Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem
Abstract
1. Introduction
Study Area and Sampling
2. Methodology
2.1. Climate Change Modelling
2.2. Fuzzy Cognitive Mapping
2.2.1. Main Aspects of Fuzzy Cognitive Maps
2.2.2. Constructing Fuzzy Cognitive Maps
- What are the changes in summer and winter temperature observed over the past 10 to 15 years?
- What are the changes in rainfall variability observed over the past 10 to 15 years?
- What are the changes in extreme climatic events (cyclone, flood, etc.) observed over the past 10 to 15 years?
- What are the resulting impacts arising from direct effects due to climate variability, sea-level rise, and changes and climatic extremes?
- How have your lives and livelihoods been affected due to these changes?
- What adaptation practices have been taken up for enhancing climate resilience?
2.3. FCM-Based Simulations
3. Results
3.1. Projections of Climate Change in the Study Area
3.2. Climate-Related Impacts as Perceived by the Communities
3.3. Climate Change Adaptations in the Area
3.4. FCM-Based Simulations
4. Discussions
5. Conclusions and Research Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hossain, M.S.; Dearing, J.A.; Rahman, M.M.; Salehin, M. Recent changes in ecosystem services and human well-being in the Bangladesh coastal zone. Reg. Environ. Chang. 2016, 16, 429–443. [Google Scholar] [CrossRef]
- Phillips, J.D. Environmental gradients and complexity in coastal landscape response to sea-level rise. Catena 2018, 169, 107–118. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Temmerman, S.; Kirwan, M.L. Building land with a rising sea. Science 2015, 349, 588–589. [Google Scholar] [CrossRef]
- Van De Lageweg, W.I.; Slangen, A.B.A. Predicting Dynamic Coastal Delta Change in Response to Sea-Level Rise. J. Mar. Sci. Eng. 2017, 5, 24. [Google Scholar] [CrossRef]
- Lentz, E.E.; Thieler, E.R.; Plant, N.G.; Stippa, S.R.; Horton, R.M.; Gesch, D.B. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Chang. 2016, 6, 696–700. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part. B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 688. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 976. [Google Scholar]
- Neogi, S.B.; Dey, M.; Kabir, S.M.L.; Masum, S.J.H.; Kopprio, G.; Yamasaki, S.; Lara, R. Sundarban mangroves: Diversity, ecosystem services and climate change impacts. Asian J. Med. Biol. Res. 2016, 2, 488–507. [Google Scholar] [CrossRef]
- Lara, R.J.; Neogi, S.B.; Islam, M.S.; Mahmud, Z.H.; Islam, S.; Paul, D.; Demoz, B.B.; Yamasaki, S.; Nair, G.B.; Kattner, G. Vibrio cholerae in waters of the Sunderban mangrove: Relationship with biogeochemical parameters and chitin in seston size fractions. Wetl. Ecol. Manag. 2011, 19, 109–119. [Google Scholar] [CrossRef]
- Nurse, L.A.; McLean, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V.; Pelesikoti, N.; Tompkins, E.; Webb, A. Small Islands. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1613–1654. [Google Scholar] [CrossRef]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabsoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef]
- Behera, R.; Kar, A.; Das, M.R.; Panda, P.P. GIS-based vulnerability mapping of the coastal stretch from Puri to Konark in Odisha using analytical hierarchy process. Nat. Hazards 2019, 96, 731–751. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Global assessment of flood and storm extremes with increased temperatures. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.J.H.; Ward, P.J. A global reanalysis of storm surges and extreme sea-levels. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Little, C.M.; Horton, R.M.; Kopp, R.E.; Oppenheimer, M.; Vecchi, G.A.; Villarini, G. Joint projections of US East Coast sea-level and storm surge. Nat. Clim. Chang. 2015, 5, 1114–1120. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Government of India. Census 2011. Available online: http://www.censusindia.gov.in/2011-common/census_2011.html (accessed on 20 August 2019).
- Uddin, M.S.; Shah, M.A.R.; Khanom, S.; Nesha, M.K. Climate change impacts on the Sundarbans mangrove ecosystem services and dependent livelihoods in Bangladesh. Asian J. Conserv. Biol. 2013, 2, 152–156. [Google Scholar]
- Van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.J.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP2.6: Exploring the possibility to keep global mean temperature change below 2°C. Clim. Chang. 2011, 109, 95–116. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2011, 93, 485–498. [Google Scholar] [CrossRef]
- Hijmans, R.E.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces of global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Kosko, B. Fuzzy Cognitive Maps. Int. J. Man Mach. Stud. 1986, 24, 65–75. [Google Scholar] [CrossRef]
- Özesmi, U.; Özesmi, L.S. Ecological models based on people’s knowledge: A multi-step fuzzy cognitive mapping approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef]
- Singh, P.K.; Chudasama, H. Pathways for drought resilient livelihoods based on people’s perception. Clim. Chang. 2017, 140, 179–193. [Google Scholar] [CrossRef]
- Singh, P.K.; Chudasama, H. Assessing impacts and community preparedness to cyclones: A fuzzy cognitive mapping approach. Clim. Chang. 2017, 143, 337–354. [Google Scholar] [CrossRef]
- Solana-Gutiérrez, J.; Rincón, G.; Alonso, C.; García-de-Jalón, D. Using fuzzy cognitive maps for predicting river management responses: A case study of the Esla River basin, Spain. Ecol. Model. 2017, 360, 260–269. [Google Scholar] [CrossRef]
- Singh, P.K.; Nair, A. Livelihood vulnerability assessment to climate variability and change using fuzzy cognitive mapping approach. Clim. Chang. 2014, 127, 475–491. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Kontogianni, A. Using Fuzzy Cognitive Mapping in Environmental Decision Making and Management: A Methodological Primer and an Application. In International Perspectives on Global Environmental Change; Young, S., Ed.; InTech: Lonodn, UK, 2012; pp. 427–450. ISBN 978-953-307-815-1. [Google Scholar]
- Papageorgiou, E. (Ed.) Fuzzy Cognitive Maps for Applied Sciences and Engineering—From Fundamentals to Extensions and Learning Algorithms, Intelligent Systems Reference Library, 54; Springer (Springer-Verlag): Heidelberg, Germanay, 2014; ISBN 978-3-642-39738-7. [Google Scholar]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón–Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global rEsponse to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; pp. 49–91. [Google Scholar]
- Ziv, G.; Watson, E.; Young, D.; Howard, D.C.; Larcom, S.T.; Tanentzap, A.J. The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach. Appl. Energy 2018, 210, 487–498. [Google Scholar] [CrossRef]
- Jetter, A.J.; Kok, K. Fuzzy cognitive maps for futures studies—A methodological assessment of concepts and methods. Futures 2014, 61, 45–57. [Google Scholar] [CrossRef]
- UNDP. Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures; Lim, B., Spanger-Siegfried, E., Burton, I., Malone, E., Huq, S., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004; p. 248. [Google Scholar]
- Nápoles, G.; Papageorgiou, E.; Bello, R.; Vanhoof, K. On the convergence of sigmoid Fuzzy Cognitive Maps. Inf. Sci. 2016, 349, 154–171. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Papageorgiou, K.; Dikopoulou, Z.; Mouhrir, A. A web-based tool for Fuzzy Cognitive Map Modeling. In Proceedings of the 9th International Congress on Environmental Modelling and Software (iEMSs), Fort Collins, CO, USA, 24–29 June 2018. [Google Scholar]
- Asfaw, S.; Pallante, G.; Palma, A. Diversification Strategies and Adaptation Deficit: Evidence from Rural Communities in Niger. World Dev. 2018, 101, 219–234. [Google Scholar] [CrossRef]
- Nalau, J.; Becken, S.; Schliephack, J.; Parsons, M.; Brown, C.; Mackey, B. The Role of Indigenous and Traditional Knowledge in Ecosystem-Based Adaptation: A Review of the Literature and Case Studies from the Pacific Islands. Weather Clim. Soc. 2018, 10, 851–865. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Midgley, G.E.; Preston, B.L.; Alam, M.; Berkhout, F.G.H.; Dow, K.; Shaw, M.R. Adaptation Opportunities, Constraints, and Limits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 899–943. [Google Scholar]
- Barnett, J.; Evans, L.S.; Gross, C.; Kiem, A.S.; Kingsford, R.T.; Palutikof, J.P.; Pickering, C.M.; Smithers, S.G. From barriers to limits to climate change adaptation: Path dependency and the speed of change. Ecol. Soc. 2015, 20, 5. [Google Scholar] [CrossRef]
- Moser, S.C.; Ekstrom, J.A. A framework to diagnose barriers to climate change adaptation. PNAS 2010, 107, 22026–22031. [Google Scholar] [CrossRef] [PubMed]
- Petzold, J.; Magnan, A.K. Climate change: Thinking small islands beyond Small Island Developing States (SIDS). Clim. Chang. 2019, 152, 145–165. [Google Scholar] [CrossRef]
- Shackleton, S.; Ziervogel, G.; Sallu, S.; Gill, T.; Tschakert, P. Why is socially-just climate change adaptation in sub-Saharan Africa so challenging? A review of barriers identified from empirical cases. WIREs Clim. Chang. 2015, 6, 321–344. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C. Barriers to climate change adaptation: Evidence from northeast Ghana in the context of a systematic literature review. Clim. Dev. 2014, 7, 297–309. [Google Scholar] [CrossRef]
- Nunn, P.; Aalbersberg, W.; Lata, S.; Gwilliam, M. Beyond the core: Community governance for climate-change adaptation in peripheral parts of Pacific Island Countries. Reg. Environ. Chang. 2013, 14, 221–235. [Google Scholar] [CrossRef]
- Adger, W.N.; Dessai, S.; Goulden, M.; Hulme, M.; Lorenzoni, I.; Nelson, D.R.; Naess, L.O.; Wolf, J.; Wreford, A. Are there social limits to adaptation to climate change? Clim. Chang. 2009, 93, 335–354. [Google Scholar] [CrossRef]
- Nalau, J.; Handmer, J. Improving development outcomes and reducing disaster risk through planned community relocation. Sustainability 2018, 10, 3545. [Google Scholar] [CrossRef]
- Petzold, J.; Ratter, B.M.W. Climate change adaptation under a social capital approach—An analytical framework for small islands. Ocean. Coast. Manag. 2015, 112, 36–43. [Google Scholar] [CrossRef]
- Runhaar, H.; Wilk, B.; Persson, Å.; Uittenbroek, C.; Wamsler, C. Mainstreaming climate adaptation: Taking stock about “what works” from empirical research worldwide. Reg. Environ. Chang. 2018, 18, 1201–1210. [Google Scholar] [CrossRef]
- Neset, T.; Asplund, T.; Käyhkö, J.; Juhola, S. Making sense of maladaptation: Nordic agriculture stakeholders’ perspectives. Clim. Chang. 2019, 153, 107–121. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C.; Codjoe, S.N.A. Adaptation opportunities and maladaptive outcomes in climate vulnerability hotspots of northern Ghana. Clim. Risk Manag. 2018, 19, 83–93. [Google Scholar] [CrossRef]
- Juhola, S.; Glaas, E.; Linnér, B.; Neset, T. Redefining maladaptation. Environ. Sci. Policy 2016, 55, 135–140. [Google Scholar] [CrossRef]
- Barnett, J.; O’Neil, S. Maladaptation. Glob. Environ. Chang. 2010, 20, 211–213. [Google Scholar] [CrossRef]
- De Coninck, H.; Revi, A.; Babiker, M.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; Dong, W.; Ford, J.; Fuss, S.; Hourcade, J.C.; et al. Strengthening and implementing the global response. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; pp. 313–443. [Google Scholar]
- Parsons, M.; Brown, C.; Nalau, J.; Fisher, K. Assessing adaptive capacity and adaptation: Insights from Samoan tourism operators. Clim. Dev. 2018, 10, 644–663. [Google Scholar] [CrossRef]
- McNamara, K.E.; Buggy, L. Community-based climate change adaptation: A review of academic literature. Local Environ. 2016, 22, 1–18. [Google Scholar] [CrossRef]
- Remling, E.; Veitayaki, J. Community-based action in Fiji’s Gau Island: A model for the Pacific? Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 375–398. [Google Scholar] [CrossRef]
- Doswald, N.; Munroe, R.; Roe, D.; Giuliani, A.; Castelli, I.; Stephens, J.; Möller, I.; Spencer, T.; Vira, B.; Reid, H. Effectiveness of ecosystem-based approaches for adaptation: Review of the evidence-base. Clim. Dev. 2014, 6, 185–201. [Google Scholar] [CrossRef]
Scenarios | Input Vector Concepts Used for Simulations |
---|---|
Baseline | C1—Climate variability and change, C2—Climatic extremes |
Scenario 1 | C14—Dykes and embankments |
Scenario 2 | C15—Water resource management |
Scenario 3 | C18—Sustainable agriculture and aquaculture practices |
Scenario 4 | C22—Strengthening local institutions |
Scenario 5 | C14—Dykes and embankments, C15—Water resource management, C18—Sustainable agriculture and aquaculture practices, and C22—Strengthening local institutions |
Climatic Parameters | Reference Climate * (1981‒2010) | ** E-Mean of Projections during 2050s (2041–2070) | ** E-Mean of Projections during 2080s (2071–2100) | ||
---|---|---|---|---|---|
RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | ||
Mean Temperature (°C) | 26.8 | 27.9 | 29.2 | 27.9 | 30.8 |
Mean Precipitation (mm) | 1744 | 1832 | 1872 | 1912 | 1872 |
Accumulated precipitation on consecutive rainy day (above 30 mm) | 118 | 375 | 328 | 372 | 376 |
Concepts | Baseline | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IV | Steady State Value | IV | Steady State Value | IV | Steady State Value | IV | Steady State Value | IV | Steady State Value | IV | Steady State Value | |
C1: Climate variability and change | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
C2: Climatic extremes | 1 | 0.9297 | 1 | 0.9297 | 1 | 0.9297 | 1 | 0.9297 | 1 | 0.9297 | 1 | 0.9297 |
C3: Sea-level rise | 0 | 0.9564 | 0 | 0.6891 | 0 | 0.9564 | 0 | 0.9564 | 0 | 0.9564 | 0 | 0.6897 |
C4: Seawater intrusion | 0 | 0.9986 | 0 | 0.9839 | 0 | 0.9986 | 0 | 0.9986 | 0 | 0.9986 | 0 | 0.984 |
C5: Soil fertility | 0 | −0.9884 | 0 | −0.9881 | 0 | −0.9275 | 0 | −0.9276 | 0 | −0.8334 | 0 | −0.8284 |
C6: Water resources | 0 | −0.9921 | 0 | −0.9921 | 0 | −0.9605 | 0 | −0.9605 | 0 | 0.7482 | 0 | 0.7482 |
C7: Pest invasion | 0 | 0.9477 | 0 | 0.9477 | 0 | 0.9477 | 0 | 0.9477 | 0 | 0.9477 | 0 | 0.9477 |
C8: Agriculture productivity | 0 | −0.9999 | 0 | −0.9999 | 0 | −0.9961 | 0 | −0.9961 | 0 | 0.8096 | 0 | 0.8116 |
C9: Environmental degradation | 0 | 0.9444 | 0 | 0.9445 | 0 | 0.9445 | 0 | 0.9445 | 0 | 0.5532 | 0 | 0.5532 |
C10: Livestock productivity | 0 | −0.9804 | 0 | −0.9804 | 0 | −0.9231 | 0 | −0.9232 | 0 | 0.4799 | 0 | 0.48 |
C11: Loss of infrastructure | 0 | 0.9884 | 0 | 0.8717 | 0 | 0.9884 | 0 | 0.9884 | 0 | 0.9884 | 0 | 0.8721 |
C12: Health and quality of life | 0 | −0.9806 | 0 | −0.9806 | 0 | −0.9806 | 0 | −0.9806 | 0 | −0.9031 | 0 | −0.9031 |
C13: Economic poverty | 0 | 0.9935 | 0 | 0.9935 | 0 | 0.9746 | 0 | 0.9746 | 0 | −0.9981 | 0 | −0.9981 |
C14: Dykes and embankments | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
C15: Water resource management | 0 | 0 | 0 | 0 | 1 | 0.9392 | 0 | 0.9391 | 0 | 0.9885 | 1 | 0.9885 |
C16: Water infrastructure | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C17: Agriculture inputs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C18: Sustainable agriculture and aquaculture practices | 0 | 0 | 0 | 0 | 0 | 0.9402 | 1 | 0.9402 | 0 | 0.9455 | 1 | 0.9455 |
C19: Pest control measures | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C20: Healthcare facilities | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9199 | 0 | 0.9199 |
C21: Livelihood diversification | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C22: Strengthening local institutions | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
C23: Credits and subsidies | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9228 | 0 | 0.9228 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.K.; Papageorgiou, K.; Chudasama, H.; Papageorgiou, E.I. Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem. Sustainability 2019, 11, 6655. https://doi.org/10.3390/su11236655
Singh PK, Papageorgiou K, Chudasama H, Papageorgiou EI. Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem. Sustainability. 2019; 11(23):6655. https://doi.org/10.3390/su11236655
Chicago/Turabian StyleSingh, Pramod K., Konstantinos Papageorgiou, Harpalsinh Chudasama, and Elpiniki I. Papageorgiou. 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem" Sustainability 11, no. 23: 6655. https://doi.org/10.3390/su11236655
APA StyleSingh, P. K., Papageorgiou, K., Chudasama, H., & Papageorgiou, E. I. (2019). Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem. Sustainability, 11(23), 6655. https://doi.org/10.3390/su11236655