Sustainable Diets in the UK—Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Living Costs and Food Survey (LCFS)
2.3. Life Cycle Assessment
- Primary production of the raw materials
- Processing
- Transport (including the raw materials and final products)
- Cooking
2.4. Diet Quality Index
2.5. Cost
2.6. Database Variables and Integration
2.7. Analysis
3. Results
3.1. Characteristics of Final Sample
3.2. General Findings
3.3. Food Purchase Pattern for Households with High Diet Quality (More Sustainable DQI > 80)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Burlingame, B.A.; Dernini, S.; Food and Agriculture Organization of the United Nations. Biodiversity International. Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action; FAO: Rome, Italy, 2012; p. 307. [Google Scholar]
- Mertens, E.; Van’t Veer, P.; Hiddink, G.J.; Steijns, J.M.; Kuijsten, A. Operationalising the health aspects of sustainable diets: A review. Public Health Nutr. 2017, 20, 739–757. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Env. Resour. 2012, 37, 195. [Google Scholar] [CrossRef]
- Leinonen, I.; Iannetta, P.P.M.; Rees, R.M.; Russell, W.; Watson, C.; Barnes, A.P. Lysine Supply Is a Critical Factor in Achieving Sustainable Global Protein Economy. Front. Sustain. Food Syst. 2019, 3, 27. [Google Scholar] [CrossRef]
- Leinonen, I. Achieving Environmentally Sustainable Livestock Production. Sustainability 2019, 11, 246. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Aiking, H. Protein production: Planet, profit, plus people? Am. J. Clin. Nutr. 2014, 100, 483–489. [Google Scholar] [CrossRef]
- Westhoek, H.R.T.; van De Berg, M.; Janse, J.; Nijdam, D.; Reudink, M.; Stehfest, E. The Protein Puzzle. The consumption and production of meat, dairy and fish in the European Union. Eur. J. Food Res. Rev. 2011, 1, 123–144. [Google Scholar]
- Röös, E.C.G.; Ferawati, F.; Hefni, M.; Stephan, A.; Tidåker, P.; Witthöft, C. Less meat, more legumes: Prospects and challenges in the transition toward sustainable diets in Sweden. Renew. Agric. Food Syst. 2018, 1–14. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 °C: Intergovernmental Panel on Climate Change. Available online: http://www.ipcc.ch/report/sr15/ (accessed on 10 September 2019).
- Zech, K.M.; Schneider, U.A. Technical biofuel production and GHG mitigation potentials through healthy diets in the EU. Agric. Syst. 2019, 168, 27–35. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Kyle, J.; Horgan, G.W.; Loe, J.; Fyfe, C.; Johnstone, A.; Mc Neil, G. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am. J. Clin. Nutr. 2012, 96, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Saxe, H. The New Nordic Diet is an effective tool in environmental protection: It reduces the associated socioeconomic cost of diets. Am. J. Clin. Nutr. 2014, 99, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthrop. 2018, 6, 1. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 2012, 43, 184–190. [Google Scholar] [CrossRef]
- Milner, J.; Green, R.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Spadaro, J.; Markandya, A.; Wilkinson, P. Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 2015, 5, e007364. [Google Scholar] [CrossRef]
- Hobbs, D.A.; Lovegrove, J.A.; Givens, D.I. The role of dairy products in sustainable diets: Modelling nutritional adequacy, financial and environmental impacts. Proc. Nutr. Soc. 2015, 74, OCE5. [Google Scholar] [CrossRef]
- Hendrie, G.A.; Baird, D.; Ridoutt, B.; Hadjikakou, M.; Noakes, M. Overconsumption of Energy and Excessive Discretionary Food Intake Inflates Dietary Greenhouse Gas Emissions in Australia. Nutrients 2016, 8, 690. [Google Scholar] [CrossRef]
- Hadjikakou, M. Trimming the excess: Environmental impacts of discretionary food consumption in Australia. Ecol. Econ. 2017, 131, 119–128. [Google Scholar] [CrossRef]
- Boehm, R.; Wilde, P.E.; Ver Ploeg, M.; Costello, C.; Cash, S.B. A Comprehensive Life Cycle Assessment of Greenhouse Gas Emissions from US Household Food Choices. Food Policy. 2018, 79, 67–76. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Horgan, G.W.; Whybrow, S.; Macdiarmid, J.I. Healthy and sustainable diets that meet greenhouse gas emission reduction targets and are affordable for different income groups in the UK. Public Health Nutr. 2019, 22, 1503–1517. [Google Scholar] [CrossRef][Green Version]
- Barosh, L.; Friel, S.; Engelhardt, K.; Chan, L. The cost of a healthy and sustainable diet—Who can afford it? Aust. N. Z. J. Public Health. 2014, 38, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Monsivais, P.; Scarborough, P.; Lloyd, T.; Mizdrak, A.; Luben, R.; Mulligan, A.A.; Wareham, N.J.; Woodcock, J. Greater accordance with the Dietary Approaches to Stop Hypertension dietary pattern is associated with lower diet-related greenhouse gas production but higher dietary costs in the United Kingdom. Am. J. Clin. Nutr. 2015, 102, 138–145. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jones, A.D.; Hoey, L.; Blesh, J.; Miller, L.; Green, A.; Shapiro, L.F. A Systematic Review of the Measurement of Sustainable Diets. Adv. Nutr. 2016, 7, 641–664. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Masset, G.; Vieux, F.; Verger, E.O.; Soler, L.G.; Touazi, D.; Darmon, N. Reducing energy intake and energy density for a sustainable diet: A study based on self-selected diets in French adults. Am. J. Clin. Nutr. 2014, 99, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics. Living costs and food survey: User Guidance and Technical Information for the Living Costs and Food Survey. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/methodologies/livingcostsandfoodsurvey (accessed on 10 September 2019).
- Wrieden, W.L.; Armstrong, J.; Sherriff, A.; Anderson, A.S.; Barton, K.L. Slow pace of dietary change in Scotland: 2001–2009. Br. J. Nutr. 2013, 109, 1892–1902. [Google Scholar] [CrossRef]
- Barton, K.L.; Wrieden, W.L.; Sherriff, A.; Armstrong, J.; Anderson, A.S. Trends in socio-economic inequalities in the Scottish diet: 2001–2009. Public Health Nutr. 2015, 18, 2970–2980. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 2012, 91, 8–25. [Google Scholar] [CrossRef]
- Guinée, J.B.M.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on life cycle Assessment. Operational Guide to the ISO Standards; Kluwer Academy Publications: Dordrecht, The Netherlands, 2002. [Google Scholar]
- United Nations Environment Programme. The Global LCA Data Access Network. 2019. Available online: https://www.unenvironment.org/explore-topics/resource-efficiency/what-we-do/life-cycle-initiative/global-lca-data-access-network (accessed on 10 September 2019).
- Audsley EB, M.; Chatterton, J.; Murphy-Bokern, D.; Webster, C.; Williams, A. How Low Can We Go? An Assessment of Greenhouse Gas Emissions From the UK Food System and the Scope to Reduce Them by 2050; WWF: Washington, DC, USA, 2009. [Google Scholar]
- Nilsson, K.; Flysjo, A.; Davis, J.; Sim, S.; Unger, N.; Bell, S. Comparative life cycle assessment of margarine and butter consumed in the UK, Germany and France. Int. J. Life Cycle Ass. 2010, 15, 916–926. [Google Scholar] [CrossRef]
- Garnett, T. The Alcohol We Drink and Its Contribution to The UK’S Greenhouse Gas. Emissions: A Discussion Paper; University of Surrey: Guildford, UK, 2007. [Google Scholar]
- FAOSTAT. Food and Agriculture Data. The Food and Agriculture Organization of the United Nations (FAO), 2019. Available online: http://www.fao.org/faostat/en/ (accessed on 10 September 2019).
- Sonesson, U.H.; Raaholt, R. Energy for Preparation and Storing of Food—Models for Calculation of Energy Use for Cooking and Cold Storage in Households, SIK-Rapport Nr 709 2003; SIK: Goteborg, Sweden, 2003. [Google Scholar]
- Fritsche, U.R.; Eberle, U. Greenhouse-Gas. Emissions from the Production and Processing of Food—Working Paper; Oko Institute: Darmstadt, Germany, 2009. [Google Scholar]
- Barton, K.L.; Wrieden, W.L.; Masson, L.F.; Anderson, A.S.; Sherriff, A.; Armstrong, J.A. Development of a diet quality index for the Scottish population. Proc. Nutr. Soc. 2017, 76, OCE3. [Google Scholar] [CrossRef]
- Waste and Resource Action Programme Survey. The Food We Waste; WRAP: Oxon, UK, 2008. [Google Scholar]
- Food Drink Europe. 2014 The Reference Intakes Values. Available online: https://referenceintakes.eu/reference-values.html (accessed on 10 September 2019).
- Masset, G.; Soler, L.G.; Vieux, F.; Darmon, N. Identifying sustainable foods: The relationship between environmental impact, nutritional quality, and prices of foods representative of the French diet. J. Acad. Nutr. Diet. 2014, 114, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.J. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics. 2011 Census: Quick Statistics for England and Wales, March 2011. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censusquickstatisticsforenglandandwales/2013-01-30#household-composition (accessed on 10 September 2019).
- Department for Environment Food & Rural Affairs (Defra). Family Food 2014. Available online: https://www.gov.uk/government/collections/family-food-statistics (accessed on 10 September 2019).
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chesher, A. Diet revealed? Semiparametric estimation of nutrient intake age relationships. J. R. Stat. Soc.: Ser. A (Stat. Soc.) 1997, 160, 389–420. [Google Scholar] [CrossRef]
- World Health Organization JWFEC. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series nGW; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Scientific Advisory Committee on Nutrition (SACN). Carbohydrates and Health; Scientific Advisory Committee on Nutrition: London, UK, 2015. [Google Scholar]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef][Green Version]
- Nocella, G.; Srinivasan, C.S. Adherence to WHO’s nutrition recommendations in the UK: Dietary patterns and policy implications from a national survey. Food Policy 2019, 86. [Google Scholar] [CrossRef]
- Mann, K.D.; Pearce, M.S.; Seal, C.J. Providing evidence to support the development of whole grain dietary recommendations in the United Kingdom. Proc. Nutr. Soc. 2017, 76, 369–377. [Google Scholar] [CrossRef]
- American Association of Family Physicians. EAT-Lancet Recommendations Have Value, but Are They Feasible? Available online: https://www.aafp.org/news/blogs/freshperspectives/entry/20190402fp-eatlancet.html (accessed on 10 September 2019).
- Sustainable Food Trust. EAT-Lancet Report’s Recommendations Are at Odds with Sustainable Food production 2019. Available online: https://sustainablefoodtrust.org/articles/eat-lancet-reports-recommendations-are-at-odds-with-sustainable-food-production/ (accessed on 10 September 2019).
Median (and IQR) | Median (and IQR) | Median (and IQR) | |
---|---|---|---|
All | More Sustainable DQI% > median | More Sustainable with DQI% > 80 | |
N = 12,434 | N = 2061 | N = 100 | |
DQI (%) | 37.60 (28.57–48.51) | 49.0 (42.25–59.56) | 85.13 (82.65–88.50) |
GHGE (kg CO2e) | 24.14 (18.75–31.43) | 17.29 (14.36–20.20) | 17.22 (14.13–20.30) |
Land use (m2) | 26.27 (20.20–34.53) | 18.56 (15.28–21.45) | 18.62 (15.75–20.27) |
Expenditure (£) (average of 3 years) | 44.24 (31.43–61.99) | 28.52 (22.18–35.32) | 27.66 (22.22–34.38) |
2012 | 42.83 (30.97–60.23) | ||
2013 | 44.60 (31.51–62.54) | ||
2014 | 45.67 (32.25–63.28) |
More Sustainable | Less Sustainable | Total | |
---|---|---|---|
Equivalised Income Quintile | |||
Lowest 1 | 21.9 (545) | 78.1 (1942) | 100 (2487) |
2 | 20.9 (520) | 79.1 (1967) | 100 (2487) |
3 | 17.2 (427) | 82.8 (2060) | 100 (2487) |
4 | 13.6 (337) | 86.4 (2150) | 100 (2487) |
Highest 5 | 9.1 (226) | 90.9 (2260) * | 100 (2486) |
Household Type | |||
One man | 10.0 (130) | 90 (1170) | 100 (1300) |
One woman | 15.2 (295) | 84.8 (1650) | 100 (1945) |
One man and one woman | 10.8 (468) | 89.2 (3876) | 100 (4344) |
Family of man, woman and one or two children | 25.7 (358) | 74.3 (1035) | 100 (1393) |
Food Group | Mean (g) | SD | Median (g) | IQR | Likely Frequency |
---|---|---|---|---|---|
Bread and rolls | 1588 | 1185 | 1337 | 813–2081 | 1.5–4 slices or 1–2 rolls per day |
Breakfast cereal | 666 | 709 | 500 | 0–1008 | 1–2 × 40 g portions per day |
Pasta, rice and noodles | 408 | 575 | 218 | 0–500 | 1–3 portions per week |
Flour | 470 | 1014 | 0 | 0–500 | Around 250 g per week |
Pizza | 133 | 256 | 0 | 0–249 | No more than 1 × 200 g portion per fortnight |
Potatoes | 1534 | 2323 | 998 | 37–2068 | 1 baked potato per month to 5 per week |
Vegetables (not potatoes and includes pulses) | 3184 | 2095 | 2632 | 1777–4161 | 2–4 portions per day inclusive of soup or dish with peas, beans or pulses every day |
Beans, other pulses and peas | 450 | 637 | 250 | 0–579 | |
Fruit | 2707 | 1697 | 2325 | 1607–3483 | 1–3 portions per day |
Fruit juice | 434 | 730 | 0 | 0–705 | 1–2 × 150 mL glass twice per week |
Liquid milk and yoghurt | 3587 | 2214 | 3421 | 1881–5000 | 1 glass plus milk on cereals per day |
Cheese | 146 | 183 | 100 | 0–236 | 2–4 30 g portions per week |
Unprocessed red meat | 258 | 430 | 0 | 0–371 | Up to1–2 portions per week |
Processed meat | 339 | 421 | 261 | 0–501 | Up to 1–2 portions per week |
All Red and processed meat | 597 | 658 | 435 | 76–849 | 1–4 portions per week |
Poultry | 312 | 535 | 47 | 0–369 | 1–2 portions per week |
Eggs (number) | 11 | 15 | 6 | 0–14 | 3–7 per week |
Fish | 460 | 405 | 390 | 145–654 | 1–3 portions per week |
Nuts and seeds | 70 | 155 | 0 | 0–73 | 1–2 20 g handfuls per week |
Total spreading and cooking fats | 140 | 205 | 25 | 0–123 | 2–10 g per day |
Crisps and savoury snacks | 94 | 150 | 27 | 0–123 | 2–3 25 g packets per week |
Cake, pastries, puddings, biscuits | 758 | 573 | 636 | 306–1080 | 1–4 20 g biscuits or no more than one cake or pudding per day |
Confectionery, sugar, jams | 227 | 245 | 141 | 0–399 | Chocolate, sweets, jam or honey equivalent of 2–6 teaspoons per day |
Savoury sauces | 25 | 348 | 160 | 0–382 | |
Soft drinks total | 1219 | 2491 | 0 | 0–1303 | No more than two 330 mL cans per week mixed or 1–2 per fortnight sugared. |
Sugar containing | 431 | 918 | 0 | 0 | |
Sugar free | 788 | 2293 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrieden, W.; Halligan, J.; Goffe, L.; Barton, K.; Leinonen, I. Sustainable Diets in the UK—Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases. Sustainability 2019, 11, 4974. https://doi.org/10.3390/su11184974
Wrieden W, Halligan J, Goffe L, Barton K, Leinonen I. Sustainable Diets in the UK—Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases. Sustainability. 2019; 11(18):4974. https://doi.org/10.3390/su11184974
Chicago/Turabian StyleWrieden, Wendy, Joel Halligan, Louis Goffe, Karen Barton, and Ilkka Leinonen. 2019. "Sustainable Diets in the UK—Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases" Sustainability 11, no. 18: 4974. https://doi.org/10.3390/su11184974