Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers
Abstract
1. Introduction
2. Method
2.1. Study Area and Data
2.2. Statistical Analyses
3. Analysis and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Highway Traffic Safety Administration. Traffic Safety Fact 2018: 2016 Data; National Highway Traffic Safety Administration: Washington, DC, USA, 2018. [Google Scholar]
- Cioca, L.I.; Ivascu, L. Risk indicators and road accident analysis for the Period 2012–2016. Sustainability 2017, 9, 1530. [Google Scholar] [CrossRef]
- Li, G.; Braver, E.R.; Chen, L.H. Fragility versus excessive crash involvement as determinants of high death rates per vehicle mile of travel among older drivers. Accid. Anal. Prev. 2003, 35, 227–235. [Google Scholar] [CrossRef]
- Massie, D.L.; Green, P.E.; Campbell, K.L. Crash involvement rates by driver gender and the role of average annual mileage. Accid. Anal. Prev. 1997, 29, 675–685. [Google Scholar] [CrossRef]
- Janke, M.K. Accident, mileage, and the exaggeration of risk. Accid. Anal. Prev. 1991, 23, 183–188. [Google Scholar] [CrossRef]
- Alvarez, F.J.; Fierro, I. Older drivers, medical condition, medical impairment and crash risk. Accid. Anal. Prev. 2008, 40, 55–60. [Google Scholar] [CrossRef][Green Version]
- Hanson, T.R.; Hildebrand, E.D. Area rural older drivers subject to low-mileage bias? Accid. Anal. Prev. 2011, 43, 1872–1877. [Google Scholar] [CrossRef]
- Langford, J.; Methorst, R.; Hakamies-Blomqvist, L. Older drivers do not have a high crash risk: A replication of low mileage bias. Accid. Anal. Prev. 2006, 38, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Langford, J.; Koppel, S.; McCarthey, D.; Srinivasan, S. In defence of the low-mileage bias. Accid. Anal. Prev. 2008, 40, 1996–1999. [Google Scholar] [CrossRef] [PubMed]
- Landford, J.; Charlton, J.L.; Koppei, S.; Myers, A.; Tuokko, H.; Marshall, S. Findings from the Candrive/Ozcandrive study; Low-mileage older drivers, crash risk and reduced fitness to drive. Accid. Anal. Prev. 2013, 61, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Staplin, L.; Gish, K.W.; Joyce, J. Low mileage bias and related policy implications-A cautionary note. Accid. Anal. Prev. 2008, 40, 1249–1252. [Google Scholar] [CrossRef]
- Antin, J.F.; Guo, F.; Fang, Y.; Dingus, T.A.; Perez, M.A.; Hankey, J.M. A validation of the low mileage bias using naturalistic driving study data. J. Safety Res. 2017, 63, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Molnar, L.J.; Eby, D.W.; Bogard, S.E.; Leblanc, D.J.; Zakrajsek, J.S. Using naturalistic driving data to better understand the driving exposure and patterns of older drivers. Traffic Inj. Prev. 2018, 19, S83–S88. [Google Scholar] [CrossRef] [PubMed]
- Regev, S.; Rolison, J.J.; Moutari, S. Crash risk by driver age, gender, and time of day using a new exposure methodology. J. Saf. Res. 2018, 66, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Rolison, J.J.; Moutari, S. Risk-Exposure density and mileage bias in crash risk for older drivers. Am. J. Epidemiol. 2018, 187, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Dumbaugh, E.; Zhang, Y. The relationship between community design and crashes involving older drivers and pedestrians. J. Plan. Educ. Res. 2013, 33, 83–95. [Google Scholar] [CrossRef]
- Lee, D.; Guldmann, J.M.; Von Rabenau, B. Interactions between the built and socio-economic environment and driver demographics: Spatial econometric models of car crashes in the Columbus Metropolitan Area. Int. J. Urban Sci. 2018, 22, 17–37. [Google Scholar] [CrossRef]
- Levine, N.; Kim, K. The location of motor vehicle crashes in Honolulu: A methodology for geocoding intersections. Comput. Environ. Urban. Syst. 1998, 22, 557–576. [Google Scholar] [CrossRef]
- Fridstrom, L.; Ingebrigten, S. An aggregate accident model based on pooled, regional time-series data. Accid. Anal. Prev. 1991, 23, 363–378. [Google Scholar] [CrossRef]
- Pawlovich, D.M.; Souleyrette, R.R.; Strauss, T. A Methodology for Studying Crash Dependence on Demographic and Socioeconomic data. In Proceedings of the Conference: Crossroads 2000, Iowa State University Ames, IA, USA, 19–20 August 1998; pp. 209–215. [Google Scholar]
- Noland, R.; Oh, L. The effect of infrastructure and demographic change on traffic-related fatalities and crashes: A case study of Illinois county-level data. Accid. Anal. Prev. 2004, 36, 525–532. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Micro-Level accident prediction models for evaluating the safety of urban transportation systems. Transp. Res. Rec. 2003, 1840, 87–95. [Google Scholar] [CrossRef]
- Guevara, F.L.; Washington, S.; Oh, J. Forecasting crashes at the planning level: Simultaneous negative binomial crash model applied in Tucson, Arizona. Transp. Res. Rec. 2004, 1897, 191–199. [Google Scholar] [CrossRef]
- Kim, K.; Brunner, M.; Yamashita, E.Y. Influence of land use, population, employment and economic activity on accidents. Transp. Res. Rec. 2006, 1953, 56–64. [Google Scholar] [CrossRef]
- Dumbaugh, E.; Li, W. Designing for the safety for pedestrians, cyclists, and motorists in urban environments. J. Am. Plann. Assoc. 2010, 77, 69–88. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.; Persaud, B. Development of planning-Level transportation safety models using full bayesian semiparrametric additive techniques. J. Transp. Saf. Secur. 2010, 2, 45–68. [Google Scholar] [CrossRef]
- Guo, Y.; Osama, A.; Sayed, T. A cross-Comparison of different techniques for modeling macro-Level cyclist crashes. Accid. Anal. Prev. 2018, 113, 38–46. [Google Scholar] [CrossRef] [PubMed]
- International Transport Forum. Available online: https://www.itf-oecd.org/content/publication-0 (accessed on 20 March 2019).
- American Automobile Association: Older Driver Fact Sheet. Available online: http://newsroom.aaa.com/wp-content/uploads/2012/11/SmartFeatures-FactSheet.pdf (accessed on 20 March 2019).
- Cheng, Z.; Zu, Z.; Lu, J. Traffic crash evolution characteristic analysis and spatiotemporal hotspot identification of urban road intersections. Sustainability 2019, 11, 160. [Google Scholar] [CrossRef]
- Graham, D.J.; Glaister, S. Spatial variation in road pedestrian casualties: The role of urban scale, density and land-Use mix. Urban Stud. 2003, 40, 1591–1607. [Google Scholar] [CrossRef]
- Wedagama, D.M.P.; Bird, R.N.; Metcalfe, A.V. The influence of urban land-Use on non-Motorised trasport casulaties. Accid. Anal. Prev. 2006, 38, 1049–1057. [Google Scholar] [CrossRef]
- Dumbaugh, E.; Rae, R. Safe urban form: Revisiting the relationship between community design and traffic safety. J. Am. Plann. Assoc. 2009, 75, 309–329. [Google Scholar] [CrossRef]
- Bindra, B.; Ivan, N.J.; Jonsson, T. Predicting segment-Intersection crashes with land development data. Transp. Res. Rec. 2009, 2102, 9–17. [Google Scholar] [CrossRef]
- Pulugurtha, S.S.; Sambhara, V.R. Pedestrian crash estimation models for signalized intersections. Accid. Anal. Prev. 2011, 43, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Pulugurtha, S.S.; Duddu, V.R.; Kotagiri, Y. Traffic analysis zone level crash estimation models based on land use characteristics. Accid. Anal. Prev. 2012, 50, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, C.; Abdel-Aty, M.; Choi, K. Macroscopic spatial analysis of pedestrian and bicycle crashes. Accid. Anal. Prev. 2011, 45, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Quddus, M.A. Modeling area-Wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data. Accid. Anal. Prev. 2008, 40, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Huang, H. Modeling crash spatial heterogeneity: Random parameter versus geographically weighting. Accid. Anal. Prev. 2015, 75, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 2013, 55, 1–24. [Google Scholar] [CrossRef]
- Besag, J.; York, J.; Molli, E.A. Bayesian image restoration with two applications in spatial statistics. Annu. Inst. Stat. Math. 1991, 43, 1–59. [Google Scholar] [CrossRef]
- Pljakic, M.; Jovanovic, D.; Matovic, B.; Micicc, S. Macro-Level accident modeling in Novi Sad: A spatial regression approach. Accid. Anal. Prev. 2019, 132, 105259. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, X.; Zeng, Q.; Lee, J.; Yuan, Q. Investigating Spatial Autocorrelation and Spillover Effects in Freeway Crash-Frequency Data. Int. J. Environ. Res. Public Health 2019, 16, 219. [Google Scholar] [CrossRef]
- Shope, J.T. Influences on youthful driving behavior and their potential for guiding interventions to reduce crashes. Inj. Prev. 2006, 12, i9–i14. [Google Scholar] [CrossRef]
- Clifton, K.J.; Fults, K.K. An examination of the environmental attributes associated with pedestrian-Vehicular crashes near public schools. Accid. Anal. Prev. 2007, 39, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Wier, M.; Weintraub, J.; Humphreys, E.H.; Seto, E.; Bhatia, R. An area-Level model of vehicle-Pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. 2009, 41, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. The S+5Ds: Spatial access to pedestrian environments and walking in Seoul, Korea. Cities 2018, 77, 130–141. [Google Scholar]
- Shi, L.; Huseynova, N.; Yang, B.; Li, C.; Gao, L. A cask evaluation model to assess safety in Chinese rural roads. Sustainability 2018, 10, 3864. [Google Scholar] [CrossRef]
- Blanco, M.; Atwood, J.; Russell, S.; Trimble, T.; McClafferty, J.; Perez, M. Automated Vehicle Crash Rate Comparison Using Naturalistic Data 2016; Virginia Tech Transportation Institute: Blacksburg, VA, USA, 2016. [Google Scholar]
- Li, Y.; Xiong, W.; Wang, X. Does polycentric and compact development alleviate urban traffic congestion? A case study of 98 Chinese cities. Cities 2019, 88, 100–111. [Google Scholar] [CrossRef]
Category | Variable Name | Source |
---|---|---|
Crash Data | YDriver, MDriver, ODriver, Y06, Y07, Y08, Y09, Y10, and Y11 | Ohio Department of Public Safety (ODPS) |
Socio-Economic Factors | Popdensity, NHH, Empoff, HSchool, P1524, P5064, and Over65 | Mid-Ohio Regional Planning Commission (MORPC) and U.S. Census of Population and Housing |
Land-Use Factors | Residential and Commercial | County Auditors’ parcel-level data. |
Public Transit and Traffic Flow Factors | Busstop, VMT, Road, and ASpeed, | Ohio Department of Transportation (ODOT), Central Ohio Transit Authority (COTA) and the Delaware Area Transit Authority (DATA) |
Variable | Description | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
YDriver | Number of crashes caused by young drivers over the period 2006–2011 per TAZ | 29.15 | 36.75 | 0 | 515 |
MDriver | Number of crashes caused by drivers aged 24–64 over the period 2006–2011 per TAZ | 54.58 | 66.32 | 0 | 509 |
ODriver | Number of crashes caused by older drivers (65 +) over the period 2006–2011 per TAZ | 6 | 7.5 | 0 | 64 |
Popdensity | Population Density (population/acre) | 3.53 | 4.8 | 0 | 47.04 |
NHH | Number of households per TAZ | 363.7 | 441.99 | 0 | 3248 |
Empoff | Office employment per TAZ | 189.9 | 573.05 | 0 | 7729 |
HSchool | High school enrollment 2010 per TAZ | 53.33 | 244.65 | 0 | 3103 |
P1524 | Proportion of population between 15 and 24 years per TAZ | 0.14 | 0.1 | 0 | 1 |
P5064 | Proportion of population between 50 and 64 years per TAZ | 0.2 | 0.07 | 0 | 1 |
Over 65 | Proportion of population over 65 + years per TAZ | 0.12 | 0.09 | 0 | 1 |
Residential | Proportion of residential land use per TAZ | 0.3 | 0.27 | 0 | 0.96 |
Commercial | Proportion of commercial land use per TAZ | 0.12 | 0.19 | 0 | 0.98 |
Busstop | Number of bus stops per TAZ | 2.38 | 4.41 | 0 | 32 |
VMT | Vehicle miles per travel rate per weekday per TAZ | 19.77 | 11.18 | 0 | 210.89 |
Road | Length of road (mile) per TAZ | 4.55 | 4.73 | 0 | 43.14 |
Distance_C | Distance from the center of Columbus (mile) per TAZ | 13.65 | 9.58 | 0.07 | 44.47 |
ASpeed | Average Speed of roads per TAZ | 35.66 | 8.79 | 0 | 59.49 |
Y06 | Number of crashes in 2006 per TAZ | 13.3 | 17.7 | 0 | 151 |
Y07 | Number of crashes in 2007 per TAZ | 12.1 | 17.7 | 0 | 186 |
Y08 | Number of crashes in 2008 per TAZ | 16.5 | 17.7 | 0 | 192 |
Y09 | Number of crashes in 2009 per TAZ | 16 | 18 | 0 | 168 |
Y10 | Number of crashes in 2010 per TAZ | 15 | 20.18 | 0 | 138 |
Y11 | Number of crashes in 2011 per TAZ | 15 | 18.86 | 0 | 159 |
Group | Crash Frequency | % |
---|---|---|
Young driver | 52,093 | 32.3 |
Matured driver | 98,526 | 61.0 |
Senior driver | 10,882 | 6.7 |
Total | 161,501 | 100.0 |
Group | Age Group | Moran’s I | p-Value |
---|---|---|---|
1 | 16 < age ≤ 24 | 0.36 | <0.0001 |
2 | 24 < age ≤ 64 | 0.33 | <0.0001 |
3 | Over 65 | 0.31 | <0.0001 |
Parameter | Description | Young Drivers | Mature Drivers | Senior Drivers |
---|---|---|---|---|
Intercept | 3.14 (<0.0001) *** | 3.715 (<0.0001) *** | 1.774 (<0.0001) *** | |
Popdensity | Population Density (population /Acre) | - - | 0.011 (0.017) ** | - - |
NHH | Number of Households | 3 × 10−6 (<0.0001) *** | - - | - - |
Empoff | Office Employment | 0.0001 (0.005) *** | 0.0001 (<0.0001) *** | 0.0001 (0.0755) * |
HSchool | High School Enrolment 2010 | 0.0003 (<0.0001) *** | - - | - - |
P1524 | Proportion of population between 15 and 24 | 0.786 (<0.0001) *** | - - | - - |
P5064 | Proportion of population between 50 and 64 | –1.335 (<0.0001) *** | –1.138 (<0.0001) *** | - - |
Over65 | Proportion of population over 65 | - - | - - | 1.548 (<0.0001) *** |
Commercial | Proportion of commercial land use | 0.178 (0.0770) * | 0.409 (<0.0001) *** | 0.41 (<0.0001) *** |
Busstop | Number of bus stop | - - | - - | 0.021 (<0.0001) *** |
VMT | Vehicle miles per travel rate per weekday | –0.001 (<0.0001) *** | –0.001 (0.0061) *** | –0.001 (<0.0001) *** |
Road | Length of road (miles) | 0.042 (<0.0001) *** | 0.04 (<0.0001) *** | 0.031 (<0.0001) *** |
Distance_C | Distance from the center of Columbus (miles) | –0.007 (<0.0001) *** | –0.015 (<0.0001) *** | - - |
ASpeed | Average Speed of roads | –0.022 (<0.0001) *** | –0.015 (< 0.0001) *** | –0.032 (<0.0001) *** |
Y06 | Crashes occurred in 2006 | 0.029 (<0.0001) *** | 0.027 (<0.0001) *** | 0.03 (<0.0001) *** |
Y07 | Crashes occurred in 2007 | 0.014 (<0.0001) *** | 0.019 (<0.0001) *** | 0.007 (0.0046) *** |
Number of observations | 1805 | 1805 | 1805 | |
Number of parameters | 12 | 10 | 9 | |
DF | 1792 | 1794 | 1795 | |
0.67 | 0.64 | 0.68 | ||
Chi-squared goodness of fit test | 0.844 | 0.954 | 0.384 | |
Mean Pearson Chi-Square (value/DF) | 0.966 | 0.944 | 1.01 |
Name | Young Drivers | Mature Drivers | Senior Drivers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | 2.5% | 97.5% | Mean | SD | 2.5% | 97.5% | Mean | SD | 2.5% | 97.5% | |
Intercept | 2.557 | 0.386 | 1.219 | 2.871 | 3.443 | 0.592 | 1.11 | 3.816 | 1.722 | 0.209 | 0.966 | 1.966 |
Popdensity | - | - | - | - | 0.018 | 0.017 | 0.004 | 0.082 | - | - | - | - |
NHH | 4.38 × 10−4 | 1.40 × 10−4 | 2.71 × 10−4 | 9.23 × 10−4 | - | - | - | - | - | - | - | - |
Empoff | 9.68 × 10−5 | 3.79 × 10−5 | 4.63 × 10−5 | 1.76 × 10−4 | 1.52 × 10−4 | 5.42 × 10−5 | 7.19 × 10−5 | 3.08 × 10−4 | 6.02 × 10−4 | 4.02 × 10−5 | 6.24 × 10−6 | 1.56 × 10−4 |
HSchool | 2.81 × 10−4 | 6.23 × 10−5 | 1.64 × 10−4 | 3.90 × 10−4 | - | - | - | - | - | - | - | - |
P1524 | 0.839 | 0.204 | 0.502 | 1.249 | - | - | - | - | - | - | - | - |
P5064 | −0.9 | 0.336 | −1.472 | 0.064 | −0.696 | 0.348 | −1.121 | 0.13 | - | - | - | - |
Over65 | - | - | - | - | - | - | - | - | 1.38 | 0.317 | 0.396 | 1.808 |
Commercial | 0.323 | 0.11 | 0.131 | 0.529 | 0.433 | 0.131 | 0.218 | 0.787 | 0.43 | 0.114 | 0.181 | 0.626 |
Busstop | - | - | - | - | - | - | - | - | 0.022 | 0.006 | 0.012 | 0.038 |
VMT | −6.2 × 10−4 | 3.2 × 10−5 | −0.001 | 3.49 × 10−4 | −5.69 × 10−4 | 5.68 × 10−4 | −0.001 | 0.001 | −0.001 | 4.01 × 10−4 | −0.002 | −5.37 × 10−4 |
Road | 0.028 | 0.006 | 0.013 | 0.038 | 0.04 | 0.004 | 0.032 | 0.048 | 0.031 | 0.005 | 0.021 | 0.04 |
Distance_C | −0.005 | 0.002 | −0.009 | −5.14 × 10−4 | −0.014 | 0.002 | −0.018 | −0.01 | - | - | - | - |
ASpeed | −0.009 | 0.007 | −0.015 | 0.017 | −0.011 | 0.012 | −0.019 | 0.037 | −0.03 | 0.005 | −0.036 | −0.009 |
Y06 | 0.027 | 0.003 | 0.023 | 0.033 | 0.028 | 0.003 | 0.023 | 0.036 | 0.03 | 0.003 | 0.025 | 0.036 |
Y07 | 0.015 | 0.002 | 0.01 | 0.02 | 0.018 | 0.002 | 0.013 | 0.023 | 0.007 | 0.003 | 0.002 | 0.012 |
SD of SC | 0.29 | 0.24 | 0.25 | |||||||||
SD of UH | 0.81 | 0.82 | 0.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Guldmann, J.-M.; Choi, C. Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers. Sustainability 2019, 11, 6643. https://doi.org/10.3390/su11236643
Lee D, Guldmann J-M, Choi C. Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers. Sustainability. 2019; 11(23):6643. https://doi.org/10.3390/su11236643
Chicago/Turabian StyleLee, Dongkwan, Jean-Michel Guldmann, and Choongik Choi. 2019. "Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers" Sustainability 11, no. 23: 6643. https://doi.org/10.3390/su11236643
APA StyleLee, D., Guldmann, J.-M., & Choi, C. (2019). Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers. Sustainability, 11(23), 6643. https://doi.org/10.3390/su11236643