Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACOG. Macrosomia: Practice Bulletin, Number 216. Obstet. Gynecol. 2020, 135, e18–e35. [Google Scholar] [CrossRef] [PubMed]
- ACOG. Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef] [PubMed]
- Beta, J.; Khan, N.; Fiolna, M.; Khalil, A.; Ramadan, G.; Akolekar, R. Maternal and neonatal complications of fetal macrosomia: Cohort study. Ultrasound Obstet. Gynecol. 2019, 54, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Beta, J.; Khan, N.; Khalil, A.; Fiolna, M.; Ramadan, G.; Akolekar, R. Maternal and neonatal complications of fetal macrosomia: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 308–318. [Google Scholar] [CrossRef]
- Nascimento, M.I.D.; Pereira, D.F.; Lopata, C.; Oliveira, C.L.F.; Moura, A.A.; Mattos, M.; Silva, L.S.D. Trends in the Prevalence of Live Macrosomic Newborns According to Gestational Age Strata, in Brazil, 2001–2010, and 2012–2014. Rev. Bras. Ginecol. Obstet. 2017, 39, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, A.; Zhang, J.; Dagvadorj, A.; Hirayama, F.; Shibuya, K.; Souza, J.P.; Gülmezoglu, A.M. Macrosomia in 23 developing countries: An analysis of a multicountry, facility-based, cross-sectional survey. Lancet 2013, 381, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Alvarez, F.; Monterrubio-Flores, E.; Omaña-Guzmán, I.; Teros, M.L.; Cordero, S.H.; Muciño-Sandoval, K.; Cantoral, A.; Ancira-Moreno, M. Incidence of macrosomia in Mexico: National and subnational estimations. PLoS ONE 2022, 17, e0276518. [Google Scholar] [CrossRef]
- Lin, S.; Chai, J.; Li, J.; Shang, X.; Pei, L.; Jiang, L.; Zhang, J.; Sun, P.; Dong, W.; Wang, Y.; et al. Incidence of Macrosomia in Rural Areas—Henan Province, China, 2013-2017. China CDC Wkly. 2021, 3, 788–792. [Google Scholar] [CrossRef]
- Okui, T. Analysis of the Incidence of Macrosomia in Japan by Parental Nationalities at 5-year Intervals from 1995 to 2020. J. Prev. Med. Public Health 2023, 56, 348–356. [Google Scholar] [CrossRef]
- Salihu, H.M.; Dongarwar, D.; King, L.M.; Yusuf, K.K.; Ibrahimi, S.; Salinas-Miranda, A.A. Trends in the incidence of fetal macrosomia and its phenotypes in the United States, 1971-2017. Arch. Gynecol. Obstet. 2020, 301, 415–426. [Google Scholar] [CrossRef]
- Correa, A.; Bardenheier, B.; Elixhauser, A.; Geiss, L.S.; Gregg, E. Trends in prevalence of diabetes among delivery hospitalizations, United States, 1993–2009. Matern. Child Health J. 2015, 19, 635–642. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Black, M.H.; Sacks, D.A.; Xiang, A.H.; Lawrence, J.M. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care 2013, 36, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, H.M.; Mercer, B.M.; Catalano, P.M. The influence of obesity and diabetes on the prevalence of macrosomia. Am. J. Obstet. Gynecol. 2004, 191, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Benhalima, K.; Robyns, K.; Van Crombrugge, P.; Deprez, N.; Seynhave, B.; Devlieger, R.; Verhaeghe, J.; Mathieu, C.; Nobels, F. Differences in pregnancy outcomes and characteristics between insulin- and diet-treated women with gestational diabetes. BMC Pregnancy Childbirth 2015, 15, 271. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, N.G.; Assaf-Balut, C.; Jiménez Varas, I.; Del Valle, L.; Durán, A.; Fuentes, M.; Del Prado, N.; Bordiú, E.; Valerio, J.J.; Herraiz, M.A.; et al. Effectiveness of Following Mediterranean Diet Recommendations in the Real World in the Incidence of Gestational Diabetes Mellitus (GDM) and Adverse Maternal-Foetal Outcomes: A Prospective, Universal, Interventional Study with a Single Group. The St Carlos Study. Nutrients 2019, 11, 1210. [Google Scholar] [CrossRef]
- Koning, S.H.; Hoogenberg, K.; Scheuneman, K.A.; Baas, M.G.; Korteweg, F.J.; Sollie, K.M.; Schering, B.J.; van Loon, A.J.; Wolffenbuttel, B.H.; van den Berg, P.P.; et al. Neonatal and obstetric outcomes in diet- and insulin-treated women with gestational diabetes mellitus: A retrospective study. BMC Endocr. Disord. 2016, 16, 52. [Google Scholar] [CrossRef]
- Simeonova-Krstevska, S.; Bogoev, M.; Bogoeva, K.; Zisovska, E.; Samardziski, I.; Velkoska-Nakova, V.; Livrinova, V.; Todorovska, I.; Sima, A.; Blazevska-Siljanoska, V. Maternal and Neonatal Outcomes in Pregnant Women with Gestational Diabetes Mellitus Treated with Diet, Metformin or Insulin. Open Access Maced. J. Med. Sci. 2018, 6, 803–807. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S254–S266. [Google Scholar] [CrossRef] [PubMed]
- Ogonowski, J.; Miazgowski, T. Intergenerational transmission of macrosomia in women with gestational diabetes and normal glucose tolerance. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 195, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Vally, F.; Presneill, J.; Cade, T. Macrosomia Rates in Women with Diet-Controlled Gestational Diabetes: A Retrospective Study. J. Pregnancy 2017, 2017, 4935397. [Google Scholar] [CrossRef]
- Hua, X.G.; Jiang, W.; Hu, R.; Hu, C.Y.; Huang, K.; Li, F.L.; Zhang, X.J. Large for gestational age and macrosomia in pregnancies without gestational diabetes mellitus. J. Matern. Fetal. Neonatal. Med. 2020, 33, 3549–3558. [Google Scholar] [CrossRef]
- Mission, J.F.; Marshall, N.E.; Caughey, A.B. Obesity in pregnancy: A big problem and getting bigger. Obstet. Gynecol. Surv. 2013, 68, 389–399. [Google Scholar] [CrossRef]
- Song, X.; Shu, J.; Zhang, S.; Chen, L.; Diao, J.; Li, J.; Li, Y.; Wei, J.; Liu, Y.; Sun, M.; et al. Pre-Pregnancy Body Mass Index and Risk of Macrosomia and Large for Gestational Age Births with Gestational Diabetes Mellitus as a Mediator: A Prospective Cohort Study in Central China. Nutrients 2022, 14, 1072. [Google Scholar] [CrossRef] [PubMed]
- Usta, A.; Usta, C.S.; Yildiz, A.; Ozcaglayan, R.; Dalkiran, E.S.; Savkli, A.; Taskiran, M. Frequency of fetal macrosomia and the associated risk factors in pregnancies without gestational diabetes mellitus. Pan. Afr. Med. J. 2017, 26, 62. [Google Scholar] [CrossRef]
- Agudelo-Espitia, V.; Parra-Sosa, B.E.; Restrepo-Mesa, S.L. Factors associated with fetal macrosomia. Rev. Saude Publica 2019, 53, 100. [Google Scholar] [CrossRef] [PubMed]
- Juan, J.; Wei, Y.; Song, G.; Su, R.; Chen, X.; Shan, R.; Yan, J.; Xiao, M.; Li, Y.; Cui, S.; et al. Risk Factors for Macrosomia in Multipara: A Multi-Center Retrospective Study. Children 2022, 9, 935. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, M.; Frey, H.A.; Lynch, C.D.; Klebanoff, M.A.; Thung, S.F.; Costantine, M.M.; Landon, M.B.; Venkatesh, K.K. Association between Diabetes in Pregnancy and Shoulder Dystocia by Infant Birth Weight in an Era of Cesarean Delivery for Suspected Macrosomia. Am. J. Perinatol. 2023, 40, 929–936. [Google Scholar] [CrossRef]
- Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; McIntyre, H.D.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef]
- Shulman, Y.; Shah, B.R.; Berger, H.; Yoon, E.W.; Helpaerin, I.; Mei-Dan, E.; Aviram, A.; Retnakaran, R.; Melamed, N. Prediction of birthweight and risk of macrosomia in pregnancies complicated by diabetes. Am. J. Obstet. Gynecol. MFM 2023, 5, 101042. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, W.Y.; Chang, C.Y.; Cho, C.Y.; Tang, Y.H.; Yeh, C.C.; Yang, Y.H.; Tsao, P.C.; Lee, Y.S. Association between maternal factors and fetal macrosomia in full-term singleton births. J. Chin. Med. Assoc. 2023, 86, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Mou, S.S.; Gillies, C.; Hu, J.; Danielli, M.; Al Wattar, B.H.; Khunti, K.; Tan, B.K. Association between HbA1c Levels and Fetal Macrosomia and Large for Gestational Age Babies in Women with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of 17,711 Women. J. Clin. Med. 2023, 12, 3852. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W., Jr. Care of the infant of the diabetic mother. Curr. Diab. Rep. 2012, 12, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.F.; Penning, S.; Ansley, D.; Porto, M.; Garite, T. The incidence and severity of shoulder dystocia correlates with a sonographic measurement of asymmetry in patients with diabetes. Am. J. Perinatol. 1999, 16, 197–201. [Google Scholar] [CrossRef]
- Catalano, P.M.; Thomas, A.; Huston-Presley, L.; Amini, S.B. Increased fetal adiposity: A very sensitive marker of abnormal in utero development. Am. J. Obstet. Gynecol. 2003, 189, 1698–1704. [Google Scholar] [CrossRef]
- Durnwald, C.; Huston-Presley, L.; Amini, S.; Catalano, P. Evaluation of body composition of large-for-gestational-age infants of women with gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am. J. Obstet. Gynecol. 2004, 191, 804–808. [Google Scholar] [CrossRef]
- Karkia, R.; Giacchino, T.; Shah, S.; Gough, A.; Ramadan, G.; Akolekar, R. Gestational Diabetes Mellitus: Association with Maternal and Neonatal Complications. Medicina 2023, 59, 2096. [Google Scholar] [CrossRef]
- Battarbee, A.N.; Venkatesh, K.K.; Aliaga, S.; Boggess, K.A. The association of pregestational and gestational diabetes with severe neonatal morbidity and mortality. J. Perinatol. 2020, 40, 232–239. [Google Scholar] [CrossRef]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef]
- Combs, C.A.; Kumar, N.R.; Morgan, J.L. Society for Maternal-Fetal Medicine Special Statement: Prophylactic low-dose aspirin for preeclampsia prevention-quality metric and opportunities for quality improvement. Am. J. Obstet. Gynecol. 2023, 229, B2–B9. [Google Scholar] [CrossRef]
Non GDM (n: 1177) | GDM (n: 165) | p-Value | |
---|---|---|---|
Baseline characteristics | |||
Maternal age | 26.78 ± 6.22 | 32.59 ± 6.11 | <0.001 |
Body weight (kg) | 68.52 ± 12.28 | 73.7 ± 13.80 | <0.001 |
Height (cm) | 158.40 ± 6.00 | 157.92 ± 6.30 | 0.338 |
BMI (kg/m2) | 27.30 ± 4.63 | 29.51 ± 4.97 | <0.001 |
Parity | 0.080 | ||
| 469/1177 (39.8%) | 48/165 (29.1%) | |
| 708/1177 (60.2%) | 117/165 (70.9%) | |
Pregnancy outcomes | |||
Gestational age (week) | 38.66 ± 1.47 | 38.37 ± 1.54 | 0.021 |
Birth weight (g) | 3013.47 ± 429.93 | 3045.64 ± 462.33 | 0.373 |
Placental weight (g) | 610 ± 124 | 617 ± 124 | 0.471 |
Estimated blood loss (mL) | 333.97 ± 6.22 | 371.21 ± 162.97 | 0.008 |
Preterm birth | 77/1177 (6.5%) | 15/165 (9.1%) | 0.225 |
Hypertensive disorders | 0.004 | ||
| 10/1177 (0.8%) | 6/165 (3.6%) | |
| 21/1177 (1.8%) | 7/165 (4.2%) | |
Cesarean delivery | 489/1177 (41.5%) | 90/165 (54.5%) | 0.002 |
Low Apgar score at 1 min | 50/1177 (4.2%) | 7/165 (4.2%) | 0.997 |
Low Apgar score at 5 min | 8/1177 (0.7%) | 2/165 (1.2%) | 0.456 |
Infant’s gender | 0.827 | ||
| 617/1177 (52.4%) | 85/165 (51.5%) | |
| 560/1177 (47.6%) | 80/165 (48.5%) | |
Large-for-gestational-age | 84/1177 (7.1%) | 25/165 (15.2%) | <0.001 |
Macrosomia | 40/1177 (3.4%) | 9/165 (5.5%) | 0.187 |
No LGA (n: 1233) | LGA (n: 109) | p-Value | |
---|---|---|---|
Maternal age | 27.33 ± 6.49 | 29.35 ± 6.15 | 0.002 |
Body weight (kg) | 68.27 ± 12.06 | 79.15 ± 14.01 | <0.001 |
Height (cm) | 158.16 ± 5.99 | 160.36 ± 6.19 | <0.001 |
BMI (kg/m2) | 27.29 ± 4.57 | 30.79 ± 5.30 | <0.001 |
Gestational age (week) | 38.59 ± 1.49 | 38.92 ± 1.38 | 0.300 |
Parity | 0.080 | ||
| 486/1233 (39.4%) | 31/109 (28.4%) | |
| 747/1233 (60.6%) | 78/109 (71.6%) | |
Preterm | 87/1233 (7.1%) | 5/109 (4.6%) | 0.328 |
Gestational diabetes | 140/1233 (11.4%) | 25/109 (22.9%) | <0.001 |
Estimated blood loss (mL) | 333.07 ± 164.63 | 400.45 ± 195.02 | 0.010 |
Placental weight | 599 ± 118 | 748 ± 112 | <0.001 |
Infant’s gender | 0.001 | ||
| 629/1233 (51.0%) | 73/109 (67.0%) | |
| 604/1233 (49.0%) | 36/109 (33.0%) | |
Birth weight | 2950.80 ± 380.7 | 3771.06 ± 246.68 | <0.001 |
Coefficeint (beta) | p-Value | Odds Ratio | 95% CI for Odds Ratio | ||
---|---|---|---|---|---|
Lower | Upper | ||||
For large-for-gestational-age | |||||
Maternal age | 0.0178 | 0.323 | 1.02 | 0.98 | 1.05 |
Parity (Multiparity) | 0.2473 | 0.312 | 1.28 | 0.79 | 2.07 |
Body mass index (kg/m2) | 0.1211 | <0.001 | 1.13 | 1.09 | 1.17 |
Gender (Male) | 0.6138 | 0.005 | 1.85 | 1.21 | 2.83 |
Gestational diabetes | 0.4948 | 0.064 | 1.64 | 0.97 | 2.77 |
For pregnancy-induced hypertension | |||||
Maternal age | 0.094 | <0.001 | 1.099 | 1.043 | 1.158 |
Parity (Multiparity) | −1.005 | 0.004 | 0.366 | 0.186 | 0.720 |
Body mass index (kg/m2) | 0.131 | <0.001 | 1.140 | 1.079 | 1.205 |
Infant’s gender (Male) | 0.055 | 0.863 | 1.057 | 0.566 | 1.974 |
Gestational diabetes | 0.531 | 0.150 | 1.700 | 0.825 | 3.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pittyanont, S.; Suriya, N.; Sirilert, S.; Tongsong, T. Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus. Clin. Pract. 2024, 14, 536-545. https://doi.org/10.3390/clinpract14020041
Pittyanont S, Suriya N, Sirilert S, Tongsong T. Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus. Clinics and Practice. 2024; 14(2):536-545. https://doi.org/10.3390/clinpract14020041
Chicago/Turabian StylePittyanont, Sirida, Narongwat Suriya, Sirinart Sirilert, and Theera Tongsong. 2024. "Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus" Clinics and Practice 14, no. 2: 536-545. https://doi.org/10.3390/clinpract14020041
APA StylePittyanont, S., Suriya, N., Sirilert, S., & Tongsong, T. (2024). Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus. Clinics and Practice, 14(2), 536-545. https://doi.org/10.3390/clinpract14020041