Urban Wasteful Transport and Its Estimation Methods
Abstract
:1. Introduction
2. Definition and Connotation of Wasteful Transport
2.1. Resource Science Theory
2.2. Resource Composition of Urban Transport System
2.3. Analysis of the Scarcity of Urban Transport Resources
2.4. Definition of Urban Wasteful Transport
2.5. Connotation of Wasteful Urban Transport
3. Theoretical Framework and Methodology
3.1. Theoretical Framework
3.2. Methodology
3.2.1. Quantitative Discrimination between Wasteful and Normal Transport
3.2.2. Methods of Estimating Waste
4. Empirical Research
4.1. Data Resources
4.2. Calculating the Road Section Optimal Flow
5. Results
5.1. Identification of Wasteful Transport
5.2. Occurrence Probability of Wasteful Transport
5.3. Estimation of Wasteful Transport Volume
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bando, M.; Hasebe, K.; Nakayama, A.; Shibata, A.; Sugiyama, Y. Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 1995, 51, 1035–1042. [Google Scholar] [CrossRef]
- Hennessy, D.A.; Wiesenthal, D.L. Traffic congestion, driver stress, and driver aggression. Aggress. Behav. Off. J. Int. Soc. Res. Aggress. 1999, 25, 409–423. [Google Scholar] [CrossRef]
- The Texas Transportation Institute of United States. Cruising for Parking. Available online: http://shoup.bol.ucla.edu/CruisingForParkingAccess.pdf (accessed on 27 August 2018).
- Spears, J.; Kalinowski, T. Toronto Commuting Times Worst of 19 Major Cities, Study Says. Available online: https://www.thestar.com/yourtoronto/yourcitymycity/2010/03/30/toronto_commuting_titim_worst_of_19_major_cities_study_says.html (accessed on 20 October 2018).
- Sun, J.; Liu, Q.; Peng, Z. Research and analysis on causality and spatial-temporal evolution of urban traffic congestions—A case study on Shenzhen of China. J. Transp. Syst. Eng. Inf. Technol. 2011, 11, 86–93. [Google Scholar] [CrossRef]
- Sun, C.; Luo, Y.; Li, J. Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China. J. Clean. Prod. 2018, 172, 488–496. [Google Scholar] [CrossRef]
- Migdalas, A. Bilevel programming in traffic planning: Models, methods and challenge. J. Glob. Optim. 1995, 7, 381–405. [Google Scholar] [CrossRef]
- Marchand, B. Pedestrian traffic planning and the perception of the urban environment: A French example. Environ. Plan. A 1974, 6, 491–507. [Google Scholar] [CrossRef]
- Black, J. Urban Transport Planning: Theory and Practice; Routledge: London, UK, 2018. [Google Scholar]
- Daganzo, C.F.; Geroliminis, N. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transp. Res. Part B Methodol. 2008, 42, 771–781. [Google Scholar] [CrossRef]
- Janson, B.N. Dynamic traffic assignment for urban road networks. Transp. Res. Part B Methodol. 1991, 25, 143–161. [Google Scholar] [CrossRef]
- Arabi, M.; Porkar Rezaeie, P.; Ahmadzadegan, M. Evaluation of the performance of intelligent vehicles and their role in controlling and reducing urban traffic in North Khorasan Province. Int. J. Inf. Secur. Syst. Manag. 2018, 7, 797–800. [Google Scholar]
- Feng, S.; Shen, X.; Hu, B. Optimization of traffic demand management policy in China: Towards a sustainable mode split. Transp. Plan. Technol. 2018, 41, 198–210. [Google Scholar] [CrossRef]
- Fernández-Isabel, A.; Fuentes-Fernández, R. Analysis of intelligent transportation systems using model-driven simulations. Sensors 2015, 15, 14116–14141. [Google Scholar] [CrossRef]
- Ramadhan, H.; Nugraha, I.G.B.B. Web-based macroscopic road traffic simulator. In Proceedings of the 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), Lombok, Indonesia, 26–27 October 2017; pp. 1–6. [Google Scholar]
- Pyatkova, K.; Chen, A.S.; Djordjević, S.; Butler, D.; Vojinović, Z.; Abebe, Y.A.; Hammond, M. Flood Impacts on Road Transportation Using Microscopic Traffic Modelling Techniques. In Simulating Urban Traffic Scenarios; Springer: Cham, Switzerland, 2019; pp. 115–126. [Google Scholar]
- Daganzo, C.F. Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B Methodol. 1995, 29, 277–286. [Google Scholar] [CrossRef]
- Biham, O.; Middleton, A.A.; Levine, D. Self-organization and a dynamic transition in traffic-flow modles. Phys. Rev. A 1992, 46, 6124–6127. [Google Scholar] [CrossRef]
- Kerner, B.S.; Konhauser, P. Structure and parameters of clusters in traffic flow. Phys. Rev. E 1994, 50, 54–83. [Google Scholar] [CrossRef]
- Naito, Y.; Nagatani, T. Effect of headway and velocity on safety-collision transition induced by lane changing in traffic flow. Phys. A Stat. Mech. Appl. 2012, 391, 1626–1635. [Google Scholar] [CrossRef]
- Golob, T.F.; Recker, W.W.; Alvarez, V.M. Freeway safety as a function of traffic flow. Accid. Anal. Prev. 2004, 36, 933–946. [Google Scholar] [CrossRef]
- Berhanu, G. Models relating traffic safety with road environment and traffic flows on arterial roads in Addis Ababa. Accid. Anal. Prev. 2004, 36, 697–704. [Google Scholar] [CrossRef]
- Maze, T.H.; Agarwal, M.; Burchett, G. Whether weather matters to traffic demand, traffic safety, and traffic operations and flow. Transp. Res. Rec. 2006, 1948, 170–176. [Google Scholar] [CrossRef]
- Kerner, B.S. Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 1998, 81, 3797–3800. [Google Scholar] [CrossRef]
- Kelly, F.P.; Maulloo, A.K.; Tan, D.K.H. Rate control for communication networks: Shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 1998, 49, 237–252. [Google Scholar] [CrossRef]
- Bai, L.; Liu, P.; Chan, C.Y.; Li, Z.B. Estimating level of service of mid-block bicycle lanes considering mixed traffic flow. Transp. Res. Part A Policy Pract. 2017, 101, 203–217. [Google Scholar] [CrossRef]
- Xu, C.C.; Liu, P.; Wang, W.; Li, Z.B. Identification of freeway crash-prone traffic conditions for traffic flow at different levels of service. Transp. Res. Part A Policy Pract. 2014, 69, 58–70. [Google Scholar] [CrossRef]
- Holme, P. Congestion and centrality in traffic flow on complex networks. Adv. Complex Syst. 2003, 6, 163–176. [Google Scholar] [CrossRef]
- Kunz, F. Improving congestion management: How to facilitate the integration of renewable generation in Germany. Energy J. 2013, 34, 55–78. [Google Scholar] [CrossRef]
- Talukdar, B.K.; Sinha, A.K.; Mukhopadhyay, S.; Bose, A. A computationally simple method for cost-efficient generation rescheduling and load shedding for congestion management. Int. J. Electr. Power Energy Syst. 2005, 27, 379–388. [Google Scholar] [CrossRef]
- Long, J.C.; Gao, Z.Y.; Ren, H.L.; Lian, A.P. Urban traffic congestion propagation and bottleneck identification. Sci. China Ser. F Inf. Sci. 2008, 51, 948–964. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.H.; Wang, J.; Deng, W.W. Modeling and simulating traffic congestion propagation in connected vehicles driven by temporal and spatial preference. Wirel. Netw. 2016, 22, 1121–1131. [Google Scholar] [CrossRef]
- Saeedmanesh, M.; Geroliminis, N. Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks. Transp. Res. Part B Methodol. 2017, 105, 193–211. [Google Scholar] [CrossRef]
- Zeng, Y.Y.; Xiang, K.; Li, D.S.; Vasilakos, A.V. Directional routing and scheduling for green vehicular delay tolerant networks. Wirel. Netw. 2013, 19, 161–173. [Google Scholar] [CrossRef]
- Williams, K. Spatial planning, urban form and sustainable transport: An introduction. In Spatial Planning, Urban Form and Sustainable Transport; Routledge: London, UK, 2017; pp. 15–28. [Google Scholar]
- Guerrero-Ibanez, J.A.; Zeadally, S.; Contreras-Castillo, J. Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE Wirel. Commun. 2015, 22, 122–128. [Google Scholar] [CrossRef]
- Baird, L.; Meshoulam, I. Managing two fits of strategic human resource management. Acad. Manag. Rev. 1988, 13, 116–128. [Google Scholar] [CrossRef]
- Lepak, D.P.; Snell, S.A. The human resource architecture: Toward a theory of human capital allocation and development. Acad. Manag. Rev. 1999, 24, 31–48. [Google Scholar] [CrossRef]
- Sperling, J.B.; Ramaswami, A. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management. Environ. Prog. Sustain. Energy 2018, 37, 91–107. [Google Scholar] [CrossRef]
- Zhang, Y. The rethinking of the competitive strategy based on the Cannikin Law. J. Ningbo Inst. Educ. 2011, 13, 97–98, 123. [Google Scholar]
- Daganzo, C.F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. Part B Methodol. 1994, 28, 269–287. [Google Scholar] [CrossRef]
- Hunt, J.D.; Kriger, D.S.; Miller, E.J. Current operational urban land-use–transport modelling frameworks: A review. Transp. Rev. 2005, 25, 329–376. [Google Scholar] [CrossRef]
- Wilkinson, R.I. Theories for toll traffic engineering in the USA. Bell Syst. Tech. J. 1956, 35, 421–514. [Google Scholar] [CrossRef]
- Schönhof, M.; Helbing, D. Empirical features of congested traffic states and their implications for traffic modeling. Transp. Sci. 2007, 41, 135–166. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Khan, A.B.; Choudhary, S. A rational strategy for resource allocation for rural road maintenance. Transp. Res. Procedia 2017, 25, 2195–2207. [Google Scholar]
- Moradijoz, M.; Moghaddam, M.P.; Haghifam, M.R.; Alishahi, E. A multi-objective optimization problem for allocating parking lots in a distribution network. Int. J. Electr. Power Energy Syst. 2013, 46, 115–122. [Google Scholar] [CrossRef]
- Halsey, W.D. MacMillan Contemporary Dictionary; MacMillan Publishing: London, UK, 1979; p. 1106. [Google Scholar]
- Thapa, R.B.; Murayama, Y. Land evaluation for peri-urban agriculture using analytical hierarchical process and geographic information system techniques: A case study of Hanoi. Land Use Policy 2008, 25, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Yun, D.G. The road traffic sign recognition and automatic positioning for road facility management. Int. J. Highw. Eng. 2013, 15, 155–161. [Google Scholar] [CrossRef]
- Amin, A. Extraordinarily ordinary: Working in the social economy. Soc. Enterp. J. 2009, 5, 30–49. [Google Scholar] [CrossRef]
- Hart, S.L. Beyond greening: Strategies for a sustainable world. Harvard Bus. Rev. 1997, 75, 66–77. [Google Scholar]
- Yang, H.; Bell, M.G.H. Traffic restraint, road pricing and network equilibrium. Transp. Res. Part B Methodol. 1997, 31, 303–314. [Google Scholar] [CrossRef]
- Ranney, T.A. Psychological factors that influence car-following and car-following model development. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 213–219. [Google Scholar] [CrossRef]
- Brackstone, M.; McDonald, M. Car-following: A historical review. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 181–196. [Google Scholar] [CrossRef]
- Gipps, P.G. A behavioural car-following model for computer simulation. Transp. Res. Part B Methodol. 1981, 15, 105–111. [Google Scholar] [CrossRef]
- Lenz, H.; Wagner, C.K.; Sollacher, R. Multi-anticipative car-following model. Eur. Phys. J. B Condens. Matter Complex Syst. 1999, 7, 331–335. [Google Scholar] [CrossRef]
- Ding, C.R. The Impact of Urban Spatial Structure and Land Use Pattern on Urban Transportation. Urban Transp. China 2010, 8, 28–35. [Google Scholar]
- Lamble, D.; Kauranen, T.; Laakso, M.; Summala, H. Cognitive load and detection thresholds in car following situations: Safety implications for using mobile (cellular) telephones while driving. Accid. Anal. Prev. 1999, 31, 617–623. [Google Scholar] [CrossRef]
- Salon, D. Neighborhoods, cars, and commuting in New York City: A discrete choice approach. Transp. Res. Part A Policy Pract. 2009, 43, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Cova, T.J.; Johnson, J.P. A network flow model for lane-based evacuation routing. Transp. Res. Part A Policy Pract. 2003, 37, 579–604. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.E.; Wardrop, R.L. Bayes sequential estimation in a life test and asymptotic properties. Commun. Stat. Theory Methods 1980, 9, 659–672. [Google Scholar] [CrossRef]
- Ji, N.; Zhang, J.; Guo, K. Mathematical model for designing the traffic circle control. Int. J. Innov. Comput. Appl. 2012, 4, 58–66. [Google Scholar] [CrossRef]
- Gazis, D.C.; Herman, R.; Rothery, R.W. Nonlinear follow-the-leader models of traffic flow. Oper. Res. 1961, 9, 545–567. [Google Scholar] [CrossRef]
- Teia, L. Fermat’s Theorem—A geometrical view. J. Math. Res. 2017, 9, 136–142. [Google Scholar] [CrossRef]
- Chernick, J. On Fermat’s simple theorem. Bull. Am. Math. Soc. 1939, 45, 269–274. [Google Scholar] [CrossRef]
ith Car | Time Arriving at Point A | Time Arriving at Point B | Time Interval | ith Car | Time Arriving at Point A | Time Arriving at Point B | Time Interval | ||
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 2:35 | 2:35 | 2.583 | 10 | - | 23:24 | 2:09 | 2.150 |
2 | - | 5:18 | 3:23 | 3.383 | 11 | - | 25:45 | 3:01 | 3.017 |
3 | - | 7:49 | 2:31 | 2.517 | 12 | - | 29:15 | 3:10 | 3.167 |
4 | - | 10:42 | 3:33 | 3.550 | 13 | - | 32:39 | 3:24 | 3.400 |
5 | - | 12:58 | 3:23 | 3.383 | 14 | - | 35:26 | 2:47 | 2.783 |
6 | - | 14:46 | 2:28 | 2.467 | 15 | - | 37:44 | 2:58 | 2.967 |
7 | - | 17:02 | 2:16 | 2.267 | 16 | - | 40:35 | 2:31 | 2.517 |
8 | - | 18:43 | 2:21 | 2.350 | 17 | - | 42:26 | 2:32 | 2.533 |
9 | - | 21:15 | 2:32 | 2.533 |
1 | 37.75 | 42 |
2 | 38.98 | 41 |
3 | 43.51 | 36 |
4 | 34.91 | 42 |
5 | 33.73 | 43 |
6 | 33.36 | 46 |
7 | 34.71 | 49 |
8 | 40.31 | 44 |
9 | 28.33 | 66 |
10 | 31.6 | 55 |
11 | 41.41 | 40 |
12 | 40.85 | 47 |
13 | 41.85 | 44 |
14 | 36.17 | 47 |
15 | 33.36 | 52 |
16 | 35.12 | 47 |
17 | 31.6 | 51 |
18 | 39.25 | 43 |
19 | 28.06 | 59 |
20 | 48.05 | 34 |
21 | 40.57 | 38 |
22 | 33.73 | 43 |
23 | 27.67 | 62 |
24 | 46.92 | 36 |
25 | 22.24 | 75 |
26 | 45.85 | 39 |
27 | 33.17 | 43 |
28 | 19.62 | 83 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
+ | + | + | + | + | + | + | + | − | + | + | + | + | + | |
− | − | − | − | − | − | − | − | + | − | − | − | − | − | |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | |
+ | + | + | + | − | + | + | + | − | + | − | + | + | − | |
− | − | − | − | 0 | − | − | − | + | − | + | − | − | + |
9 | 1706 | 1718 | 12 |
23 | 1716 | 2 | |
25 | 1658 | 60 | |
28 | 1588 | 130 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zhou, B.; Tang, Q.; Li, J.; Shi, D. Urban Wasteful Transport and Its Estimation Methods. Sustainability 2018, 10, 4562. https://doi.org/10.3390/su10124562
Cao X, Zhou B, Tang Q, Li J, Shi D. Urban Wasteful Transport and Its Estimation Methods. Sustainability. 2018; 10(12):4562. https://doi.org/10.3390/su10124562
Chicago/Turabian StyleCao, Xiangyang, Bingzhong Zhou, Qiang Tang, Jiaqi Li, and Donghui Shi. 2018. "Urban Wasteful Transport and Its Estimation Methods" Sustainability 10, no. 12: 4562. https://doi.org/10.3390/su10124562
APA StyleCao, X., Zhou, B., Tang, Q., Li, J., & Shi, D. (2018). Urban Wasteful Transport and Its Estimation Methods. Sustainability, 10(12), 4562. https://doi.org/10.3390/su10124562