Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Sources and Their Characterization
2.2. Biochar Nutrient Saturation
2.3. Soil Sampling and Analysis
Heavy Metals Determination in Soil, Biochar, and Corn Biomass
2.4. Greenhouse Experimental Setup
2.5. Plant Tissue Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biochar and Soil Properties
3.2. Recovery of Nutrients via Biochar Sorption
3.3. Effects of Biochar Amendments on Soil pH, EC, and CEC
3.4. Effect of Digestate-Enriched Biochar on Soil Nutrients
3.4.1. Soil Organic Carbon
3.4.2. Soil Nitrogen and Phosphorus
3.4.3. Soil Extractible Macronutrients (Ca, Na, K, and Mg)
3.5. Effect of Biochar Amendment on Maize (Zea Mays) Growth and Nutrition
3.5.1. Effect on Biomass Yield
3.5.2. Effect on Nutrient and Heavy Metal Uptake
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The circular economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnurer, A. Comparative characterization of digestate versus pig slurry and cow manure—Chemical composition and effects on soil microbial activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, L.X.; Ren, C.S.; Wang, F. The process and prospects of rural biogas production in china. Energy Policy 2012, 51, 58–63. [Google Scholar] [CrossRef]
- Torrijos, M. State of development of biogas production in europe. Procedia Environ. Sci. 2016, 35, 881–889. [Google Scholar] [CrossRef]
- Kaufmann, T. Sustainable livestock production: Low emission farm—The innovative combination of nutrient, emission and waste management with special emphasis on chinese pig production. Anim. Nutr. 2015, 1, 104–112. [Google Scholar] [CrossRef]
- Robinson, T.P.; Wint, G.R.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef]
- Chen, B.; Chen, S. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. Energy Policy 2013, 62, 707–716. [Google Scholar] [CrossRef]
- Chadwick, D.; Wei, J.; Yan’an, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in china. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Sarkhot, D.V.; Ghezzehei, T.A.; Berhe, A.A. Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent. J. Environ. Qual. 2013, 42, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Lee, D.J.; Nguyen, P.D.; Bui, X.T. Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles. Bioresour. Technol. 2014, 169, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Earth Scan Ltd.: London, UK, 2015. [Google Scholar]
- Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, M.B. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.E.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.D.; Cornelissen, G. The sorption and desorption of phosphate-p, ammonium-n and nitrate-n in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Kizito, S.; Wu, S.; Kipkemoi Kirui, W.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative n-fertilizer: Ammonia capture. Plant Soil 2011, 350, 35–42. [Google Scholar] [CrossRef]
- Novak, J.M.; Johnson, M.G.; Spokas, K.A. Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse. Front. Sustain. Food Syst. 2018, 2, 54. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a nitisol in the highlands of ethiopia. Sci. Total Environ. 2016, 569–570, 869–879. [Google Scholar] [CrossRef]
- Fidel, R.; Laird, D.; Parkin, T. Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef]
- Fabbri, D.; Torri, C. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 2016, 38, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrere, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Nguyen, M.L.; Tanner, C.C. Ammonium removal from wastewaters using natural New Zealand zeolites. N. Z. J. Agric. Res. 1997, 41, 427–446. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Mete, F.Z.; Mia, S.; Dijkstra, F.A.; Abuyusuf, M.; Hossain, A.S.M.I. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Mapope, N. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. Int. J. Environ. Sci. Technol. 2017, 15, 405–414. [Google Scholar] [CrossRef]
- Oh, T.-K.; Shinogi, Y.; Lee, S.-J.; Choi, B. Utilization of biochar impregnated with anaerobically digested slurry as slow-release fertilizer. J. Plant Nutr. Soil Sci. 2014, 177, 97–103. [Google Scholar] [CrossRef]
- Ghezzehei, A.T.; Sarkhot, V.D.; Berhe, A.A. Biochar can be used to capture essential nutrients from diary wastewater and improve soil physico-chemical properties. Solid Earth 2014, 5, 953–962. [Google Scholar] [CrossRef]
- Kocaturk-Schumacher, N.P.; Zwart, K.; Bruun, S.; Brussaard, L.; Jensen, L.S. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate? Environ. Technol. 2017, 38, 1313–1323. [Google Scholar] [CrossRef]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil c and n turnover dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils-A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; RUR 24099 EN; Office for the Official Publications of the European Communities: Luxembourg, 2009; p. 149. [Google Scholar]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, P.; Jośko, I.; Kuśmierz, M.; Futa, B.; Wielgosz, E.; Ligęza, S.; Pranagal, J. Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma 2014, 213, 502–511. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments. Sci. Total Environ. 2015, 537, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.H.; Gong, B.; Joseph, S.D.; Marjo, C.E.; Munroe, P.; Rich, A.M. Imaging of mineral-enriched biochar by ftir, raman and sem–edx. Vib. Spectrosc. 2012, 62, 248–257. [Google Scholar] [CrossRef]
- Kizito, S.; Luo, H.; Wu, S.; Ajmal, Z.; Lv, T.; Dong, R. Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. J. Environ. Manag. 2017, 201, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Uras, Ü.; Carrier, M.; Hardie, A.G.; Knoetze, J.H. Physico-chemical characterization of biochars from vacuum pyrolysis of south african agricultural wastes for application as soil amendments. J. Anal. Appl. Pyrolysis 2012, 98, 207–213. [Google Scholar] [CrossRef]
- Angst, T.E.; Sohi, S.P. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 2013, 5, 221–226. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: New York, NY, USA, 2005. [Google Scholar]
- Oslen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Zheljazkov, V.D.; Warman, P.R. Comparison of three digestion methods for the recovery of 17 plant essential nutrients and trace elements from six composts. Compos. Sci. Util. 2002, 10, 197–203. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2011, 48, 271–284. [Google Scholar] [CrossRef]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M.I.; et al. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017, 607–608, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Rehrah, D.; Reddy, M.R.; Novak, J.M.; Bansode, R.R.; Schimmel, K.A.; Yu, J.; Watts, D.W.; Ahmedna, M. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 2014, 108, 301–309. [Google Scholar] [CrossRef]
- Deenik, J.; Cooney, M. The potential benefits and limitations of corn cob and sewage sludge biochars in an infertile oxisol. Sustainability 2016, 8, 131. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis 2012, 98, 177–183. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Cárdenas-Aguiar, E.; Paz-Ferreiro, J.; Plaza, C.; Gascó, G. The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic. 2016, 33, 40–51. [Google Scholar] [CrossRef]
- Lucchini, P.; Quilliam, R.S.; DeLuca, T.H.; Vamerali, T.; Jones, D.L. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosyst. Environ. 2014, 184, 149–157. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237–238, 105–116. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Munoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Ameloot, N.; Sleutel, S.; Das, K.C.; Kanagaratnam, J.; De Neve, S. Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties. Glob. Chang. Biol. Bioenergy 2015, 7, 135–144. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193–194, 122–130. [Google Scholar] [CrossRef]
- Backer, R.G.M.; Schwinghamer, T.D.; Whalen, J.K.; Seguin, P.; Smith, D.L. Crop yield and soc responses to biochar application were dependent on soil texture and crop type in southern quebec, canada. J. Plant Nutr. Soil Sci. 2016, 179, 399–408. [Google Scholar] [CrossRef]
- Martinsen, V.; Mulder, J.; Shitumbanuma, V.; Sparrevik, M.; Børresen, T.; Cornelissen, G. Farmer-led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. J. Plant Nutr. Soil Sci. 2014, 177, 681–695. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adeyemo, A.J.; Awodun, M.A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 2019, 336, 1–11. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input nepalese soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef]
- Khanmohammadi, Z.; Afyuni, M.; Mosaddeghi, M.R. Effect of sewage sludge and its biochar on chemical properties of two calcareous soils and maize shoot yield. Arch. Agron. Soil Sci. 2016, 63, 198–212. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J. Environ. Qual. 2011, 40, 468. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Randolph, P.; Bansode, R.R.; Hassan, O.A.; Rehrah, D.; Ravella, R.; Reddy, M.R.; Watts, D.W.; Novak, J.M.; Ahmedna, M. Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Johnson, M.G.; Spokas, K. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer. Chemosphere 2016, 142, 176–183. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Lima, J.R.; de Moraes Silva, W.; de Medeiros, E.V.; Duda, G.P.; Corrêa, M.M.; Martins Filho, A.P.; Clermont-Dauphin, C.; Antonino, A.C.; Hammecker, C. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 2018, 319, 14–23. [Google Scholar] [CrossRef]
- Hewage, S.R.-P. Effect of Charred Digestate (Biochar) and Digestate on Soil Organic Carbon and Nutrients in Temperate Bioenergy Crop Production Systems. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2016. [Google Scholar]
- Park, J.H.; Choppala, G.H.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Zama, E.F.; Zhu, Y.G.; Reid, B.J.; Sun, G.X. The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Clean. Prod. 2017, 148, 127–136. [Google Scholar] [CrossRef] [Green Version]
No. | Treatment Nomenclature | Treatment Abbreviation |
---|---|---|
1 | Soil + wood biochar | WB-N |
2 | Soil + corn biochar | CB-N |
3 | Soil + wood biochar (digestate enriched) | WB-T |
4 | Soil + corn biochar (digestate enriched) | CB-T |
5 | Soil + wood biochar + chemical NPK | WB + NPK |
6 | Soil + corn biochar + chemical NPK | CB + NPK |
7 | Soil + chemical NPK | PS + NPK |
8 | Control (no chemical NPK and no biochar) | Control |
Parameter | Soil Sample | Raw (Unenriched) Biochar | Digestate Enriched Biochar | ||
---|---|---|---|---|---|
Corncobs (CB-N) | Wood (WB-N) | Corncobs (CB-T) | Wood (WB-T) | ||
Clay (%) | 53.3 | - | - | - | - |
Silt (%) | 28.5 | - | - | - | - |
Sand (%) | 18.2 | - | - | - | - |
pH (KCl) | 6.92 ± 0.34 | 8.94 ± 0.31 | 9.8 ± 0.43 | 8.42 ± 0.2 | 8.6 ± 0.4 |
EC (µS.m−1) | 167 ± 4.2 | 477 ± 14 | 431 ± 17 | 512 ± 22 | 468 ± 18 |
Density (g/cm3) | 1.43 ±.013 | 0.384 ± 0.03 | 0.499 ± 0.071 | n.d | n.d |
WHC (% dry wt.) | 147.4± | 173.4 | 148.7 | 177 ± 3.3 | 159 ± 2.6 |
CEC (cmol/g) | 13.8 ± 4.5 | 53.6 ± 1.0 | 121.2 ± 1.1 | 38 ± 4.2 | 86 ± 3.6 |
BET-N2 (m2/g) | - | 33.4 ± 5.1 | 147.0 ± 26 | n.d | n.d |
Total pore volume (mL/g) | - | 0.068 | 0.176 | n.d | n.d |
Total C (%) | 1.67 | 77.4 | 90.0 | 81 ± 3.1 | 91 ± 1.8 |
Total N (%) | 1.12 | 1.24 | 0.41 | 4.11 | 3.36 |
Sulphur (%) | 0.21 | 0.15 | 0.031 | 0.27 | 0.18 |
Ash (%) | n.d | 11.6 | 4.2 | 12.4 | 4.9 |
C/N | 1.49 | 62.4 | 219.5 | 19.7 | 27 |
H/C | n.d | 0.042 | 0.23 | 0.031 | 0.185 |
O/C | n.d | 0.120 | 0.069 | 0.084 | 0.024 |
Surface Acidity (molc/kg) | n.d | 1.23 ± 0.3 | 0.92 ± 0.12 | 0.87 ± 0.07 | 0.79 ± 0.1 |
Na (%) | 0.12 | 0.88 | 0.13 | 1.77 | 0.73 |
Mg (%) | 0.22 | 0.37 | 0.24 | 0.56 | 0.43 |
Al (%) | 1.32 | 0.12 | 0.11 | 0.14 | 0.17 |
Si (%) | 0.17 | 0.74 | 0.11 | 0.75 | 0.14 |
P (%) | 0.67 | 0.43 | 0.23 | 1.89 | 0.93 |
K (%) | 2.16 | 3.30 | 0.91 | 10.4 | 5.83 |
Ca (%) | 0.91 | 0.51 | 0.12 | 1.56 | 0.94 |
Fe (mg/kg) | 46.4 ± 11 | 234.8 ± 23 | 6.70 ± 0.8 | 247.4 ± 21 | 10.38 ± 1.3 |
Mn (mg/kg) | 58.3 ± 5.4 | 27.2 ± 3.9 | 4.33 ± 0.7 | 29.4 ± 4.2 | 5.44 ± 1.1 |
Zn (mg/kg) | 6.26 ± 1.3 | 12.8 ± 1.7 | 3.47 ± 0.67 | 13.2 ± 1.8 | 13.43 ± 2.2 |
Cu (mg/kg) | 5.66 ± 0.9 | 3.90 ± 0.71 | 2.44 ± 0.66 | 8.73 ± 1.1 | 10.47 ± 1.7 |
Cr (mg/kg) | 1.74 ± 0.1 | 1.89 ± 0.2 | 1.21 ± 0.12 | 1.93 ± 0.44 | 2.62 ± 0.65 |
As (mg/kg) | 1.10 ± 0.2 | 1.23 ± 0.3 | 3.16 ± 0.8 | 1.43 ± 0.5 | 3.66 ± 0.74 |
Macronutrients (g/kg Dry Matter) | Heavy Metals Content (g/kg Dry Matter) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment * | pH | EC a | CEC b | TOC c | TN d | TP e | Ca | K | Na | Mg | Fe | Cu | Zn | Cr | As |
10 t/ha biochar application | |||||||||||||||
CB-N | 7.7 ± 0.4 | 289 ± 33 | 41 ± 7.4 | 1.86 ± 0.3 | 0.19 ± 0.01 | 0.16 ± 0.01 | 0.13 ± 0.003 | 0.21 ± 0.03 | 0.15 ± 0.01 | 0.11 ± 0.01 | 81.4 ± 11 | 1.77 ± 0.3 | 2.44 ± 0.9 | 0.61 ± 0.07 | 0.31 ± 0.03 |
WB-N | 8.1 ± 0.1 | 317 ± 23 | 58 ± 13 | 2.47 ± 0.2 | 0.11 ± 0.03 | 0.15 ± 0.03 | 0.05 ± 0.001 | 0.16 ± 0.01 | 0.10 ± 0.03 | 0.03 ± 0.001 | 36.9 ± 2.7 | 0.61 ± 0.05 | 0.73 ± 0.02 | 0.12 ± 0.08 | 0.14 ± 0.05 |
CB-T | 7.6 ± 0.3 | 299 ± 27 | 37 ± 6.2 | 2.18 ± 0.1 | 0.33 ± 0.06 | 0.29 ± 0.03 | 0.16 ± 0.02 | 0.49 ± 0.01 | 0.46 ± 0.06 | 0.33 ± 0.04 | 93.2 ± 15 | 6.31 ± 0.6 | 7.16 ± 1.6 | 1.89 ± 0.1 | 1.14 ± 0.1 |
WB-T | 8.3 ± 0.3 | 346 ± 28 | 43 ± 5 | 2.77 ± 0.3 | 1.21 ± 0.2 | 0.38 ± 0.00 | 0.14 ± 0.01 | 0.42 ± 0.04 | 0.57 ± 0.05 | 0.31 ± 0.01 | 53.1 ± 7.3 | 2.84 ± 0.9 | 4.83 ± 0.8 | 1.21 ± 0.3 | 1.13 ± 0.1 |
CB + NPK | 7.4 ± 0.24 | 266 ± 33 | 42 ± 8.1 | 1.84 ± 0.1 | 1.78 ± 0.5 | 0.36 ± 0.02 | 0.14 ± 0.001 | 0.57 ± 0.07 | 0.43 ± 0.01 | 0.21 ± 0.03 | 83.5 ± 13 | 1.98 ± 0.6 | 5.11 ± 0.9 | 0.69 ± 0.05 | 0.14 ± 0.2 |
WB + NPK | 8.4 ± 0.22 | 303 ± 21 | 56 ± 11 | 2.44 ± 0.4 | 1.43 ± 0.1 | 0.29 ± 0.01 | 0.10 ± 0.002 | 0.34 ± 0.06 | 0.13 ± 0.001 | 0.15 ± 0.03 | 59.3 ± 6.9 | 1.83 ± 0.07 | 1.17 ± 0.2 | 0.11 ± 0.007 | 0.89 ± 0.05 |
20 t/ha biochar application | |||||||||||||||
CB-N | 8.1 ± 0.3 | 346 ± 25 | 49 ± 5.7 | 8.59 ± 1.1 | 0.33 ± 0.03 | 0.18 ± 0.04 | 0.11 ± 0.01 | 0.39 ± 0.06 | 0.23 ± 0.01 | 0.13 ± 0.05 | 100.6 ± 33 | 2.33 ± 0.7 | 2.76 ± 1.1 | 0.81 ± 0.04 | 0.21 ± 0.005 |
WB-N | 8.5 ± 041 | 374 ± 33 | 60 ± 11 | 11.3 ± 0.8 | 0.14 ± 0.02 | 0.15 ± 0.01 | 0.04 ± 0.04 | 0.04 ± 0.001 | 0.15 ± 0.009 | 0.04 ± 0.001 | 48.7 ± 9.3 | 0.94 ± 0.07 | 1.42 ± 0.3 | 0.48 ± 0.02 | 0.2 ± 0.005 |
CB -T | 7.8 ± 0.4 | 288 ± 21 | 42 ± 6.4 | 9.87 ± 1.4 | 0.53 ± 0.01 | 0.49 ± 0.05 | 0.21 ± 0.01 | 1.51 ± 0.4 | 0.51 ± 0.02 | 0.23 ± 0.05 | 110.1 ± 26 | 8.77 ± 1.7 | 6.55 ± 1.8 | 1.84 ± 0.5 | 0.95 ± 0.01 |
WB-T | 8.0 ± 0.2 | 383 ± 35 | 66 ± 9.2 | 11.9 ± 1.2 | 1.19 ± 0.1 | 0.55 ± 0.01 | 0.18 ± 0.01 | 1.23 ± 0.5 | 0.35 ± 0.4 | 0.14 ± 0.01 | 69.3 ± 4.9 | 3.73 ± 0.8 | 6.6 ± 0.4 | 1.79 ± 0.6 | 0.25 ± 0.03 |
CB + NPK | 7.8 ± 0.1 | 253 ± 14 | 42 ± 6.7 | 9.11 ± 0.8 | 0.34 ± 0.07 | 0.34 ± 0.04 | 0.13 ± 0.02 | 1.99 ± 0.05 | 0.21 ± 0.01 | 0.21 ± 0.03 | 129.5 ± 7.4 | 6.65 ± 1.5 | 6.93 ± 1.3 | 0.88 ± 0.006 | 0.32± |
WB + NPK | 8.6 ± 0.3 | 296 ± 26 | 58 ± 9.1 | 11.2 ± 0.6 | 0.23 ± 0.03 | 0.23 ± 0.01 | 0.10 ± 0.004 | 1.44 ± 0.44 | 0.13 ± 0.03 | 0.16 ± 0.02 | 63.3 ± 9.2 | 3.27 ± 0.3 | 7.16 ± 0.7 | 0.31 ± 0.06 | 0.24 ± 0.07 |
Soil + NPK | 7.3 ± 0.4 | 178 ± 22 | 11.6 ± 4.7 | 1.18 ± 0.3 | 0.89 ± 0.4 | 0.89 ± 0.07 | 0.12 ± 0.01 | 2.43 ± 0.81 | 0.15 ± 0.01 | 0.35 ± 0.04 | 78.2 ± 10 | 7.16 ± 0.8 | 11.67 ± 2.3 | 1.66 ± 0.1 | 1.13 ± 0.2 |
Plain Soil | 6.9 ± 0.3 | 167 ± 4.2 | 13.8 ± 4.5 | 1.17 ± 0.5 | 0.12 ± 0.006 | 0.07 ± 0.000 | 0.09 ± 0.001 | 0.26 ± 0.021 | 0.12 ± 0.03 | 0.09 ± 0.01 | 47.4 ± 5.6 | 5.66 ± 1.1 | 6.24 ± 1.1 | 1.74 ± 0.2 | 1.1 ± 0.08 |
Treatment a | Nutrient Uptake (mg/kg DM) | Heavy Metal Uptake (mg/g DM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TN | TP | K | Ca | Mg | Cu | Zn | Cr | As | Fe | |
10 t/ton biochar application | ||||||||||
Control b | 213 ± 22 a | 41 ± 6.7 a | 256 ± 34 a | 43 ± 6.1 a | 61 ± 4.3 a | 2.60 ± 0.5 a | 2.93 ± 0.81 a | 0.57 ± 0.08 a | 0.46 ± 0.03 a | 18.96 ± 2.1 a |
Soil + NPK | 528 ± 27 b | 154 ± 8.2 b | 890 ± 44 b | 178 ± 13 b | 230 ± 11 b | 3.29 ± 0.9 b | 5.49 ± 0.9 b | 0.55 ± 0.04 a | 0.48 ± 0.07 a | 31.28 ± 3.2 b |
CB-N | 251 ± 16 c | 67 ± 5.2 c | 470 ± 21 c | 56 ± 7.7 c | 78 ± 8.9 c | 0.81 ± 0.4 c | 1.15 ± 0.3 c | 0.20 ± 0.03 b | 0.13 ± 0.05 b | 48.84 ± 5.1 c |
WB-N | 193 ± 5.7 a | 51 ± 5.1 e | 187 ± 6.7 e | 26 ± 4.5 e | 21 ± 3.7 d | 0.28 ± 0.07 d | 0.34 ± 0.04 e | 0.04 ± 0.04 d | 0.06 ± 0.003 c | 22.14 ± 3.1 a |
CB-T | 344 ± 24 e | 88 ± 7.4 d | 636 ± 37 f | 47 ± 7.1 a | 91 ± 6.3 e | 2.90 ± 0.9 b | 3.37 ± 0.7 a | 0.62 ± 0.03 a | 0.48 ± 0.08 a | 55.92 ± 4.6 c |
WB-T | 277 ± 21 c | 81 ± 5.9 d | 368 ± 33 h | 64 ± 7.2 c | 57 ± 4.4 a | 1.31 ± 0.3 f | 2.27 ± 0.8 a | 0.40 ± 0.1 a | 0.48 ± 0.06 a | 31.86 ± 4.3 b |
CB + NPK | 372 ± 29 g | 121 ± 11 e | 590 ± 37 f | 98 ± 10 e | 116 ± 12 f | 0.91 ± 0.09 c | 2.40 ± 0.6 a | 0.23 ± 0.09 b | 0.06 ± 0.003 c | 50.1 ± 7.6 c |
WB + NPK | 322 ± 24 e | 101 ± 7.8 d | 455 ± 36 c | 63 ± 8.3 c | 57 ± 9.2 a | 0.84 ± 0.06 c | 0.55 ± 0.07 e | 0.03 ± 0.007 d | 0.37 ± 0.06 e | 35.58 ± 5.4 b |
F-value | 68.45 | 23.56 | 73.81 | 34.93 | 59.32 | 51.47 | 38.94 | 12.67 | 27.38 | 71.84 |
P-value | 0.043 | 0.054 | 0.038 | 0.05 | 0.045 | 0.048 | 0.049 | 0.068 | 0.053 | 0.0045 |
LSD d | 4.12 | 1.76 | 5.72 | 3.31 | 4.01 | 3.43 | 3.11 | 0.54 | 0.89 | 7.78 |
20 t/ton biochar application | ||||||||||
CB-N | 288 ± 19 a | 90 ± 5.7 a | 532 ± 44 a | 76 ± 12 a | 100 ± 14 a | 1.07 ± 0.2 a | 1.30 ± 0.3 a | 0.27 ± 0.07 a | 0.09 ± 0.02 a | 40.24 ± 5.6 a |
WB-N | 178 ± 13 c | 56 ± 4.7 c | 230 ± 34 c | 37 ± 3.5 c | 43 ± 4.1 c | 0.43 ± 0.07 c | 0.67 ± 0.1 c | 0.16 ± 0.05 a | 0.08 ± 0.02 a | 19.48 ± 4.1 c |
CB-T | 492 ± 33 d | 121 ± 14 b | 789 ± 82 d | 128 ± 15 b | 136 ± 9.3 b | 4.03 ± 0.6 d | 3.08 ± 0.7 b | 0.61 ± 0.1 b | 0.40 ± 0.09 c | 44.04 ± 3.7 a |
WB-T | 367 ± 22 e | 81 ± 8.6 a | 745 ± 56 e | 110 ± 9.1 d | 76 ± 5.5 d | 1.72 ± 0.2 f | 3.10 ± 0.4 b | 0.59 ± 0.08 c | 0.11 ± 0.05 a | 27.72 ± 4.7 d |
CB + NPK | 528 ± 42 f | 147 ± 17 d | 861 ± 77 f | 144 ± 9.0 b | 139 ± 11 b | 3.06 ± 0.5 d | 3.26 ± 0.5 b | 0.29 ± 0.09 d | 0.13 ± 0.03 a | 37.4 ± 3.0 e |
WB + NPK | 478 ± 42 d | 114 ± 10 b | 969 ± 66 b | 79 ± 5.7 a | 84 ± 6.3 a,d | 0.35 ± 0.07 c | 3.37 ± 0.6 b | 0.10 ± 0.04 a | 0.10 ± 0.04 a | 25.32 ± 4.3 d |
F-value | 61.71 | 66.78 | 71.34 | 51.85 | 33.63 | 53.78 | 67.87 | 11.79 | 9.54 | 23.41 |
P-value | 0.035 | 0.049 | 0.027 | 0.031 | 0.044 | 0.032 | 0.049 | 0.067 | 0.086 | 0.050 |
LSD (0.05) | 4.32 | 6.25 | 8.57 | 7.71 | 6.9 | 8.32 | 3.3 | 0.09 | 0.067 | 2.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand. Sustainability 2019, 11, 3211. https://doi.org/10.3390/su11113211
Kizito S, Luo H, Lu J, Bah H, Dong R, Wu S. Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand. Sustainability. 2019; 11(11):3211. https://doi.org/10.3390/su11113211
Chicago/Turabian StyleKizito, Simon, Hongzhen Luo, Jiaxin Lu, Hamidou Bah, Renjie Dong, and Shubiao Wu. 2019. "Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand" Sustainability 11, no. 11: 3211. https://doi.org/10.3390/su11113211
APA StyleKizito, S., Luo, H., Lu, J., Bah, H., Dong, R., & Wu, S. (2019). Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand. Sustainability, 11(11), 3211. https://doi.org/10.3390/su11113211