Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals
Abstract
:1. Introduction
2. Coping with Droughts Agenda in the Brazilian Semi-Arid Region
3. Methodology
3.1. Case Studies
3.2. Data
4. Results and Discussion
4.1. The HCSA’s RWH Technologies and Family Farming in the SAB
4.2. The Human Coexistence with Semi-Aridity and the Sustainable Development Goals
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ab’Sáber, A.N. Sertões e sertanejos: Uma geografia humana sofrida. Estud. Av. 1999, 13. [Google Scholar] [CrossRef]
- IBGE. Cadastro de Municípios Localizados na Região Semiárida do Brasil. Available online: http://www.webcitation.org/6vd3NDaNI (accessed on 11 December 2017).
- Sistema IBGE de Recuperação Automática—SIDRA. Censo Demográfico 2010, Tabela 3145. Available online: https://sidra.ibge.gov.br/tabela/3145 (accessed on 11 December 2017).
- Lindoso, D.P.; Rocha, J.D.; Debortoli, N.; Parente, I.I.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S. Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: A case study in Ceará. Clim. Chang. 2014, 127, 93–105. [Google Scholar] [CrossRef]
- Pérez-Marin, A.M.; Rogé, P.; Altieri, M.A.; Forero, L.F.U.; Silveira, L.; Oliveira, V.M.; Domingues-Leiva, B.E. Agroecological and Social Transformations for Coexistence with Semi-Aridity in Brazil. Sustainability 2017, 9, 990. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Rainwater Harvesting: A Lifeline for Human Well-Being; Stockholm Environment Institute: Nairobi, Kenya, 2009. [Google Scholar]
- Ouessar, M.; Hessel, R.; Sghaier, M.; Ritsema, C. Report on Water Harvesting Inventory, History and Success Stories; Water Harvesting for Rainfed Africa: Medenine, Tunisia, 2012; Available online: http://edepot.wur.nl/263496 (accessed on 17 January 2018).
- Kahinda, J.; Taigbenua, A.; Sejamoholoa, B.; Lillieb, E.; Boroto, R. A GIS-based decision support system for rainwater harvesting (RHADESS). Phys. Chem. Earth Parts A/B/C 2009, 34, 767–775. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches-Fernandes, L.F.; Cotes, R.M.V.; Pacheco, F.A.L. Improved framework model to allocate optimal Rainwater harvesting site in small watersheds for agro-forestry. J. Hydrol. 2017, 550, 318–330. [Google Scholar] [CrossRef]
- Adham, A.; Riksen, M.; OUessar, M.; Ritsema, C. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar] [CrossRef]
- Kahinda, J.M.; Lillie, E.S.B.; Taigbenu, A.E.; Taute, M.; Boroto, R.J. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth Parts A/B/C 2008, 33, 788–799. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cotes, R.M.V.; Pacheco, F.A.L. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total Environ. 2018, 613–614, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.M.; Suassuna, J.; Vainsencher, A. Improving access to water Resources through rainwater harvesting as a mitigation measure: The case of the Brazilian Semi-Arid Region. Mitig. Adapt. Strategies Glob. Chang. 2005, 10, 393–409. [Google Scholar] [CrossRef]
- Moura, M.S.B.; Galvincio, J.D.; Brito, L.T.L.; Souza, L.S.B.; Sá, I.I.S.; Silva, T.G.F. Clima e Água de Chuva no Semiárido. In Potencialidades da Água da Chuva no Semi-Árido Brasileiro, 1st ed.; Brito, L.T.L., Moura, M.S.B., Gama, G.F.B., Eds.; EMBRAPA: Petrolina, Brazil, 2007; pp. 37–54. ISBN 978-85-7405-009-6. [Google Scholar]
- Nobre, P.; de Melo, A.B.C. Variabilidade Climática Intrasazonal Sobre o Nordeste do Brasil em 1998–2000. Rev. Climanálise. 2001. Available online: http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/artigo_variabilidade_dez01.pdf (accessed on 11 December 2017).
- Magalhães, A.R.; Glantz, M.H. Socioeconomic Impacts of Climate Variations and Policy Responses in Brazil, 1st ed.; Record No. FAO: 632810; Esquel Foundation: Brasília, Brazil, 1992. [Google Scholar]
- Marengo, J.A. Vulnerabilidade, Impactos e Adaptação à Mudança do Clima no Semi-Árido do Brasil. Parc. Estrat. 2008, 27, 149–175. [Google Scholar]
- Filho, F.A.S. Natureza e desenvolvimento nos semi-áridos. In Memórias do Fórum Natureza e Sociedade nos Semiáridos, 1st ed.; Filho, F.A.S., Moura, A.D., Eds.; BNB/Funceme: Fortaleza, Brazil, 2006; pp. 41–58. [Google Scholar]
- Medeiros, M.A.; Diniz, A.S. A quebra do sistema produtivo do Semi-árido: O caso do algodão em Cariré (CE). Revista Casas de Geografia de Sobral 2004, 6. Available online: http://www.uvanet.br/rcgs/index.php/RCGS/article/view/123 (accessed on 11 December 2017).
- Bursztyn, M. O País das Alianças: Elites e Continuísmo no Brasil, 1st ed.; Vozes: Petrópolis, Brazil, 1990; p. 139. ISBN 8532603996. Available online: https://www.academia.edu/9157494/O_Pa%C3%ADs_das_Alianças_elites_e_continu%C3%ADsmo_no_Brasil (accessed on 11 December 2017).
- Magalhães, A.R. Alternativas para o semi-árido: Desenvolvimento sustentável. In Memórias do Fórum Natureza e Sociedade nos Semiáridos, 1st ed.; Filho, F.A.S., Moura, A.D., Eds.; BNB/Funceme: Fortaleza, Brazil, 2006; pp. 301–312. [Google Scholar]
- Kenny, M.L. Drought, Clientelism, Fatalism and Fear in Northeast Brazil, Ethics. Place Environ. 2002, 5, 123–134. [Google Scholar] [CrossRef]
- Neves, F.C. Curral dos Bárbaros: Os campos de concentração no Ceará (1915 e 1932). Rev. Bras. Hist. 1995, 15, 93–122. [Google Scholar]
- Duarte, R. Seca, Pobreza e Políticas Públicas no Nordeste do Brasil. In Pobreza, Desigualdad Social y Ciudadanía. Los Límites de las Políticas Sociales en América Latina; CLACSO: Buenos Aires, Argentina, 2001; pp. 425–440. ISBN 9509231576. [Google Scholar]
- Neves, F.C. A ideologia de uma natureza perversa: Seca, trabalho, conflito. In Memórias do Fórum Natureza e Sociedade nos Semiáridos, 1st ed.; Filho, F.A.S., Moura, A.D., Eds.; BNB/Funceme: Fortaleza, Brazil, 2006; pp. 135–145. [Google Scholar]
- Campos, J.N. Paradigms and Public Policies on Drought in Northeast Brazil: A historical perspective. Environ. Manag. 2015, 55, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.C. A Intervenção do Estado e a Seca no Nordeste do Brasil. Rev. Econ. Política 1986, 6, 125–130. [Google Scholar]
- Rocha, J.D. Estratégias Territoriais de Desenvolvimento e Sustentabilidade No Semi-Árido Brasileiro. Ph.D. Dissertation, University of Brasília, Brasília, Brazil, March 2008. [Google Scholar]
- Bursztyn, M. O Poder dos Donos: Planejamento e Clientelismo no Nordeste, 3rd ed.; Garamond/BNB: Rio de Janeiro, Brazil, 2008; p. 272. ISBN 978-85-7791-025-0. [Google Scholar]
- Gomes, G.M. A agricultura no semi-árido: Sequeiro e irrigação. In Memórias do Fórum Natureza e Sociedade nos Semiáridos, 1st ed.; Filho, F.A.S., Moura, A.D., Eds.; BNB/Funceme: Fortaleza, Brazil, 2006; pp. 268–285. [Google Scholar]
- Sampaio, J.L.F. A história da ocupação e o processo de urbanização no semi-árido brasileiro. In Memórias do Fórum Natureza e Sociedade nos Semiáridos, 1st ed.; Filho, F.A.S., Moura, A.D., Eds.; BNB/Funceme: Fortaleza, Brazil, 2006; pp. 147–155. [Google Scholar]
- Cavalcanti, C. Natureza econômica de uma catástrofe natural: Características e impacto da seca nordestina de 1979–80. Brazilian J. Political Econ. 1986, 6, 82–97. [Google Scholar]
- Diniz, P.C.; Piraux, M. Das Intervenções de Combate à Seca às Ações de Convivência com o Semiárido: Trajetória de ‘Experimentalismo Institucional’ no Semiárido Brasileiro. Cadernos Estudos Sociais 2011, 26, 227–238. [Google Scholar]
- Mesquita, P.; Bursztyn, M. Integration of social protection and climate change adaptation in Brazil. Br. Food J. 2016, 118, 3030–3043. [Google Scholar] [CrossRef]
- Lemos, M.C.; Lo, Y.J.; Nelson, D.R.; Eakin, H.; Bedran-Martins, A.M. Linking development to climate adaptation: Leveraging generic and specific capacities to reduce vulnerability to drought in NE Brazil. Glob. Environ. Chang. 2016, 39, 170–179. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente. Águas Subterrâneas: Um Recurso a Ser Conhecido e Protegido; Ministério do Meio Ambiente: Brasília, Brazil, 2007.
- Brito, L.T.L.; Cavalcanti, N.B.; Anjos, J.B.; Silva, A.S.; Pereira, L.A. Soil and water losses in situ water harvesting systems in Brazilian Semi-Arid. Engeny Agríc. Jaboticabal 2008, 20, 507–515. [Google Scholar] [CrossRef]
- Santana, M.O. Atlas das Áreas Suscetíveis à Desertificação no Brasil. Ministério do Meio Ambiente: Brasília, Brazil, 2007. [Google Scholar]
- Zeeuw, H.; Wilbers, J. PRA Tools for Studying Urban Agriculture and Gender; Resources Center on Urban Agriculture and Forestry (RUAF): Leusden, The Netherlands, 2014. [Google Scholar]
- Dias, T.F.; Valença, D.A.; Araújo, I.T.; Gomes, R.C.A.; Maia, R.M., Jr. Water Resources Management Coexistence and Conflict in Semiarid Brazil. Desenvolv. Quest. 2016, 14, 91–136. [Google Scholar] [CrossRef]
- Santos, A.P.; Cunha, A.R.B.; Denis, A.A.C.; Perez-Marin, A.M. Vivencias e Praticas Para Coabitação no Semiárido Brasileiro: Ensaios e Reflexões; Instituto Nacional do Semiárido (INSA): Campina Grande, Brazil, 2016.
- Silva, M.S.L.; Mendonça, C.E.S.; Anjos, J.B.; Honório, A.P.M.; Silva, A.S.; Brito, L.T.L. Barragem subterrânea: Água para produção de alimentos. In Potencialidades da Água da Chuva no Semi-Árido Brasileiro, 1st ed.; Brito, L.T.L., Moura, M.S.B., Gama, G.F.B., Eds.; EMBRAPA: Petrolina, Brazil, 2007; pp. 121–137. ISBN 978-85-7405-009-6. [Google Scholar]
- Silva, A.S.; Moura, M.S.B.; Brito, L.T.L. Irrigação de salvação em culturas de subsistência. In Potencialidades da Água da Chuva no Semi-Árido Brasileiro, 1st ed.; Brito, L.T.L., Moura, M.S.B., Gama, G.F.B., Eds.; EMBRAPA: Petrolina, Brazil, 2007; pp. 159–179. ISBN 978-85-7405-009-6. [Google Scholar]
- Li, X.Y.; Gong, J.D. Effects of different ridge: Furrow ratios and supplement irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agric. Water Manag. 2002, 54, 243–254. [Google Scholar] [CrossRef]
- Baig, M.B.; Sahid, S.A.; Straquadine, G.S. Making rain-fed agriculture sustainable through environmental friendly technologies in Pakistan: A review. Int. Soil Water Conserv. Res. 2013, 1, 36–52. [Google Scholar] [CrossRef]
- Gosh, B.N.; Dogra, P.; Sharma, N.K.; Bhattacharyya, R.; Mishra, P.K. Conservation agriculture impact for soil conservation in maize-wheat cropping system in the Indian sub-Himalayas. Int. Soil Water Conserv. Res. 2015, 3, 112–118. [Google Scholar] [CrossRef]
- Rocha, J.E.S. Palma Forrageira No Nordeste do Brasil: Estado da Arte, 1st ed.; Embrapa Caprinos e Ovinos: Sobral, Brazil, 2012. [Google Scholar]
- Programa Cisternas Democratiza Acesso à Água no Semiárido, Ministério do Desenvolvimento Social. Available online: http://www.brasil.gov.br/cidadania-e-justica/2016/05/programa-cisternas-democratiza-acesso-a-agua-no-semiarido (accessed on 12 December 2017).
- Nelson, D.R.; Finan, T.J. Praying for Drought: Persistent Vulnerability and the Politics of Patronage in Ceará, Northeast Brazil. Am. Anthropol. 2009, 111, 302–316. [Google Scholar] [CrossRef]
- Eiró, F.; Lindoso, D. Climate change, risk perception and inaction in the Brazilian semiarid region: How smallholder farmers perceive climate variability in the Sertão do São Francisco. Rev. Econ. NE 2014, 45, 137–150. [Google Scholar]
- Palmier, L.R.; Nóbrega, R.L.B. Challenges for up-grating rain-fed agriculture using water harvesting techniques in the Brazilian semi-arid region. In Proceedings of the International Arid and Semi-Arid Development through Water Augmentation, Valparaíso, Chile, 13–16 December 2010; Verbist, K., Gabriels, D., Eds.; IHP-Unesco: Montevideo, Uruguay, 2011. [Google Scholar]
- Kahinda, J.M.; Taigbenu; Boroto, J.R. Domestic Rainwater harvesting to improve water supply in rural South Africa. Phys. Chem. Earth 2007, 32, 1050–1057. [Google Scholar] [CrossRef]
- Brito, L.T.L.; Porto, E.R.; Silva, A.S.; Cavalcanti, N.B. Cisterna Rural: Água para consumo animal. In Potencialidades da Água da Chuva No Semi-Árido Brasileiro, 1st ed.; Brito, L.T.L., Moura, M.S.B., Gama, G.F.B., Eds.; EMBRAPA: Petrolina, Brazil, 2007; pp. 105–116. ISBN 978-85-7405-009-6. [Google Scholar]
- Alves, J.N.; Araújo, G.G.L.; Porto, E.R.; Castro, M.C.; Souza, L.C. Feno de Erva-Sal (Atriplex nummularia) e Palma-Forrageira (Opuntia ficus Mill.) em dietas pata caprinos e ovinos. Rev. Cient. Prod. Anim. 2007, 9, 43–52. [Google Scholar]
- Pachpute, J.S.; Tumbo, S.D.; Mul, M.L. Sustainability of Rainwater Harvesting Systems in Rural Catchment of Sub-Saharan Africa. Water Resour. Manag. 2009, 23, 2815–2839. [Google Scholar] [CrossRef]
- Fox, P.; Rockstrom, J. Water-harvesting for supplementary irrigation of cereal crops to overcome intra-seasonal dry-spells in the Sahel. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 289–296. [Google Scholar] [CrossRef]
- Kahinda, J.M.M.; Rockstrom, J.; Taigbenu, A.E.; Dimes, J. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2007, 32, 1068–1073. [Google Scholar] [CrossRef]
- Below, T.; Artner, A.; Siebert, R.; Seiber, S. Micro-Level Practices to Adapt to Climate Change for African Small-scale Farmers; IFPRI Discussion Paper 00953; IFPRI: Washington, DC, USA, 2010; Available online: https://www.preventionweb.net/files/12863_IFPRIfeb2010.pdf (accessed on 16 January 2018).
- Sustainable Development Goals. In 17 Goals to Transform Our World; United Nations: New York, NY, USA, 2015; Available online: http://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 12 December 2017).
- Luna, C.F.; Brito, A.M.; Costa, A.M.; Lapa, T.M.; Flint, J.A.; Marcynuk, P. Impacto do uso da água de cisternas na ocorrência de episódios diarreicos na população agreste central de Pernambuco, Brasil. Ver. Bras. Saude Mater. Infant. 2011, 11. [Google Scholar] [CrossRef]
Technology to Cope with Water Scarcity | Frequency (%) | Strategy Description | ||
---|---|---|---|---|
Bahia (n = 250) | Ceará (n = 249) | |||
Ex-situ RWH | Slab Cistern (DRWH) | 68 | 29 | The houses’ roofs are adjusted to capture rainwater. The water is transported by gutters, and stored in cisterns with a capacity of 16,000 L, adjacent to houses (Figure S1). The slab cistern aims to provide potable water to meet the basic human water needs (drinking and cooking) of a family up to six people during the dry season, which may last 6–8 months [40]. The water quality would be guaranteed by the proper management of the harvesting—storage system, as well as by the addition of chlorine tablets or equivalents. |
Production Cistern (DRWH) | 7 | 0 | It consists of a 52,000 L concrete tank, covered on top, partially underground, and connected to a concrete patio (210 m2) to harvest rainwater. The patio is frequently used to dry the crops. The production cistern’s water is used to keep small gardens and productive backyards for family consumption, and exceptionally, for quenching the thirst of domestic animals. Eventually, the surplus is marketed. | |
Stone tank (IRWH) | 5.6 | 0 | The technology increases the natural capacity of rocky cracks and holes to harvest rainwater run-off by building walls in the lower part or around the reservoirs. | |
Underground dam (IRWH) | 0.5 | 0 | It consists of building impermeable, subsurface vertical septa at specific points into the river bed. The blockage raises the water table level, increasing the volume of retained water upstream, resulting in the concentration of micronutrients and creating a humid and fertile area for subsistence crops and orchards [41]. Experiments in the SAB show that the cultivated area can reach 1 ha and sustain a diversity of crops, such as maize, beans, cassava, squash, fruit trees, forage crops, etc. [42]. | |
Trench dam (IRWH) | 0 | 0 | Trench dams are long and narrow reservoirs excavated into the soil. The bottom and the walls are covered by a tarpaulin, the storage capacity is up to 150,000 L, and its shape and coverage substantially reduce evapotranspiration losses. | |
Dam for Supplemental irrigation (IRWH) | 0 | 0 | It is based on two interconnected rainwater storage tanks. To reduce evaporative losses, the second tank is only filled after the first tank is completely full. Both tanks are built in a small drainage basin, in high ground next to the agricultural systems, in order to eliminate the cost of water transport. The storage capacity reaches 8 million liters, sufficient for supplemental irrigation of up to 4 ha [43]. Supplemental irrigation provides just enough water to increase rain-fed crops productivity during the dry season or long dry periods between episodes of rain during the rainy season [44]. Instead of optimizing productivity, the goal is to achieve “good enough productivity” for domestic consumption, along with some surplus for selling. | |
In-situ RWH | Soil Conservation Strategies | 0 | 0 | Comprises different methods like creating physical barriers in the agricultural plot combining plowing practices in building channels and ridges between crop lines, prolonging water retention in the root zone [37,45]. The HCSA approach also encourages post-harvest agricultural waste disposal on the soil, reducing evapotranspiration losses, erosion, and soil compaction. The productivity increases and the extension time of moisture levels may be key for crop resistance to long dry periods in between rainy periods [44,45,46]. |
Other | Drilled wells | 0 | 48.6 | Community wells drilled—usually through public policies-to access confined aquifer’s water. |
Prickly pear cactus (Opuntia sp.) | 75 | 1.2 | Very well adapted to the SAB’s dry climate, the cactus stores a high amount of water in its tissues [47]. The supply of Opuntia sp. in animal feed reduces the daily herds’ water demand, acting indirectly as a water source for livestock. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindoso, D.P.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S.; Nasuti, S. Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals. Sustainability 2018, 10, 622. https://doi.org/10.3390/su10030622
Lindoso DP, Eiró F, Bursztyn M, Rodrigues-Filho S, Nasuti S. Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals. Sustainability. 2018; 10(3):622. https://doi.org/10.3390/su10030622
Chicago/Turabian StyleLindoso, Diego Pereira, Flávio Eiró, Marcel Bursztyn, Saulo Rodrigues-Filho, and Stephanie Nasuti. 2018. "Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals" Sustainability 10, no. 3: 622. https://doi.org/10.3390/su10030622
APA StyleLindoso, D. P., Eiró, F., Bursztyn, M., Rodrigues-Filho, S., & Nasuti, S. (2018). Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals. Sustainability, 10(3), 622. https://doi.org/10.3390/su10030622