (cm) | 166.5 ± 6.3 | 177.3 ± 6.7 | ||
Weight (kg) | 69.4 ± 16.1 | 86.3 ± 6.1 | ||
BMI (kg/m2) | 25.1 ± 6.4 | 18.5–25 | 28.8 ± 3.2 | 18.5–25 |
Waist c. (cm) | 84.5 ± 11.4 | < 88 | 95.8 ± 13.8 | < 102 |
RZ (Ω) | 555.2 ± 96.7 | 432.9 ± 27.2 | ||
XC (Ω) | 60.8 ± 8.3 | 54.7 ± 8.8 | ||
PA (°) | 6.3 ± 0.7 | 5.8–7.4 | 7.3 ± 1.1 | 6.7–8.3 |
FFM (kg/m) | 30.8 ± 3.6 | 23–28 | 39.2 ± 2.5 | 28–35 |
TBW (L/m) | 22.5 ± 2.7 | 15–22 | 28.8 ± 2.9 | 18–26 |
ECW (%) | 44.4 ± 3.1 | 39–45 | 40.8 ± 3.9 | 38–44 |
BCM (kg/m) | 17.1 ± 2.9 | 10–17 | 23.2 ± 1.9 | 14–21 |
FM (kg/m) | 20.8 ± 4.4 | 7–14 | 11.8 ± 3.2 | 4–9 |
Female | Predict | P value | Male | Predict | P value | |
---|---|---|---|---|---|---|
FVC (L) | 3.9 ± 0.9 | 4.0 | NS | 4.7 ± 0.7 | 5.1 | NS |
FEV1 (L/sec) | 3.3 ± 0.6 | 3.4 | NS | 4.1 ± 0.7 | 4.4 | NS |
FEV1/FVC (%) | 85.1 ± 10.6 | 84.7 | NS | 86.8 ± 5.4 | 82.4 | NS |
FEF25/75 (L/sec) | 3.8 ± 1.3 | 3.6 | NS | 4.4 ± 1.3 | 4.3 | NS |
Female | Values at rest | Male | Values at rest | |
---|---|---|---|---|
HR max (bpm) | 180.0 ± 8.3 | 60–100 | 178.0 ± 13.3 | 60–100 |
RR max (bpm) | 19.8 ± 3.5 | 12–16 | 19.2 ± 4.0 | 12–16 |
T max (°) | 37.9 ± 0.2 | 37 | 37.9 ± 0.1 | 37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branca, J.J.V.; Gulisano, M.; Marella, M.; Mascherini, G. Are Opera Singers Fit or Not? Sustainability 2020, 12, 4213. https://doi.org/10.3390/su12104213
Branca JJV, Gulisano M, Marella M, Mascherini G. Are Opera Singers Fit or Not? Sustainability. 2020; 12(10):4213. https://doi.org/10.3390/su12104213
Chicago/Turabian StyleBranca, Jacopo Junio Valerio, Massimo Gulisano, Mario Marella, and Gabriele Mascherini. 2020. "Are Opera Singers Fit or Not?" Sustainability 12, no. 10: 4213. https://doi.org/10.3390/su12104213
APA StyleBranca, J. J. V., Gulisano, M., Marella, M., & Mascherini, G. (2020). Are Opera Singers Fit or Not? Sustainability, 12(10), 4213. https://doi.org/10.3390/su12104213