Next Article in Journal
Community Based Programs Sustainability. A Multidimensional Analysis of Sustainability Factors
Next Article in Special Issue
Physical Forcing-Driven Productivity and Sediment Flux to the Deep Basin of Northern South China Sea: A Decadal Time Series Study
Previous Article in Journal
A Hybrid of Multi-Objective Optimization and System Dynamics Simulation for Straw-to-Electricity Supply Chain Management under the Belt and Road Initiatives
Previous Article in Special Issue
Carbon Chemistry in the Mainstream of Kuroshio Current in Eastern Taiwan and Its Transport of Carbon into the East China Sea Shelf
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessReview
Sustainability 2018, 10(3), 869; https://doi.org/10.3390/su10030869

Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate

Earth System Science, University of California Irvine, Irvine, CA 92697, USA
*
Author to whom correspondence should be addressed.
Received: 7 January 2018 / Revised: 26 February 2018 / Accepted: 12 March 2018 / Published: 19 March 2018
(This article belongs to the Special Issue Marine Carbon Cycles)
Full-Text   |   PDF [1410 KB, uploaded 3 May 2018]   |  

Abstract

The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean. View Full-Text
Keywords: phytoplankton; biological carbon pump; climate change; CO2; marine carbon cycle phytoplankton; biological carbon pump; climate change; CO2; marine carbon cycle
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Basu, S.; Mackey, K.R.M. Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate. Sustainability 2018, 10, 869.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top