Complex Systems, Agroecological Matrices, and Management of Forest Resources: An Example of an Application in Los Tuxtlas, Veracruz, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Methods
3. Results and Discussion
3.1. Social Characteristics
3.2. Deforestation and Land Use
3.3. Soil Erosion
3.4. Water
3.5. Agroecosystems, a Possible Explanatory Model
- Food self-sufficiency.
- Structuring high-quality agroecological matrices.
- The genetic flow between matrices (patches of vegetation).
- Conservation of basic genetic resources for the human communities that depend on them.
- Reduction of global warming and the preservation of biogeochemical cycles.
- Improvement of water quality and collection.
- Proposal of public policies aimed at improving the equity, productive organization and the creation of short market chains that satisfy local or regional needs first.
3.6. Some Land Management Proposals
3.7. Structuring Agroecological Matrices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindenmayer, D.B.; Franklin, F.F. Conserving Forest Biodiversity. A Comprehensive Multiscaled Approach; Island Press: Washington, DC, USA, 2002; pp. 5–9, 95–98. ISBN 1-55963-935-0. [Google Scholar]
- Spedding, C.R.W. An Introduction to Agricultural Systems; Applied Science Publishers Essex: Barking, UK, 1979; pp. 15–40. ISBN 0-85334-823-5. [Google Scholar]
- García, R. Sistemas Complejos. Conceptos, Métodos y Fundamentación Epistemológica de la Investigación Interdisciplinaria; Gedisa: Barcelona, Spain, 2006; pp. 81–95. ISBN 978-84-9784-164-1. [Google Scholar]
- Capra, F. La Trama de la Vida; Anagrama: Barcelona, Spain, 2010; pp. 56–63. ISBN 978-84-339-7343-6. [Google Scholar]
- Vandermeer, J.; Perfecto, I. The Agricultural matrix and future paradigm for conservation. Conserv. Biol. 2007, 21, 274–277. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967; pp. 3–7, 19–32. ISBN 0-691-088365. [Google Scholar]
- Mendenhall, C.; Karp, D.S.; Meyer, C.F.J.; Hadly, E.A.; Daily, G.C. Predicting biodiversity change and averting collapse in agricultural landscape. Nature 2014, 509, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, G. Aproximación Cultural al Concepto de Territorio. 2012. Available online: http://datateca.unad.edu.co/contenidos/401412/Unidad_I/ (accessed on 15 May 2017).
- Perfecto, I.; Vandermeer, J. Coffee Agroecology. A New Approach to Understanding Agricultural Biodiversity, Ecosystem Services and Sustainable Development; Earthscan: Nueva York, NY, USA, 2015; pp. 21, 54–58. ISBN 978-0-415-82680-8. [Google Scholar]
- Bandeira, F.P.; Martorell, C.; Meave, J.A.; Caballero, J. The role of rustic coffee agroecosystems in the conservation of wild tree diversity in the Chinantec region of Mexico. Biodivers. Conserv. 2005, 14, 1225–1240. [Google Scholar] [CrossRef]
- Castillo-Capitan, G.; Ávila-Bello, C.H.; López-Mata, L.; de León-González, F. Structure and tree diversity in traditional popoluca coffee agroecosystems in the Los Tuxtlas Biosphere Reserve, Mexico. Interciencia 2014, 39, 608–619. [Google Scholar]
- Geissert, K.D. La Geomorfología. In Los Tuxtlas. El paisaje de la Sierra; Guevara, S., Lavorde, J., Sánchez-Ríos, G., Eds.; Instituto de Ecología A. C. y Unión Europea: Xalapa, Mexico, 2004; pp. 159–179. ISBN 970-709-043-X. [Google Scholar]
- Ferrusquía, V.I. Geología de México: Una Sinopsis. In Diversidad Biológica de México. Orígenes y Distribución; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; Instituto de Biología. UNAM: Coyoacán, Mexico, 1998; pp. 3–108. ISBN 968-36-6588-8. [Google Scholar]
- Council for Water System of Veracruz (CSVA). Análisis Integral de los Recursos Hidráulicos. Uso Público en Comunidades Urbanas y Rurales Dentro de la Cuenca del Río Coatzacoalcos; Consejo del Sistema Veracruzano del Agua-Gobierno del estado de Veracruz: Veracruz, Mexico, 2003. [Google Scholar]
- National Water Comission (CONAGUA). Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Costera de Coatzacoalcos (3012); CONAGUA: Veracruz, México, 2015; pp. 18–22. [Google Scholar]
- National Water Comission (CONAGUA). Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Soteapan- Hueyapan (3011); CONAGUA: Veracruz, México, 2015; pp. 18–28. [Google Scholar]
- Paré, L.; Robles, C. El manejo de la cuenca como estrategia de sobrevivencia común: Reciprocidad y transparencia para una nueva relación entre ciudades industriales y áreas rurales. Revista Electrónica De La REDLACH 2005, 1, 41–48. [Google Scholar]
- Alatorre, E. Etnomicología de la Sierra de Santa Marta; National Commission for the Study and Conservation of Biodiversity (CONABIO): México, D.F., Mexico, 1996; pp. 19–45. [Google Scholar]
- Soto, M. El Clima. In Los Tuxtlas. El Paisaje de la Sierra; Guevara, S., Laborde, J., Sánchez-Ríos, G., Eds.; Instituto de Ecología A. C. y Unión Europea: Xalapa, Mexico, 2004; pp. 195–198. ISBN 970-709-043-X. [Google Scholar]
- Campos, A.C. El Suelo. In Los Tuxtlas. El Paisaje de la Sierra; Guevara, S., Laborde, J., Sánchez-Ríos, G., Eds.; Instituto de Ecología A. C. y Unión Europea: Xalapa, Mexico, 2004; pp. 181–192. ISBN 970-709-043-X. [Google Scholar]
- Dirzo, R.; Soriano, E.; Vogt, R.C. Historia Natural de Los Tuxtlas. In troducción General; UNAM: México, D.F., Mexico, 1997; pp. 3–23. ISBN 968-36-5646-3. [Google Scholar]
- Ramírez, R.F. Plan Conceptual Para el Manejo y Desarrollo de la Sierra de Santa Marta, Veracruz Como Reserva de la Biosfera; INIREB: Xalapa, Mexico, 1984. [Google Scholar]
- Paré, L.; Velázquez, H.E.; Gutiérrez, M.R.; Ramírez, R.F.; Hernández, D.A.; Lozada, R.M.P.; Perales, H.R.; Blanco, R.J.L. La Reserva Especial de la Biosfera Sierra de Santa Marta, Veracruz: Diagnóstico y Perspectiva; SEMARNAP-UNAM: México, D.F., Mexico, 1997; pp. 17–20. ISBN 968-838-326-9. [Google Scholar]
- Dasgupta, S.; Uwe, D.; Craig, M.; Wheeler, D. Where is the Poverty–Environment Nexus? Evidence from Cambodia, Laos PDR and Vietnam. World Dev. 2005, 33, 617–638. [Google Scholar] [CrossRef]
- National Population Council (CONAPO). Índice de Marginación 2005; CONAPO: México, D.F., Mexico, 2006; pp. 11–15, 33–43. [Google Scholar]
- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1989; pp. 2–11. ISBN 978-0875531618. [Google Scholar]
- NMX-AA-115-SCFI-2001 (Norma Mexicana). Análisis de Agua—Criterios Generales Para el Control de Calidad de Resultados Analíticos; Secretaría de Economía: México, D.F., Mexico, 2001; 90p. [Google Scholar]
- León de, G.F.; Pérez, J.G. El Perfil Cultural del Suelo. Manual Para Estudiar la Estructura de la Capa Arable; Universidad Autónoma Metropolitana Xochimilco: México, D.F., Mexico, 1995; pp. 12–21. ISBN 970-620-704-X. [Google Scholar]
- Colegio de Posgraduados (COLPOS). Manual de Conservación del Suelo y el Agua; Universidad Autónoma de Chapingo-Colegio de Posgraduados: Chapingo, México, 1991; pp. 115–134. ISBN 968-839-127-1. [Google Scholar]
- Loredo-Osti, C.; Beltrán, S.L.; Moreno, F.S.; Casiano, M.D. Predicción de Riesgo a la Erosión Hídrica a Nivel Microcuenca; Folleto Técnico No. 29; INIFAP-CIRNE-Campo Experimental San Luis: San Luis Potosí S.L.P. México, 2009; pp. 8–33. [Google Scholar]
- Colwell, K. Estimates 8.2.0. Statistical Estimation of Species Richness and Shared Species from Samples. 2009. Available online: http://viceroy.eeb.uco-nn.edu/estimates (accessed on 27 August 2018).
- NOM-059-ECOL-2001 (Norma Mexicana). Protección Ambiental-Especies nativas de México de Flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones Para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo; Secretaría de Medio Ambiente y Recursos Naturales: CDMX, México, 2001; 85p. [Google Scholar]
- Marinoni, O. Implementation of the analytical hierarchy process with VBA in ArcGIS. Comput. Geosci. 2004, 30, 637–646. [Google Scholar] [CrossRef]
- Duraiappah, A.K. Poverty and environmental degradation: A Review and Analysis of the Nexus. World Dev. 1998, 26, 2169–2179. [Google Scholar] [CrossRef]
- Durand, L.; Lazos, E. The local perception of tropical deforestation and its relation to conservation policies in Los Tuxtlas Biosphere Reserve, Mexico. Hum. Ecol. 2008, 36, 383–394. [Google Scholar] [CrossRef]
- Léonard, E.; Velázquez, E. El reparto agrario y el fraccionamiento de los territorios comunitarios en el Sotavento veracruzano: Construcción local del Estado e impugnación del proyecto comunal. In El Istmo Mexicano: Una Región Inasequible; Velázquez, E., Léonard, E., Hoffmann, O., Prévót-Schapira, M., Eds.; Estado, Poderes Locales y Dinámicas Espaciales (Siglos XVI-XXI); IRD-CIESAS. Publicaciones de la Casa Chata: México, D.F., México, 2009; pp. 399–449. ISBN 978-607-486-004-7. [Google Scholar]
- Williams, L.G. El bosque de Niebla del Centro de Veracruz: Ecología, Historia y Destino en Tiempos de Cambio Climático; Instituto de Ecología, CONABIO: Xalapa, México, 2007; pp. 17–22. ISBN 970-709-101-0. [Google Scholar]
- Ávila, B.C.H.; Zamora, M.P. Producción de hojarasca y materia orgánica en agroecosistemas cafetaleros marginales de Ocotal Chico, Veracruz, México. Polibotánica 2010, 30, 69–87. [Google Scholar]
- Vázquez, L.D.; Cuevas, D.M.C.; Perera, E.T.J.; Hernández, R.A.H.; Retureta, A.A. Secuestro de carbono en suelo cafetalero con alta pendiente en la Sierra de Santa Marta. Rev. Cient. Biol. Agropecu. Tuxpan 2014, 2, 798–806. [Google Scholar]
- Federation Oficial Journal (DOF). Criterios Ecológicos de Calidad del Agua CE-CCA-001/89 Secretaría de Desarrollo Urbano y Ecología. Diario Oficial de la Federación, 13 December 1989; 7–22. [Google Scholar]
- Ozcoz, J.; Campos, F.; Escala, M.C. Calidad biológica de las aguas del río Larraun (Navarra) (1996–1997). Ecología 2004, 18, 11–20. [Google Scholar]
- Wyer, M.D.; Fleisher, J.M.; Gough, J.; Kay, D.; Merret, H. An investigation into parametric relationships between enterovirus and fecal indicator organisms in the coastal waters of England and Wales. Water Res. 1995, 29, 1863–1868. [Google Scholar] [CrossRef]
- National Water Comission (CONAGUA); Índice de Calidad del Agua (ICA). INEGI-SEMARNAT; Estadísticas del Medio Ambiente en México: CDMX, Mexico, 1997; pp. 137–139. [Google Scholar]
- Surey, J.S.; Fredrickson, H.; Foote, C.; Richmond, M. Post-Katrina fecal contamination in Violet Marsh near New Orleans. Int. J. Environ. Res. Public Health 2007, 4, 84–92. [Google Scholar]
- Franco, D.S. Los Agroecosistemas Cafetaleros de Ocotal Chico, Municipio de Soteapan, Veracruz. Bachelor’s Thesis, Agricultural Systems Engineering, Universidad Veracruzana, Acayucan, Mexico, July 2007. [Google Scholar]
- Pérez-Grovas, G.V. Evaluación de la Sustentabilidad del Sistema de Manejo de Café Orgánico en la Unión de Ejidos Majomut, Región de los Altos de Chiapas. In Sustentabilidad y Sistemas Campesinos. Cinco Experiencias de Evaluación en el México Rural; Masera, O., López-Ridaura, S., Eds.; Ediciones Mundi-Prensa; Instituto de Ecología. GIRA. PUMA: CDMX, México, 2000; pp. 45–81. ISBN 968-7462-24-8. [Google Scholar]
- González, M.F.; Graciano, P.O.; Lozada, R.M.P.; Ramírez, R.; Villegas, T.N.; Tehuitzil, V.L. Ejido Ocotal Chico: Memoria del Taller de Planeación Comunitaria y de Manejo de Recursos Naturales; Unpublished Report; Proyecto Sierra de Santa Marta, A.C. UNDP: Xalapa, Mexico, 2004; pp. 13–82. [Google Scholar]
- Duch, G.J.; Bayona, C.A.; Labra, L.C.; Gama, V.A. Sistema de evaluación de tierras para la determinación del uso potencial agropecuario y forestal en México. Rev. Geogr. Agríc. 1981, 1, 21–46. [Google Scholar]
- INEGI. Diccionario de Datos de Uso Potencial Agrícola, Pecuario y Forestal. 1:250 000 (Vectorial); Instituto Nacional de Estadística Geografía e Informática: Guanajuato, Mexico; pp. 1–36. ISBN 970-13-3428-0. Available online: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjajdu9sN_dAhUWUt4KHWWJDtwQFjABegQICRAC&url=https%3A%2F%2Fchapingo.mx%2Frevistas%2Fphpscript%2Fdownload.php%3Ffile%3Dcompleto%26id%3DMjkyMQ%3D%3D&usg=AOvVaw2YK5YprUzIkxLuDMvoCN42 (accessed on 29 September 2018).
- Wischmeier, W.C.; Smith, D.D. Predicting Rainfall Erosion Losses from Cropland. In Agricultural Handbook; USDA: Washington, DC, USA, 2000; Volume 282, pp. 3–40. [Google Scholar]
- Blanco, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Berlin, Germany, 2010; pp. 82–88. [Google Scholar]
- Cruz, M.V.M. Comparación de Métodos Para la Medición de la Erosión en la Subcuenca de Huazuntlán, Veracruz. Bachelor’s Thesis, Universidad Veracruzana, Veracruz, México, 2010; pp. 54–92. [Google Scholar]
- Ramírez, F.; Hernández, R.A.H.; Ávila, B.C.H.; Retureta, A.A. Clasificación de suelos en el sistema Zoque-Popoluca en Soteapan, Veracruz, México. Sociedades Rurales Producción y Medio Ambiente 2008, 8, 51–76. [Google Scholar]
Scientific Name | Common Name | Risk Category |
---|---|---|
Acosmium panamense | Guayacán | Endangered |
Andira galeottiana | Macayo | Vulnerable |
Annona diversifolia | Anona, ilama | |
Astrocarium mexicanum | Chocho | |
Calophyllum brasiliense | Bari | Endangered |
Cojoba arborea | Frijolillo (black tamarind) | |
Cordia alliodora | Solerillo | |
Dialium guianense | Paque | |
Enterolobium cyclocarpum | Nacaxtle (ear-pod tree) | |
Hymenaea courbaril | Guapinol (rode locus) | |
Inga vera | Chalahuite | |
Luehea speciosa | Tepecacao | |
Manilkara zapota | Chicozapote | |
Nectandra ambigens | Laurel | |
Swietenia macrophylla | Mahogany | Vulnerable |
Tabebuia chrysantha | Primavera (gold tree) | Endangered |
Tabebuia rosea | Roble | |
Terminalia amazonia | Suchil amarillo (bullywood) |
Indicator | Soteapan | Mecayapan | Tatahuicapan | Pajapan |
---|---|---|---|---|
Total population | 32,593 | 17,334 | 14,318 | 15,909 |
Illiteracy ages 15 and higher (%) | 45.5 | 32.0 | 33 | 35 |
Incomplete elementary school (ages 15 and higher) (%) | 65.4 | 56.0 | 55 | 61.3 |
Living in homes without drainage or sanitary service (%) | 32.5 | 36.3 | 24.17 | 17.17 |
Overcrowded homes (%) | 68.1 | 62.0 | 64.6 | 61.6 |
Living in homes with dirt floors (%) | 66.5 | 58.2 | 50.0 | 31.8 |
Population in locations with less than five thousand inhabitants (%) | 100 | 100 | 47.4 | 41.2 |
Population living with up to two minimum wages (%) | 77.3 | 72.5 | 70.3 | 78.3 |
Index of marginalization | 1.65 | 1.21 | 0.75 | 0.85 |
Degree of marginalization | Very high | Very high | High | High |
Place statewide (total: 212) * | 13 | 29 | 54 | 47 |
Place nationwide (total: 2454) * | 141 | 303 | 558 | 494 |
Vegetation/Use of Lands | Surface, ha (1986) | Surface, ha (2000) | Change (%) |
---|---|---|---|
Rainfed agriculture | 19,881 | 19,370 | −3% |
Tropical evergreen forest | 19,478 | 7623 | −61% |
Oak forests | 15,924 | 7770 | −51% |
Deciduous forest | 12,990 | 2416 | −81% |
Tropical rain forest | 5609 | 5882 | 5% |
Induced grasslands | 3149 | 16,093 | 411% |
Cultivated grasslands | 3085 | 21,733 | 604% |
Land Use (Number of Sites *) | Erosion Measured (Erosion Pins) | Erosion Estimated (USLE) | ||||
---|---|---|---|---|---|---|
Mean, cm | Std. dev | Max–Min | Ton ha−1 yr−1 | Ton−1 ha yr−1 | cm | |
Grasslands (9) | 1.02 | 0.59 | 0.30–1.48 | 83.37 | 0.49–41.59 | 0.01–1.39 |
Maize (10) | 0.93 | 0.59 | 0.27–0.99 | 46.43 | 4.16–282.89 | 0.04–3.14 |
Advanced secondary vegetation (3) | 0.79 | 0.26 | 0.49–0.77 | 117.17 | 0.20–19.18 | 0.0–0.23 |
Citrus plantations (1) | 1.13 | 0.59 | 1.13 | 87.40 | 67.50 | 0.65 |
Palm oil (2) | 0.9 | 0.47 | 0.90 | 80.72 | 36.46 | 0.41 |
Traditional coffee agroecosystems (3) | 0.59 | 0.28 | 0.50–0.67 | 108.51 | 40.57–97.18 | 0.67–1.04 |
Location | Proposal-Primary Use | Proposal-Secondary Use | Altitude (masl) | Slope (%) | Restrictions | Current Use/Soil Type |
---|---|---|---|---|---|---|
La Virgen | 1 | 2 | 40 | 3 | Unrestricted | Citrus |
Acrisols | ||||||
El Naranjo | 1 | 2 | 43 | 0 | Unrestricted | Livestock |
Vertisols | ||||||
Cerritos | 2 | 3 | 81 | 4 | Light restrictions | Aquatic vegetation |
Vertisols | ||||||
Comejen | 4 | 5 | 81 | 35 | Light (slope) | Maize |
Leptosoles | ||||||
Ocozotepec | 2 | 5 | 120 | 20 | Light (slope) | Shaded coffee |
Vertisols | ||||||
Ocotal Chico | 5 | 7 | 210 | 22 | Unrestricted/Strong (slope) | Oak |
Andosols | ||||||
Mirador Saltillo | 2 | 6 | 247 | 22 | Light (slope) | Maize |
Phaeozem | ||||||
Yuribia | 6 | 7 | 253 | 32 | Strong (slope, stoniness, pH) | Livestock |
Leptosols | ||||||
San Fernando I | 8 | 9 | 638 | 55 | Strong (slope, stoniness, pH) | Tropical sub-evergreen forest |
Vertisols | ||||||
Plan Agrario | 8 | 10 | 711 | 40 | Strong (slope, stoniness) | Pines |
Acrisols | ||||||
San Fernando II | 11 | 10 | 1204 | 46 | Strong (slope, stoniness) | Tropical rainforest |
Vertisols | ||||||
Santa Marta | 12 | 10 | 1220 | 52 | Strong (slope, stoniness) | Deciduous forest |
Acrisols |
Management | Organic Matter, % | R | K | LS | C | P | A |
---|---|---|---|---|---|---|---|
Conventional tilling (slash and burn), without conservation practices | 0.5% | 682.92 | 0.029 | 12.53 | 0.80 | 1.0 | 198.5 |
Contour lines | 0.5% | 682.92 | 0.029 | 12.53 | 0.80 | 0.9 | 178.7 |
Contour lines; increase crop density; mulch tillage. Increasing organic matter. | 0.5–2.0% | 682.92 | 0.021 | 12.53 | 0.62 | 0.9 | 100.3 |
Contour lines; multiple crops with high density (maize + beans); conservation tillage. | >2.0% | 682.92 | 0.013 | 12.53 | 0.20 | 0.8 | 17.8 |
Type of Coffee Agroecosystem | Shannon-Wiener Index | Simpson Index (Reciprocal) |
---|---|---|
TEF agroecosystem | 1.89–3.64 | 30.3–62.0 |
TRF agroecosystem | 3.44–3.64 | 30.3–31.14 |
DF agroecosystem | 3.65–3.73 | 30.21–30.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Bello, C.H.; Hernández-Romero, Á.H.; Mendoza-Briseño, M.A.; Vázquez-Luna, D. Complex Systems, Agroecological Matrices, and Management of Forest Resources: An Example of an Application in Los Tuxtlas, Veracruz, Mexico. Sustainability 2018, 10, 3496. https://doi.org/10.3390/su10103496
Ávila-Bello CH, Hernández-Romero ÁH, Mendoza-Briseño MA, Vázquez-Luna D. Complex Systems, Agroecological Matrices, and Management of Forest Resources: An Example of an Application in Los Tuxtlas, Veracruz, Mexico. Sustainability. 2018; 10(10):3496. https://doi.org/10.3390/su10103496
Chicago/Turabian StyleÁvila-Bello, Carlos H., Ángel Héctor Hernández-Romero, Martín Alfonso Mendoza-Briseño, and Dinora Vázquez-Luna. 2018. "Complex Systems, Agroecological Matrices, and Management of Forest Resources: An Example of an Application in Los Tuxtlas, Veracruz, Mexico" Sustainability 10, no. 10: 3496. https://doi.org/10.3390/su10103496
APA StyleÁvila-Bello, C. H., Hernández-Romero, Á. H., Mendoza-Briseño, M. A., & Vázquez-Luna, D. (2018). Complex Systems, Agroecological Matrices, and Management of Forest Resources: An Example of an Application in Los Tuxtlas, Veracruz, Mexico. Sustainability, 10(10), 3496. https://doi.org/10.3390/su10103496