Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis
Abstract
:1. Introduction
2. Method
2.1. Selection and Synthesis of Indexes
2.2. Multi-Level Entropy Weight Method
2.3. DEA Method
3. Model Calculation and Result Analysis
3.1. Weight Calculation Result
3.2. Water Use Efficiency Evaluation Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.J.; Zhang, Z.Y.; Shi, M.J. Restrictive Effects of Water Scarcity on Urban Economic Development in the Beijing-Tianjin-Hebei City Region. Sustainability 2019, 11, 2452. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Dong, L.H.; Liu, Y.; Qiao, H.J. Analysis on Impact Factors of Water Utilization Structure in Tianjin, China. Sustainability 2016, 8, 241. [Google Scholar] [CrossRef]
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated use of water in the United States in 2015: U.S. Geol. Surv. Circ. 2018, 1441, 65. [Google Scholar]
- Shi, L.Y.; Xiang, X.Q.; Zhu, W.; Gao, L.J. Standardization of the Evaluation Index System for Low-Carbon Cities in China: A Case Study of Xiamen. Sustainability 2018, 10, 3751. [Google Scholar] [CrossRef]
- Hu, P.; Chen, N.; Li, Y.J.; Xie, Q.W. Efficiency Evaluation of Water Consumption in a Chinese Province-Level Region Based on Data Envelopment Analysis. Sustainability 2018, 10, 793. [Google Scholar] [CrossRef]
- Bai, X.J.; Su, M.J. Evaluation of regional water resources utilization efficiency based on improved PSO-BP model. Yangtze River 2016, 47, 38–43. [Google Scholar]
- Zhang, Z.L.; Sun, H.; He, Z.L. Water use efficiency and its influencing factors in arid areas of northwest china. J. Ecol. Rural Environ. 2017, 33, 961–967. [Google Scholar]
- Yang, G.L.; Liu, W.B.; Zheng, H.J. Review of data envelopment analysis. J. Syst. Eng. 2013, 28, 840–860. [Google Scholar]
- Han, W.Y.; Chen, X.P.; Zhang, Z.L.; Wang, N.F.; Yu, Y.H. Analysis on spatiotemporal structure of water resources utilization efficiency of the prefecture level cities and beyond in china. Res. Soil Water Conserv. 2018, 25, 354–360. [Google Scholar]
- Wu, Q.; Chang, H.J.; Liu, Z. Analyzing water resources utilization efficiency in various regions of china based on clustering method. Yangtze River 2018, 49, 55–60. [Google Scholar]
- Hou, L.Y. Evaluation of water resources utilization efficiency in Liaoning province based on genetic projection tracing model. Water Resour. Dev. Manag. 2018, 8, 68–72. [Google Scholar]
- Biswas, A.K. Integrated water resources management: A reassessment: A water forum contribution. Water Int. 2004, 29, 248–256. [Google Scholar] [CrossRef]
- Guan, X.J.; Qin, H.D.; Meng, Y. Water use efficiency evaluation of huai river based on CRITIC-TOPSIS-GRAY relation degree. Water Sav. Irrig. 2018, 11, 73–76. [Google Scholar]
- Li, Z.M.; Liao, H.C. Input and Output Analysis of Water Resources across China in 2010. Resour. Sci. 2012, 34, 2274–2281. [Google Scholar]
- Yang, X.H.; Sun, B.Y.; Zhang, J. Hierarchy evaluation of water resources vulnerability under climate change in Beijing, China. Nat. Hazards 2016, 84, 63–76. [Google Scholar] [CrossRef]
- Knauer, J.; Zaehle, S.; Medlyn, B.E. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Glob. Chang. Biol. 2018, 24, 694–710. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J. Breeding for high water useefficiency. J. Exp. Bot. 2004, 55, 2447–2460. [Google Scholar] [CrossRef]
- Yu, S.; Lu, H. An integrated model of water resources optimization allocation based on projection pursuit model—Grey wolf optimization method in a transboundary river basin. J. Hydrol. 2018, 559, 156–165. [Google Scholar] [CrossRef]
- Arthington, A.H.; Kennen, J.G.; Stein, E.D. Recent advances in environmental flows science and water management Innovation in the Anthropocene. Freshw. Biol. 2018, 63, 1022–1034. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Fu, Q.; Meng, J. Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model. Water Resour. Manag. 2018, 32, 2767–2781. [Google Scholar] [CrossRef]
- Cao, X.C.; Ren, J.; Wu, M.Y.; Guo, X.P.; Wang, Z.C.; Wang, W.G. Effective use rate of generalized water resources assessment and to improve agricultural water use efficiency evaluation index system. Ecol. Indic. 2018, 86, 58–66. [Google Scholar] [CrossRef]
- Sun, B.Y.; Yang, X.H. Simulation of Water Resources Carrying Capacity in Xiong’an New Area Based on System Dynamics Model. Water 2019, 11, 1085. [Google Scholar] [CrossRef]
- Singh, K.R.; Dutta, R.; Kalamdhad, A.S. Information entropy as a tool in surface water quality assessment. Environ. Earth Sci. 2019, 78, 15. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Delgado, A.; Romero, I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environ. Model. Softw. 2016, 77, 108–121. [Google Scholar] [CrossRef]
- Zou, Z.H.; Yi, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Cui, Y.; Feng, P.; Jin, J. Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the entropy weight method. Entropy 2018, 20, 359. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Zhang, W. A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS aware manufacturing service supply chain optimization. Neurocomputing 2018, 272, 439–452. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Goto, M. A literature study for DEA applied to energy and environment. Energy Econ. 2017, 62, 104–124. [Google Scholar] [CrossRef]
- Ma, Z.X. A DEA Method for evaluating regional development level. Acta Sci. Nat. Univ. Neimongol. 2002, 33, 499–503. [Google Scholar]
- Zhang, Z.F. An analysis of water utilization efficiency of the belt and road initiative’s provinces and municipalities in china based on DEA-MalmquistTobit Model. J. Hohai Univ. Philos. Soc. Sci. 2018, 20, 60–66. [Google Scholar]
- Lu, Z.W.; Zhang, Y.N.; Wang, J.Y. Research on Water Use Efficiency and Spatial Correlation of Jiangsu Province Based on DEA. China Rural Water Hydropower 2018, 2, 85–90. [Google Scholar]
- Grigoroudis, E.; Petridis, K. Evaluation of National Environmental Efficiency Under Uncertainty Using Data Envelopment Analysis. In Understanding Risks and Uncertainties in Energy and Climate Policy: Multidisciplinary Methods and Tools for a Low Carbon Society; Doukas, H., Flamos, A., Lieu, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 161–181. [Google Scholar]
- Liao, H.C.; Dong, Y.M. Utilization efficiency of water resources in 12 western provinces of China based on the DEA and Malmquist TFP index. Resour. Sci. 2011, 33, 273–279. [Google Scholar]
- Song, M.L.; Wang, R.; Zeng, X.Q. Water resources utilization efficiency and influence factors under environmental restrictions. J. Clean. Prod. 2018, 184, 611–621. [Google Scholar] [CrossRef]
- Martina, F.; Christof, S.; Robert, M. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar]
- Wang, X.F. Study of Water Resources Efficiency by Considering the Regional Water Carrying Capacity. Urban Environ. Stud. 2018, 2, 97–110. [Google Scholar]
- Zhao, L.S.; Sun, C.Z.; Liu, F.C. Two-stage utilization efficiency of the interprovincial water resources under environmental constraint and its influence factors in china. China Popul. Resour. Environ. 2017, 27, 27–36. [Google Scholar]
Synthetic Index | Index Meaning | Original Index | |
---|---|---|---|
Input Index | Water conservancy investment | Indicates the combined input of DMUs in water supply facilities | Water supply pipe length |
Water conservancy fixed asset investment | |||
Comprehensive water consumption | Indicates the intensity of integrated water use in DMUs | Agricultural water consumption | |
Industrial water consumption | |||
Domestic water consumption | |||
Ecological water consumption | |||
Per capita water | |||
Integrated water pollution load | Indicates the level of integrated pollutant emissions from DMUs | Total wastewater discharge | |
Chemical oxygen demand (COD) | |||
Ammonia nitrogen | |||
Total nitrogen | |||
Total phosphorus | |||
Output Index | Water endowment | Indicates the level of natural water resources in DMUs | Surface water resources |
Groundwater resources | |||
Per capita water resources | |||
Comprehensive economic output | Responds to the overall economic output of each DMU | Primary industry output value | |
Secondary industry output value | |||
Tertiary industry output value | |||
Per capita GDP | |||
Number of employed people | |||
Integrated crop yield | Responds to the overall crop yield level of each DMU | Effective irrigated area | |
Grain production | |||
Per capita grain production |
Synthetic Index | Index Meaning | Weight Value | ||
---|---|---|---|---|
Input Index | Water conservancy investment | Indicates the combined input of DMUs in water supply facilities | Water supply pipe length | 0.48 |
Water conservancy fixed asset investment | 0.52 | |||
Comprehensive water consumption | Indicates the intensity of integrated water use in DMUs | Agricultural water consumption | 0.18 | |
Industrial water consumption | 0.22 | |||
Domestic water consumption | 0.17 | |||
Ecological water consumption | 0.23 | |||
Per capita water | 0.2 | |||
Integrated water pollution load | Indicates the level of integrated pollutant emissions from DMUs | Total wastewater discharge | 0.2 | |
COD | 0.2 | |||
Ammonia nitrogen | 0.2 | |||
Total nitrogen | 0.2 | |||
Total phosphorus | 0.2 | |||
Output Index | Water endowment | Indicates the level of natural water resources in DMUs | Surface water resources | 0.33 |
Groundwater resources | 0.26 | |||
Per capita water resources | 0.41 | |||
Comprehensive economic output | Responds to the overall economic output of each DMU | Primary industry output value | 0.2 | |
Secondary industry output value | 0.22 | |||
Tertiary industry output value | 0.19 | |||
Per capita GDP | 0.2 | |||
Number of employed people | 0.19 | |||
Integrated crop yield | Respond to the overall crop yield level of each DMU | Effective irrigated area | 0.36 | |
Grain production | 0.36 | |||
Per capita grain production | 0.28 |
DMU | Water Conservancy Investment | Comprehensive Water Consumption | Integrated Water Pollution Load | Water Endowment | Comprehensive Economic Output | Integrated Crop Yield |
---|---|---|---|---|---|---|
Beijing | 0.339 | 0.224 | 0.158 | 0.103 | 0.400 | 0.100 |
Tianjin | 0.223 | 0.149 | 0.171 | 0.100 | 0.321 | 0.129 |
Hebei | 0.430 | 0.251 | 0.446 | 0.124 | 0.385 | 0.517 |
Shanxi | 0.173 | 0.159 | 0.253 | 0.124 | 0.217 | 0.259 |
Inner Mongolia | 0.329 | 0.385 | 0.195 | 0.152 | 0.278 | 0.521 |
Liaoning | 0.213 | 0.218 | 0.321 | 0.125 | 0.311 | 0.322 |
Jilin | 0.229 | 0.210 | 0.212 | 0.146 | 0.248 | 0.522 |
Heilongjiang | 0.213 | 0.288 | 0.271 | 0.190 | 0.279 | 0.900 |
Shanghai | 0.246 | 0.202 | 0.291 | 0.102 | 0.410 | 0.109 |
Jiangsu | 0.762 | 0.490 | 0.714 | 0.138 | 0.791 | 0.485 |
Zhejiang | 0.603 | 0.269 | 0.488 | 0.190 | 0.541 | 0.195 |
Anhui | 0.412 | 0.321 | 0.414 | 0.180 | 0.340 | 0.542 |
Fujian | 0.490 | 0.260 | 0.402 | 0.218 | 0.417 | 0.176 |
Jiangxi | 0.320 | 0.266 | 0.416 | 0.270 | 0.281 | 0.333 |
Shandong | 0.538 | 0.298 | 0.583 | 0.136 | 0.685 | 0.617 |
Henan | 0.565 | 0.383 | 0.461 | 0.156 | 0.481 | 0.683 |
Hubei | 0.547 | 0.305 | 0.484 | 0.232 | 0.443 | 0.400 |
Hunan | 0.586 | 0.316 | 0.504 | 0.294 | 0.378 | 0.416 |
Guangdong | 0.735 | 0.430 | 0.900 | 0.285 | 0.778 | 0.237 |
Guangxi | 0.332 | 0.292 | 0.400 | 0.327 | 0.292 | 0.258 |
Hainan | 0.124 | 0.147 | 0.141 | 0.148 | 0.173 | 0.127 |
Chongqing | 0.383 | 0.165 | 0.292 | 0.162 | 0.297 | 0.207 |
Sichuan | 0.555 | 0.303 | 0.585 | 0.358 | 0.429 | 0.416 |
Guizhou | 0.382 | 0.169 | 0.296 | 0.213 | 0.242 | 0.234 |
Yunnan | 0.345 | 0.207 | 0.344 | 0.378 | 0.261 | 0.297 |
Tibet | 0.100 | 0.165 | 0.100 | 0.900 | 0.118 | 0.144 |
Shaanxi | 0.553 | 0.176 | 0.254 | 0.152 | 0.300 | 0.235 |
Gansu | 0.167 | 0.196 | 0.202 | 0.139 | 0.162 | 0.247 |
Qinghai | 0.119 | 0.133 | 0.128 | 0.240 | 0.135 | 0.124 |
Ningxia | 0.131 | 0.196 | 0.129 | 0.103 | 0.151 | 0.193 |
Xinjiang | 0.314 | 0.510 | 0.229 | 0.275 | 0.228 | 0.459 |
DMU | Score1 | Score2 | Score3 |
---|---|---|---|
Beijing | 1 | 1 | 1 |
Tianjin | 1 | 1 | 1 |
Hebei | 0.921 | 1 | 1 |
Shanxi | 1 | 1 | 1 |
Inner Mongolia | 1 | 1 | 1 |
Liaoning | 0.958 | 1 | 1 |
Jilin | 1 | 1 | 1 |
Heilongjiang | 1 | 1 | 1 |
Shanghai | 1 | 1 | 1 |
Jiangsu | 1 | 1 | 1 |
Zhejiang | 0.919 | 1 | 1 |
Anhui | 0.718 | 1 | 1 |
Fujian | 0.775 | 1 | 1 |
Jiangxi | 0.709 | 1 | 1 |
Shandong | 1 | 1 | 1 |
Henan | 0.878 | 1 | 1 |
Hubei | 0.739 | 1 | 1 |
Hunan | 0.699 | 0.858 | 1 |
Guangdong | 1 | 1 | 1 |
Guangxi | 0.632 | 0.736 | 1 |
Hainan | 1 | 0.907 | 1 |
Chongqing | 0.990 | 1 | 1 |
Sichuan | 0.768 | 1 | 1 |
Guizhou | 0.961 | 1 | 1 |
Yunnan | 0.898 | 1 | 1 |
Tibet | 1 | 1 | 1 |
Shaanxi | 0.953 | 1 | 1 |
Gansu | 0.808 | 1 | 1 |
Qinghai | 1 | 1 | 1 |
Ningxia | 0.926 | 0.719 | 1 |
Xinjiang | 0.771 | 1 | 1 |
Input | Total water consumption |
Water supply pipe length | |
Water conservancy fixed asset investment | |
Total wastewater discharge | |
Output | Total water resources |
Total GDP | |
Total employed population | |
Effective irrigated area | |
Total grain output |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Yang, X.; Zhang, Y.; Chen, X. Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis. Sustainability 2019, 11, 4556. https://doi.org/10.3390/su11174556
Sun B, Yang X, Zhang Y, Chen X. Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis. Sustainability. 2019; 11(17):4556. https://doi.org/10.3390/su11174556
Chicago/Turabian StyleSun, Boyang, Xiaohua Yang, Yipeng Zhang, and Xiaojuan Chen. 2019. "Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis" Sustainability 11, no. 17: 4556. https://doi.org/10.3390/su11174556
APA StyleSun, B., Yang, X., Zhang, Y., & Chen, X. (2019). Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis. Sustainability, 11(17), 4556. https://doi.org/10.3390/su11174556