A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Fuzzy Logic
3.2. Fuzzy Decision Making
3.3. Fuzzy Multi-Criteria Decision Making
3.4. Fuzzy Numbers
3.5. Fuzzy TOPSIS Method
4. Results
4.1. Solution to the Problem of Location Selection by the Fuzzy TOPSIS Method
- Establishing a committee of decision makers,
- Determining assessment criteria,
- Determining linguistic variables,
- Determining the total fuzzy weights of criteria (wi),
- Forming the fuzzy decision matrix,
- Forming the normalized fuzzy decision matrix,
- Forming the weighted normalized fuzzy decision matrix,
- Determining the values of A* and A՟,
- Calculating the distance of each alternative from A* and A՟,
- Calculating the closeness coefficient of each alternative (CCi), and
- Ranking the alternatives based on their closeness coefficients.
4.2. GIS-Based Location Selection
- Spatial Analyst
- Spatial Statistics
- Data Management
- 3D Analyst
([Area] + [Population of the city] + (2 × [Population density]) + (4 × [Population in city center % ]) + (10 × [Wealth] + (8 × [Number of shopping centers] + (8 × [Rented Area]) + (7 × [Economy]) + [Education] + [Health] + [Safety] + [Urban_life] + [Culture_Art] + [Life_Quality])/14 |
4.3. Comparison of the Results of the Fuzzy TOPSIS and GIS-Based Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aćimović, S.; Mijušković, V. Key logistics location selection factors in retail business. Ekonomske Ideje i Praksa 2016, 22, 57–70. [Google Scholar]
- Făgărăşan, M.; Cristea, C. Logistics center location: Selection using multicriteria decision making. Ann. Oradea Univ. Fascicle Manag. Technol. Eng. 2015, 1, 157–162. [Google Scholar] [CrossRef]
- Yang, J.; Lee, H. An AHP decision model for facility location selection. Facilities 1997, 15, 241–254. [Google Scholar] [CrossRef]
- Ertuğrul, İ.; Karakaşoğlu, N. Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. Int. J. Adv. Manuf. Technol. 2008, 39, 783–795. [Google Scholar] [CrossRef]
- Devi, K.; Yadav, S.P. A multicriteria intuitionistic fuzzy group decision making for plant location selection with ELECTRE method. Int. J. Adv. Manuf. Technol. 2013, 66, 1219–1229. [Google Scholar] [CrossRef]
- Lin, C.T.; Juan, P.J. Developing a hierarchy relation with an expert decision analysis process for selecting the optimal resort type for a Taiwanese international resort park. Expert Syst. Appl. 2009, 36, 1706–1719. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, H.; Jiang, C. A multicriteria decision making approach based on fuzzy theory and credibility mechanism for logistics center location selection. Sci. World J. 2014, 2014, 347619. [Google Scholar] [CrossRef]
- Durmuş, A.; Turk, S.S. Factors influencing location selection of warehouses at the intra-urban level: Istanbul case. Eur. Plan. Stud. 2014, 22, 268–292. [Google Scholar] [CrossRef]
- Shukla, G.; Hota, H.S.; Sharma, A.S. Multicriteria decision making based solution to location selection for modern agri-warehouses. In Proceedings of the International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 10–11 March 2017; pp. 460–464. [Google Scholar]
- Chen, J.; Wang, J.; Baležentis, T.; Zagurskaitė, F.; Streimikiene, D.; Makutėnienė, D. Multicriteria approach towards the sustainable selection of a teahouse location with sensitivity analysis. Sustainability 2018, 10, 2926. [Google Scholar] [CrossRef]
- Suárez-Vega, R.; Santos-Peñate, D.R.; Dorta-González, P. Location models and GIS tools for retail site location. Appl. Geogr. 2012, 35, 12–22. [Google Scholar] [CrossRef]
- Kahraman, C.; Onar, S.C.; Oztaysi, B. Fuzzy multicriteria decision-making: A literature review. Int. J. Comput. Intell. Syst. 2015, 8, 637–666. [Google Scholar] [CrossRef]
- Karmaker, C.; Saha, M. Optimization of warehouse location through fuzzy multi-criteria decision making methods. Decis. Sci. Lett. 2015, 4, 315–334. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; García-Cascales, M.S. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Özcan, T.; Çelebi, N.; Esnaf, Ş. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst. Appl. 2011, 38, 9773–9779. [Google Scholar] [CrossRef]
- Sener, U.; Gokalp, E.; Eren, P.E. ClouDSS: A decision support system for cloud service selection. In Proceedings of International Conference on the Economics of Grids, Clouds, Systems, and Services, Biarritz, France, 19–21 September 2017; Springer: Cham, Germany, 2018; pp. 249–261. [Google Scholar]
- Kahraman, C.; Ruan, D.; Doǧan, I. Fuzzy group decision-making for facility location selection. Inf. Sci. 2003, 157, 135–153. [Google Scholar] [CrossRef]
- Zhang, F.; Johnson, D.M.; Sutherland, J.W. A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenergy 2011, 35, 3951–3961. [Google Scholar] [CrossRef]
- Cheng, E.W.; Li, H.; Yu, L. A GIS approach to shopping mall location selection. Build. Environ. 2007, 42, 884–892. [Google Scholar] [CrossRef]
- Li, H.; Kong, C.W.; Pang, Y.C.; Shi, W.Z.; Yu, L. Internet-based geographical information systems system for E-commerce application in construction material procurement. J. Const. Eng. Manag. 2003, 129, 689–697. [Google Scholar] [CrossRef]
- Barnett, A.P.; Okoruwa, A.A. Application of geographic information systems in site selection and location analysis. Appr. J. 1993, 61, 245. [Google Scholar]
- Roig-Tierno, N.; Baviera-Puig, A.; Buitrago-Vera, J.; Mas-Verdu, F. The retail site location decision process using GIS and the analytical hierarchy process. Appl. Geogr. 2013, 40, 191–198. [Google Scholar] [CrossRef]
- Arslan, T.V. A critical approach to shopping mall researches in Turkey: Interpretations, discussions and critics. Uludağ Univ. J. Fac. Eng. 2009, 14, 147–158. [Google Scholar]
- Ünlükara, T.; Berköz, L. Shopping centers’ selection criteria in Turkey: The case of Istanbul. Megaron. 2016, 11, 437–448. [Google Scholar]
- Tabak, B.I.; Özgen, Ö.; Aykol, B. High school girls’shopping mall experiences, perceptions and expectations: A qualitative study. Ege Acad. Rev. 2006, 6, 100–113. [Google Scholar]
- Afacan, Y. Achieving inclusion in public spaces: A shopping mall case study. In Designing Inclusive Systems; Springer: London, UK, 2012; pp. 58–92. [Google Scholar]
- Dogu, U.; Erkip, F. Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environ. Behav. 2000, 32, 731–755. [Google Scholar] [CrossRef]
- EVA Real Estate Appraisal Consultancy. Available online: http://www.evagyd.com/haberler/eva-gayrimenkul-ve-akademetre-2017-2019-avm-arastirmasinin-sonuclarini-acikladi/460/ (accessed on 5 June 2019).
- Erkip, F.; Ozuduru, B.H. Retail development in Turkey: An account after two decades of shopping malls in the urban scene. Prog. Plan. 2015, 102, 1–33. [Google Scholar] [CrossRef]
- Önüt, S.; Efendigil, T.; Kara, S.S. A combined fuzzy MCDM approach for selecting shopping center site: An example from Istanbul, Turkey. Expert Syst. Appl. 2010, 37, 1973–1980. [Google Scholar] [CrossRef]
- Erkip, F. The shopping mall as an emergent public space in Turkey. Environ. Plan. A 2003, 35, 1073–1093. [Google Scholar] [CrossRef]
- Ozuduru, B.H.; Guldmann, J.M. Retail location and urban resilience: Towards a new framework for retail policy. S.A.P.I.EN. S. 2013, 6, 1620. [Google Scholar]
- Benali-Nouani, N.; Berezowska-Azzag, E. The holistic impact assessment of shopping centres: The case of Bab Ezzouar, Algeria. Int. J. Environ. Stud. 2014, 71, 270–291. [Google Scholar] [CrossRef]
- Goodman, R.; Coote, M. Sustainable Urban Form and the Shopping Centre: An investigation of activity centres in Melbourne’s growth areas. Urban Policy Res. 2007, 25, 39–61. [Google Scholar] [CrossRef]
- AlWaer, H.; Sibley, M.; Lewis, J. Factors and priorities for assessing sustainability of regional shopping centres in the UK. Archit. Sci. Rev. 2008, 51, 391–402. [Google Scholar] [CrossRef]
- Govindan, K.; Garg, K.; Gupta, S.; Jha, P.C. Effect of product recovery and sustainability enhancing indicators on the location selection of manufacturing facility. Ecol. Indicators. 2016, 67, 517–532. [Google Scholar] [CrossRef]
- Erbıyık, H.; Özcan, S.; Karaboğa, K. Retail store location selection problem with multiple analytical hierarchy process of decision making an application in Turkey. Procedia-Soc. Behav. Sci. 2012, 58, 1405–1414. [Google Scholar] [CrossRef]
- Vandell, K.; Carter, C. Retail store location and market analysis: A review of the research. J. Real Estate Lit. 1994, 2, 13–45. [Google Scholar]
- Craig, C.S. Models of the retail location process: A review. J. Retail. 1984, 60, 5–36. [Google Scholar]
- Brown, S. Retail location theory: Evolution and evaluation. Int. Rev. Retail. Distrib. Consum. Res. 1993, 3, 185–229. [Google Scholar] [CrossRef]
- Clarkson, R.M.; Clarke-Hill, C.M.; Robinson, T. UK supermarket location assessment. Int. J. Retail. Distrib. Manag. 1996, 24, 22–33. [Google Scholar] [CrossRef]
- Yıldız, N.; Tüysüz, F. A hybrid multi-criteria decision making approach for strategic retail location investment: Application to Turkish food retailing. Socio-Econ. Plan. Sci. In Press.
- Baviera-Puig, A.; Buitrago-Vera, J.; Escriba-Perez, C. Geomarketing models in supermarket location strategies. J. Bus. Econ. Manag. 2016, 17, 1205–1221. [Google Scholar] [CrossRef]
- Suárez-Vega, R.; Gutiérrez-Acuña, J.L.; Rodríguez-Díaz, M. Locating a supermarket using a locally calibrated Huff model. Int. J. Geogr. Inf. Sci. 2015, 29, 217–233. [Google Scholar] [CrossRef]
- Reigadinha, T.; Godinho, P.; Dias, J. Portuguese food retailers–Exploring three classic theories of retail location. J. Retail. Consum. Serv. 2017, 34, 102–116. [Google Scholar] [CrossRef]
- Kohsaka, H. A Spatial Search-Location Model of Retail Centers. Geogr. Anal. 1989, 21, 338–349. [Google Scholar] [CrossRef]
- Litz, R.A.; Rajaguru, G. Does small store location matter? A test of three classic theories of retail location. J. Small Bus. Entrep. 2008, 21, 477–492. [Google Scholar] [CrossRef]
- Carter, C.C.; Haloupek, W.J. Dispersion of stores of the same type in shopping malls: Theory and preliminary evidence. J. Prop. Res. 2002, 19, 291–311. [Google Scholar] [CrossRef]
- Prendergast, G.; Marr, N.; Jarratt, B. Retailers’ views of shopping centres: A comparison of tenants and non-tenants. Int. J. Retail. Distrib. Manag. 1998, 26, 162–171. [Google Scholar] [CrossRef]
- Ramesh, G.; Prasad, S.; Goyal, S. A pilot study of organised retail formats and their location strategy in Mumbai: A study covering western suburbs from Bandra to Borivali. J. Retail. Leis. Prop. 2011, 9, 476–492. [Google Scholar] [CrossRef]
- Wu, S.S.; Kuang, H.; Lo, S.M. Modeling Shopping Center Location Choice: Shopper Preference–Based Competitive Location Model. J. Urban Plan. Dev. 2018, 145, 04018047. [Google Scholar] [CrossRef]
- Lau, H.F.; Sin, L.Y.M.; Chan, K.K.C. Chinese cross-border shopping: An empirical study. J. Hosp. Tour. Res. 2005, 29, 110–133. [Google Scholar] [CrossRef]
- Wee, C.H.; Pearce, M.R. Retail gravitational models: A review with implications for further research. In Proceedings of the 1984 Academy of Marketing Science (AMS) Annual Conference, Niagara Falls, NY, USA, 9–12 May 1984; Springer: Cham, Germany; pp. 300–305.
- Wee, C.H.; Pearce, M.R. Patronage Behavior Toward Shopping Areas: A Proposed Model Based on Huff’s Model of Retail Gravitation. In NA—Advances in Consumer Research; Hirschman, E.C., Holbrook, M.B., Provo, U.T., Eds.; Association for Consumer Research: Duluth, MN, USA, 1985; Volume 12, pp. 592–597. [Google Scholar]
- Nakanishi, M.; Cooper, L.G. Parameter estimation for a multiplicative competitive interaction model—Least squares approach. J. Market. Res. 1974, 11, 303–311. [Google Scholar]
- Serra, D.; Colomé, R. Consumer choice and optimal locations models: Formulations and heuristics. Papers Reg. Sci. 2001, 80, 439–464. [Google Scholar] [CrossRef]
- Cheng, E.W.; Li, H.; Yu, L. The analytic network process (ANP) approach to location selection: A shopping mall illustration. Constr. Innov. 2005, 5, 83–97. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Aghdaie, M.H.; Derakhti, A.; Zavadskas, E.K.; Varzandeh, M.H.M. Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Syst. Appl. 2013, 40, 7111–7121. [Google Scholar] [CrossRef]
- Yavuz, S.; Deveci, M. Selection of Shopping Center Location with The Methods of Fuzzy VIKOR and Fuzzy TOPSIS and An Application. Ege Acad. Rev. 2014, 14, 463–479. [Google Scholar]
- Tayman, J.; Pol, L. Retail site selection and geographic information systems. J. Appl. Bus. Res. 1995, 11, 46. [Google Scholar] [CrossRef]
- Murray, A.T. Advances in location modeling: GIS linkages and contributions. J. Geogr. Syst. 2010, 12, 335–354. [Google Scholar] [CrossRef]
- ELSamen, A.A.A.; Hiyasat, R.I. Beyond the random location of shopping malls: A GIS perspective in Amman, Jordan. J. Retail. Cons. Serv. 2017, 34, 30–37. [Google Scholar] [CrossRef]
- Bayar, R. Location choice for shopping mall centers using GIS: Case study of Ankara. Coğrafi Bilimler Dergisi 2005, 3, 19–38. [Google Scholar]
- Gündogdu, C.E. Suitable Location Selection Optimization for Shopping Centres and Geographical Information System (GIS). China-USA Bus. Rev. 2011, 10, 711–718. [Google Scholar]
- Erdin Gündoğdu, C. GIS based site selection for shopping centers in Turkey. In Selected Concepts and Best Practice; Grzybowska, K., Ed.; Publishing House of Poznan University Technology: Poznan, Poland, 2012; pp. 331–344. [Google Scholar]
- Gundogdu, C.E. Determination of the most suitable sites for Shopping Centers in geographical regions with GIS. Res. Logistics Prod. 2013, 3, 109–122. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Zhu, Q. Fuzzy multi-attribute decision-making method based on eigenvector of fuzzy attribute evaluation space. Decis. Support. Syst. 2006, 41, 400–410. [Google Scholar] [CrossRef]
- Yang, T.; Hung, C.C. Multiple-attribute decision making methods for plant layout design problem. Robot. Comput. Integr. Manuf. 2007, 23, 126–137. [Google Scholar] [CrossRef]
- Tsaur, S.H.; Chang, T.Y.; Yen, C.H. The evaluation of airline service quality by fuzzy MCDM. Tour. Manag. 2002, 23, 107–115. [Google Scholar] [CrossRef]
- Yong, D. Plant location selection based on fuzzy TOPSIS. Int. J. Adv. Manuf. Technol. 2006, 28, 839–844. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Hosseinzadeh, L.F.; Izadikhah, M. Extension of the TOPSIS method for decision making problems with fuzzy data. Appl. Math. Comput. 2006, 181, 1544–1551. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Kengpol, A.; Rontlaong, P.; Tuominen, M. A decision support system for selection of solar power plant locations by applying fuzzy AHP and TOPSIS: An Empirical Study. J. Softw. Eng. Appl. 2013, 6, 470. [Google Scholar] [CrossRef]
- Erkayman, B.; Gundogar, E.; Akkaya, G.; Ipek, M. A fuzzy TOPSIS approach for logistics center location selection. J. Bus. Case Stud. 2011, 7, 49–55. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Chen, Y. Selection of logistics center location using Axiomatic Fuzzy Set and TOPSIS methodology in logistics management. Expert Syst. Appl. 2011, 38, 7901–7908. [Google Scholar] [CrossRef]
- Rao, C.; Goh, M.; Zhao, Y.; Zheng, J. Location selection of city logistics centers under sustainability. Transport. Res. Part D Trans. Environ. 2015, 36, 29–44. [Google Scholar] [CrossRef]
- Awasthi, A.; Chauhan, S.S.; Goyal, S.K. A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Math. Comp. Modell. 2011, 53, 98–109. [Google Scholar] [CrossRef]
- Kuo, M.S.; Liang, G.S. A novel hybrid decision-making model for selecting locations in a fuzzy environment. Math. Comp. Modell. 2011, 54, 88–104. [Google Scholar] [CrossRef]
- Ashrafzadeh, M.; Rafiei, F.M.; Isfahani, N.M.; Zare, Z. Application of fuzzy TOPSIS method for the selection of Warehouse Location: A Case Study. Interdiscip. J. Contemp. Res. Bus. 2012, 3, 655–671. [Google Scholar]
- Dey, B.; Bairagi, B.; Sarkar, B.; Sanyal, S.K. Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. Int. J. Manag. Sci. Eng. Manag. 2016, 11, 262–278. [Google Scholar] [CrossRef]
- Ertuğrul, İ. Fuzzy group decision making for the selection of facility location. Group Decis. Negot. 2011, 20, 725–740. [Google Scholar] [CrossRef]
- Safari, H.; Faghih, A.; Fathi, M.R. Fuzzy multi-criteria decision making method for facility location selection. Afr. J. Bus. Manag. 2012, 6, 206–212. [Google Scholar]
- Güzel, D.; Erdal, H. A comparative assesment of facility location problem via fuzzy TOPSIS and fuzzy VIKOR: A case study on security services. Int. J. Bus. Soc. Res. 2015, 5, 49–61. [Google Scholar]
- Senvar, O.; Otay, I.; Bolturk, E. Hospital site selection via hesitant fuzzy TOPSIS. IFAC-PapersOnLine. 2016, 49, 1140–1145. [Google Scholar] [CrossRef]
- Beskese, A.; Demir, H.H.; Ozcan, H.K.; Okten, H.E. Landfill site selection using fuzzy AHP and fuzzy TOPSIS: A case study for Istanbul. Environ. Earth Sci. 2015, 73, 3513–3521. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Appl. Energy 2015, 158, 390–402. [Google Scholar] [CrossRef]
- Suder, A.; Kahraman, C. Minimizing environmental risks using fuzzy TOPSIS: Location selection for the ITU Faculty of Management. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1326–1340. [Google Scholar] [CrossRef]
- Franco, C.; Bojesen, M.; Hougaard, J.L.; Nielsen, K. A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants. Appl. Energy 2015, 140, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Cagri, T.A.; Tuysuz, F.; Kahraman, C. A fuzzy multi-criteria decision analysis approach for retail location selection. Int. J. Inf. Technol. Decis. Mak. 2013, 12, 729–755. [Google Scholar] [CrossRef]
- Zentes, J.; Morschett, D.; Schramm-Klein, H. Store location–trading area analysis and site selection. In Strategic Retail Management; Gabler Verlag: Wiesbaden, Germany, 2011; pp. 203–225. [Google Scholar]
- Kuo, R.J.; Chi, S.C.; Kao, S.S. A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network. Comput. Ind. 2002, 47, 199–214. [Google Scholar] [CrossRef]
- Dolega, L.; Pavlis, M.; Singleton, A. Estimating attractiveness, hierarchy and catchment area extents for a national set of retail centre agglomerations. J. Retail. Consum. Serv. 2016, 28, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P.A.; Abrahamse, A.F. Applying demographic analysis to store site selection. Popul. Res. Policy Rev. 1996, 15, 479–489. [Google Scholar]
- Li, Y.; Liu, L. Assessing the impact of retail location on store performance: A comparison of Wal-Mart and Kmart stores in Cincinnati. Appl. Geogr. 2012, 32, 591–600. [Google Scholar] [CrossRef]
- Choi, M.J.; Heo, C.Y.; Law, R. Progress in shopping tourism. J. Travel Tour. Market. 2016, 33, 1–24. [Google Scholar] [CrossRef]
- Yurtseven, Ç. International tourism and economic development in Turkey: A vector approach. Afro Eurasian Stud. 2012, 1, 37–50. [Google Scholar]
- Timothy, D.J. Trends in tourism, shopping, and retailing. In A Companion to Tourism; Lew, A.A., Hall, C.M., Williams, A.M., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2014; pp. 378–388. [Google Scholar]
- Simkin, L.P. Evaluating a store location. Int. J. Retail. Distrib. Manag. 1990, 18, 33–39. [Google Scholar] [CrossRef]
- Simkin, L.; Doyle, P.; Saunders, J. Store location assessment. Prop. Manag. 1986, 4, 333–343. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Bao, X. Methodology of location selection for biofuel refinery based on fuzzy TOPSIS. In Proceedings of the IEEE International Conference on Automation and Logistics (ICAL), Zhengzhou, China, 15–17 August 2012; pp. 431–436. [Google Scholar]
- Chen, C.T.; Lin, C.T.; Huang, S.F. A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 2006, 102, 289–301. [Google Scholar] [CrossRef]
- Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [Google Scholar] [CrossRef]
- Joshi, R.; Banwet, D.K.; Shankar, R. A Delphi-AHP-TOPSIS based benchmarking framework for performance improvement of a cold chain. Expert Syst. Appl. 2011, 38, 10170–10182. [Google Scholar] [CrossRef]
- Patil, S.K.; Kant, R. A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Syst. Appl. 2014, 41, 679–693. [Google Scholar] [CrossRef]
- Choudhary, D.; Shankar, R. An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy. 2012, 42, 510–521. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Nas, B.; Karagüzel, R. Combining AHP with GIS for landfill site selection: A case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Manag. 2010, 30, 2037–2046. [Google Scholar] [CrossRef]
- Nas, B.; Cay, T.; Iscan, F.; Berktay, A. Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environ. Monit. Assess. 2010, 160, 491–500. [Google Scholar] [CrossRef]
- Şener, Ş.; Sener, E.; Karagüzel, R. Solid waste disposal site selection with GIS and AHP methodology: A case study in Senirkent–Uluborlu (Isparta) Basin, Turkey. Environ. Monit. Assess. 2011, 173, 533–554. [Google Scholar] [CrossRef]
- Vasiljević, T.Z.; Srdjević, Z.; Bajčetić, R.; Miloradov, M.V. GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: A case study from Serbia. Environ. Manag. 2012, 49, 445–458. [Google Scholar] [CrossRef]
- Van Haaren, R.; Fthenakis, V. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renew. Sustain. Energy Rev. 2011, 15, 3332–3340. [Google Scholar] [CrossRef]
- Atici, K.B.; Simsek, A.B.; Ulucan, A.; Tosun, M.U. A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection. Util. Policy. 2015, 37, 86–96. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy. 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-criteria decision support system for wind farm site selection using GIS. Sustain. Energy Technol. Assess. 2016, 13, 38–50. [Google Scholar]
- Pamučar, D.; Gigović, L.; Bajić, Z.; Janošević, M. Location selection for wind farms using GIS multi-criteria hybrid model: An approach based on fuzzy and rough numbers. Sustainability 2017, 9, 1315. [Google Scholar] [CrossRef]
- Uyan, M. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Khan, G.; Rathi, S. (). Optimal site selection for solar PV power plant in an Indian state using Geographical Information System (GIS). Int. J. Emerg. Eng. Res. Technol. 2014, 2, 260–266. [Google Scholar]
- Yi, C.S.; Lee, J.H.; Shim, M.P. Site location analysis for small hydropower using geo-spatial information system. Renew. Energy 2010, 35, 852–861. [Google Scholar] [CrossRef]
- Rikalovic, A.; Cosic, I.; Lazarevic, D. GIS based multi-criteria analysis for industrial site selection. Procedia Eng. 2014, 69, 1054–1063. [Google Scholar] [CrossRef]
- Mohamad, M.Y.; Al Katheeri, F.; Salam, A. A GIS application for location selection and Customers’ preferences for shopping malls in al Ain City; UAE. Am. J. Geogr. Inf. Syst. 2015, 4, 76–86. [Google Scholar]
- Liu, T. Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA. Papers Resour. Anal. 2012, 14, 7. [Google Scholar]
- Soltani, A.; Marandi, I.Z. Hospital site selection using two-stage fuzzy multi-criteria decision making process. J. Urban Environ. Eng. 2011, 5, 32–43. [Google Scholar] [CrossRef]
- Sharmin, N.; Neema, M.N. A GIS-based multi-criteria analysis to site appropriate locations of hospitals in Dhaka City. Hospital 2013, 8, 0–37. [Google Scholar]
- Eldemir, F.; Onden, I. Geographical information systems and multicriteria decisions integration approach for hospital location selection. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 975–997. [Google Scholar] [CrossRef]
- Rahimi, F.; Goli, A.; Rezaee, R. Hospital location-allocation in Shiraz using Geographical Information System (GIS). Shiraz E-Med J. 2017, 18, e57572. [Google Scholar] [CrossRef]
- Ye, H.; Kim, H. Locating healthcare facilities using a network-based covering location problem. GeoJournal 2016, 81, 875–890. [Google Scholar] [CrossRef]
- Dell’Ovo, M.; Capolongo, S.; Oppio, A. Combining spatial analysis with MCDA for the siting of healthcare facilities. Land Use Policy 2018, 76, 634–644. [Google Scholar] [CrossRef]
- Mohammed, A.; Shalaby, A.; Miller, E.J. Development of P-TRANE: GIS-Based Model of Bus Transit Network Evolution. J. Urban Plan. Dev. 2013, 140, 04013004. [Google Scholar] [CrossRef]
- Fischer, M.M.; Nijkamp, P. Geographic information systems and spatial analysis. Ann. Reg. Sci. 1992, 26, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J. Multiple criteria decision analysis and geographic information systems. In Trends in Multiple Criteria Decision Analysis; Springer: Boston, MA, USA, 2010; pp. 369–395. [Google Scholar]
- Congalton, R.G.; Green, K. The ABCs of GIS. J. For. 1992, 90, 13–20. [Google Scholar]
- Church, R.L. Geographical information systems and location science. Comput. Oper. Res. 2002, 2, 541–562. [Google Scholar] [CrossRef]
- Benoit, D.; Clarke, G.P. Assessing GIS for retail location planning. J. Retail. Consum. Serv. 1997, 4, 239–258. [Google Scholar] [CrossRef]
- Birkin, M.; Clarke, G. GIS, geodemographics, and spatial modeling in the UK financial service industry. J. Hous. Res. 1998, 9, 87–111. [Google Scholar]
- Clarke, I.; Rowley, J. A case for spatial decision-support systems in retail location planning. Int. J. Retail Distrib. Manag. 1995, 23, 4–10. [Google Scholar] [CrossRef]
- Mendes, A.B.; Themido, I.H. Multi-outlet retail site location assessment. Int. Trans. Oper. Res. 2004, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ali, W.; Moulin, B. 2D-3D multiagent geosimulation with knowledge-based agents of customers’ shopping behavior in a shopping mall. In Proceedings of the International Conference on Spatial Information Theory, Ellicottville, NY, USA, 14–18 September 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 445–458. [Google Scholar]
- Elliott-White, M.P.; Finn, M. Growing in sophistication: The application of geographical information systems in post-modern tourism marketing. J. Travel Tour. Market. 1997, 7, 65–84. [Google Scholar] [CrossRef]
- Brody, R. Geographic information systems: Business applications and data. J. Bus. Fin. Librariansh. 1999, 5, 3–18. [Google Scholar] [CrossRef]
- Chen, R.J. Geographic information systems (GIS) applications in retail tourism and teaching curriculum. J. Retail. Consum. Serv. 2007, 14, 289–295. [Google Scholar] [CrossRef]
- Selim, H.; Yunusoglu, M.G.; Yılmaz Balaman, Ş. A dynamic maintenance planning framework based on fuzzy TOPSIS and FMEA: Application in an international food company. Qual. Reliab. Eng. Int. 2016, 32, 795–804. [Google Scholar] [CrossRef]
- Yeh, C.H. A problem-based selection of multi-attribute decision-making methods. Int. Trans. Oper. Res. 2002, 9, 169–181. [Google Scholar] [CrossRef]
- Fayek, A.R.; Omar, M.N. A Fuzzy Topsis Method for Prioritized Aggregation in Multi-Criteria Decision Making Problems. J. Multi-Criteria Decis. Anal. 2016, 23, 242–256. [Google Scholar] [CrossRef]
- Chen, L.H.; Hung, C.C. An integrated fuzzy approach for the selection of outsourcing manufacturing partners in pharmaceutical R&D. Int. J. Product. Res. 2010, 48, 7483–7506. [Google Scholar]
- Badang, D.A.Q.; Sarip, C.F.; Tahud, A.P. Geographic Information System (GIS) and Multicriteria Decision Making (MCDM) for Optimal Selection of Hydropower Location in Rogongon, Iligan City. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–1 December 2018; pp. 1–5. [Google Scholar]
- Kahraman, C.; Büyüközkan, G.; Ateş, N.Y. A two phase multi-attribute decision-making approach for new product introduction. Inf. Sci. 2007, 177, 1567–1582. [Google Scholar] [CrossRef]
Linguistic Variables | Triangular Fuzzy Numbers | |
---|---|---|
Very Low | (VL) | (0, 0, 0.1) |
Low | (L) | (0, 0.1, 0.3) |
Mid Low | (ML) | (0.1, 0.3, 0.5) |
Medium | (M) | (0.3, 0.5, 0.7) |
Mid High | (MH) | (0.5, 0.7, 0.9) |
High | (H) | (0.7, 0.9, 1.0) |
Very High | (VH) | (0.9, 1.0, 1.0) |
Linguistic Variables | Triangular Fuzzy Numbers | |
---|---|---|
Very Weak | (VW) | (0, 0, 1) |
Weak | (W) | (0, 1, 3) |
Mid Weak | (MW) | (1, 3, 5) |
Medium | (M) | (3, 5, 7) |
Medium Good | (MG) | (5, 7, 9) |
Good | (G) | (7, 9, 10) |
Very Good | (VG) | (9, 10, 10) |
Criteria | Decision Makers | ||
---|---|---|---|
D1 | D2 | D3 | |
C1 | VH | H | VH |
C2 | H | VH | H |
C3 | MH | M | MH |
C4 | H | MH | MH |
C5 | MH | MH | MH |
C6 | VH | VH | H |
Criteria | Alternatives | Decision Makers | ||
---|---|---|---|---|
D1 | D2 | D3 | ||
C1 | A1 | G | VG | G |
A2 | W | MW | ÇW | |
A3 | MW | W | W | |
A4 | M | MG | MG | |
A5 | G | G | MG | |
A6 | VG | VG | VG | |
A7 | G | G | VG | |
C2 | A1 | G | G | G |
A2 | W | MW | W | |
A3 | MW | W | W | |
A4 | M | G | MG | |
A5 | MG | G | G | |
A6 | VG | G | VG | |
A7 | G | G | G | |
C3 | A1 | G | G | G |
A2 | M | W | M | |
A3 | MW | W | W | |
A4 | W | MW | MW | |
A5 | G | MG | G | |
A6 | VG | G | VG | |
A7 | G | G | G | |
C4 | A1 | G | MG | G |
A2 | W | WG | MW | |
A3 | MW | W | W | |
A4 | MW | M | M | |
A5 | G | G | G | |
A6 | VG | G | VG | |
A7 | G | G | G | |
C5 | A1 | VG | G | VG |
A2 | W | MW | W | |
A3 | W | M | M | |
A4 | M | MG | MG | |
A5 | MG | G | G | |
A6 | VG | VG | VG | |
A7 | VG | G | VG | |
C6 | A1 | G | VG | VG |
A2 | MW | W | MW | |
A3 | W | M | M | |
A4 | M | MG | G | |
A5 | G | G | MG | |
A6 | VG | G | VG | |
A7 | G | VG | G |
Criteria | Weights |
---|---|
C1 Regional Development | (0.833,0.967,1.000) |
C2 Economy | (0.767,0.933,1.000) |
C3 Transportation | (0.433,0.633,0.833) |
C4 Population Density | (0.567,0.767,0.933) |
C5 Tourism | (0.433,0.633,0.833) |
C6 Cultural Structure | (0.833,0.967,1.000) |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | |
---|---|---|---|---|---|---|---|
C1 | (7.67,9.33,10.00) | (0.33,1.33,3.00) | (0.33,1.67,3.67) | (4.33,6.33,8.33) | (6.33,8.33,9.67) | (9.00,10.00,10.00) | (7.67,9.33,10.00) |
C2 | (7.00,9.00,10.00) | (0.33,1.67,3.67) | (0.33,1.67,3.67) | (5.00,7.00,8.67) | (6.33,8.33,9.67) | (8.33,9.67,10.00) | (7.00,9.00,10.00) |
C3 | (7.00,9.00,10.00) | (2.00,3.67,5.67) | (0.33,1.67,3.67) | (0.67,2.33,4.33) | (6.33,8.33,9.67) | (8.33,9.67,10.00) | (7.00,9.00,10.00) |
C4 | (6.33,8.33,9.67) | (0.67,2.33,4.33) | (0.33,1.67,3.67) | (3.67,5.67,7.67) | (7.00,9.00,10.00) | (8.33,9.67,10.00) | (7.00,9.00,10.00) |
C5 | (8.33,9.67,10.00) | (0.33,1.67,3.67) | (2.00,3.67,5.67) | (4.33,6.33,8.33) | (6.33,8.33,9.67) | (9.00,10.00,10.00) | (8.33,9.67,10.00) |
C6 | (8.33,9.67,10.00) | (0.67,2.33,4.33) | (2.00,3.67,5.67) | (5.00,7.00,8.67) | (6.33,8.33,9.67) | (8.33,9.67,10.00) | (7.67,9.33,10.00) |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | |
---|---|---|---|---|---|---|---|
C1 | (0.767,0.933,1.000) | (0.033,0.133,0.300) | (0.033,0.167,0.367) | (0.433,0.633,0.833) | (0.633,0.833,0.967) | (0.900,1.000,1.000) | (0.767,0.933,1.000) |
C2 | (0.700,0.900,1.000) | (0.033,0.167,0.367) | (0.033,0.167,0.367) | (0.500,0.700,0.867) | (0.633,0.833,0.967) | (0.833,0.967,1.000) | (0.700,0.900,1.000) |
C3 | (0.700,0.900,1.000) | (0.200,0.367,0.567) | (0.033,0.167,0.367) | (0.067,0.233,0.433) | (0.633,0.833,0.967) | (0.833,0.967,1.000) | (0.700,0.900,1.000) |
C4 | (0.633,0.833,0.967) | (0.067,0.233,0.433) | (0.033,0.167,0.367) | (0.367,0.567,0.767) | (0.700,0.900,1.000) | (0.833,0.967,1.000) | (0.700,0.900,1.000) |
C5 | (0.833,0.967,1.000) | (0.033,0.167,0.367) | (0.200,0.367,0.567) | (0.433,0.633,0.833) | (0.633,0.833,0.967) | (0.900,1.000,1.000) | (0.833,0.967,1.000) |
C6 | (0.833,0.967,1.000) | (0.067,0.233,0.433) | (0.200,0.367,0.567) | (0.500,0.700,0.867) | (0.633,0.833,0.967) | (0.833,0.967,1.000) | (0.767,0.933,1.000) |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | |
---|---|---|---|---|---|---|---|
C1 | (0.639,0.902,1.000) | (0.027,0.129,0.300) | (0.027,0.161,0.367) | (0361,0.612,0.833) | (0.527,0.806,0.967) | (0.750,0.967,1.000) | (0.639,0.902,1.000) |
C2 | (0.537,0.840,1.000) | (0.025,0.156,0.367) | (0.025,0.156,0.367) | (0.384,0.653,0.867) | (0.486,0.777,0.967) | (0.639,0.902,1.000) | (0.537,0.840,1.000) |
C3 | (0.303,0.570,0.833) | (0.087,0.232,0.472) | (0.014,0.106,0.306) | (0.029,0.147,0.361) | (0.274,0.572,0.806) | (0.361,0.612,0.833) | (0.303,0.570,0.833) |
C4 | (0.359,0.639,0.902) | (0.038,0.179,0.404) | (0.019,0.128,0.342) | (0.208,0.435,0.716) | (0.397,0.690,0.933) | (0.472,0.742,0.933) | (0.397,0.690,0.933) |
C5 | (0.361,0.612,0.833) | (0.014,0.106,0.306) | (0.087,0.232,0.472) | (0.187,0.401,0.694) | (0.274,0.527,0.806) | (0.309,0.633,0.833) | (0.361,0.612,0.833) |
C6 | (0.694,0.935,1.000) | (0.056,0.225,0.433) | (0.167,0.355,0.567) | (0.417,0.677,0.867) | (0.527,0.806,0.967) | (0.694,0.935,1.000) | (0.639,0.902,1.000) |
d(A1, A*) | d(A2, A*) | d(A3, A*) | d(A4, A*) | d(A5, A*) | d(A6, A*) | d(A7, A*) | |
---|---|---|---|---|---|---|---|
C1 | 0.216 | 0.855 | 0.827 | 0.442 | 0.296 | 0.146 | 0.216 |
C2 | 0.283 | 0.829 | 0.829 | 0.416 | 0.324 | 0.216 | 0.283 |
C3 | 0.483 | 0.753 | 0.867 | 0.832 | 0.513 | 0.442 | 0.483 |
C4 | 0.429 | 0.807 | 0.848 | 0.585 | 0.393 | 0.341 | 0.393 |
C5 | 0.442 | 0.887 | 0.753 | 0.609 | 0.513 | 0.422 | 0.442 |
C6 | 0.181 | 0.777 | 0.658 | 0.393 | 0.296 | 0.181 | 0.216 |
d(A1, A՟) | d(A2, A՟) | d(A3, A՟) | d(A4, A՟) | d(A5, A՟) | d(A6, A՟) | d(A7, A՟) | |
---|---|---|---|---|---|---|---|
C1 | 0.861 | 0.189 | 0.232 | 0.632 | 0.788 | 0.912 | 0.861 |
C2 | 0.815 | 0.231 | 0.231 | 0.665 | 0.769 | 0.861 | 0.815 |
C3 | 0.608 | 0.308 | 0.187 | 0.226 | 0.578 | 0.632 | 0.608 |
C4 | 0.671 | 0.256 | 0.211 | 0.498 | 0.708 | 0.740 | 0.708 |
C5 | 0.632 | 0.187 | 0.308 | 0.475 | 0.578 | 0.645 | 0.632 |
C6 | 0.886 | 0.284 | 0.398 | 0.679 | 0.788 | 0.886 | 0.861 |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | |
---|---|---|---|---|---|---|---|
di* | 2.033 | 4.889 | 4.781 | 3.277 | 2.334 | 1.748 | 2.033 |
di՟ | 4.474 | 1.454 | 1.567 | 3.175 | 4.209 | 4.676 | 4.485 |
di* + di՟ | 6.507 | 6.343 | 6.348 | 6.452 | 6.543 | 6.424 | 6.518 |
CCi | 0.688 | 0.229 | 0.247 | 0.492 | 0.643 | 0.728 | 0.688 |
Closeness Coefficient | Assessment Status |
---|---|
CCi € [0,0.2] | Unadvisable |
CCi € [0.2,0.4] | Advisable with high risk |
CCi € [0.4,0.6] | Advisable with low risk |
CCi € [0.6,0.8] | Acceptable |
CCi € [0.8,1.0] | Acceptable and preferable |
Geographical Region | Overall Score | Ranking |
---|---|---|
Marmara | 140.81 | 1 |
Central Anatolia | 70.14 | 2 |
Mediterranean | 48.17 | 3 |
Aegean | 37.87 | 3 |
Southeastern Anatolia | 32.94 | 4 |
Black Sea | 27.30 | 5 |
Eastern Anatolia | 26.41 | 6 |
Option Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Fuzzy TOPSIS | Marmara | Aegean | Mediterranean | Central Anatolia | Black Sea | Eastern Anatolia | Southeastern Anatolia |
GIS Based | Marmara | Central Anatolia | Mediterranean | Aegean | Southeastern Anatolia | Black Sea | Eastern Anatolia |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdin, C.; Akbaş, H.E. A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey. Sustainability 2019, 11, 3837. https://doi.org/10.3390/su11143837
Erdin C, Akbaş HE. A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey. Sustainability. 2019; 11(14):3837. https://doi.org/10.3390/su11143837
Chicago/Turabian StyleErdin, Ceren, and Halil Emre Akbaş. 2019. "A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey" Sustainability 11, no. 14: 3837. https://doi.org/10.3390/su11143837
APA StyleErdin, C., & Akbaş, H. E. (2019). A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey. Sustainability, 11(14), 3837. https://doi.org/10.3390/su11143837