Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACOG. Macrosomia: Practice Bulletin, Number 216. Obstet. Gynecol. 2020, 135, e18–e35. [Google Scholar] [CrossRef] [PubMed]
- ACOG. Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef] [PubMed]
- Beta, J.; Khan, N.; Fiolna, M.; Khalil, A.; Ramadan, G.; Akolekar, R. Maternal and neonatal complications of fetal macrosomia: Cohort study. Ultrasound Obstet. Gynecol. 2019, 54, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Beta, J.; Khan, N.; Khalil, A.; Fiolna, M.; Ramadan, G.; Akolekar, R. Maternal and neonatal complications of fetal macrosomia: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 308–318. [Google Scholar] [CrossRef]
- Nascimento, M.I.D.; Pereira, D.F.; Lopata, C.; Oliveira, C.L.F.; Moura, A.A.; Mattos, M.; Silva, L.S.D. Trends in the Prevalence of Live Macrosomic Newborns According to Gestational Age Strata, in Brazil, 2001–2010, and 2012–2014. Rev. Bras. Ginecol. Obstet. 2017, 39, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, A.; Zhang, J.; Dagvadorj, A.; Hirayama, F.; Shibuya, K.; Souza, J.P.; Gülmezoglu, A.M. Macrosomia in 23 developing countries: An analysis of a multicountry, facility-based, cross-sectional survey. Lancet 2013, 381, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Alvarez, F.; Monterrubio-Flores, E.; Omaña-Guzmán, I.; Teros, M.L.; Cordero, S.H.; Muciño-Sandoval, K.; Cantoral, A.; Ancira-Moreno, M. Incidence of macrosomia in Mexico: National and subnational estimations. PLoS ONE 2022, 17, e0276518. [Google Scholar] [CrossRef]
- Lin, S.; Chai, J.; Li, J.; Shang, X.; Pei, L.; Jiang, L.; Zhang, J.; Sun, P.; Dong, W.; Wang, Y.; et al. Incidence of Macrosomia in Rural Areas—Henan Province, China, 2013-2017. China CDC Wkly. 2021, 3, 788–792. [Google Scholar] [CrossRef]
- Okui, T. Analysis of the Incidence of Macrosomia in Japan by Parental Nationalities at 5-year Intervals from 1995 to 2020. J. Prev. Med. Public Health 2023, 56, 348–356. [Google Scholar] [CrossRef]
- Salihu, H.M.; Dongarwar, D.; King, L.M.; Yusuf, K.K.; Ibrahimi, S.; Salinas-Miranda, A.A. Trends in the incidence of fetal macrosomia and its phenotypes in the United States, 1971-2017. Arch. Gynecol. Obstet. 2020, 301, 415–426. [Google Scholar] [CrossRef]
- Correa, A.; Bardenheier, B.; Elixhauser, A.; Geiss, L.S.; Gregg, E. Trends in prevalence of diabetes among delivery hospitalizations, United States, 1993–2009. Matern. Child Health J. 2015, 19, 635–642. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Black, M.H.; Sacks, D.A.; Xiang, A.H.; Lawrence, J.M. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care 2013, 36, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, H.M.; Mercer, B.M.; Catalano, P.M. The influence of obesity and diabetes on the prevalence of macrosomia. Am. J. Obstet. Gynecol. 2004, 191, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Benhalima, K.; Robyns, K.; Van Crombrugge, P.; Deprez, N.; Seynhave, B.; Devlieger, R.; Verhaeghe, J.; Mathieu, C.; Nobels, F. Differences in pregnancy outcomes and characteristics between insulin- and diet-treated women with gestational diabetes. BMC Pregnancy Childbirth 2015, 15, 271. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, N.G.; Assaf-Balut, C.; Jiménez Varas, I.; Del Valle, L.; Durán, A.; Fuentes, M.; Del Prado, N.; Bordiú, E.; Valerio, J.J.; Herraiz, M.A.; et al. Effectiveness of Following Mediterranean Diet Recommendations in the Real World in the Incidence of Gestational Diabetes Mellitus (GDM) and Adverse Maternal-Foetal Outcomes: A Prospective, Universal, Interventional Study with a Single Group. The St Carlos Study. Nutrients 2019, 11, 1210. [Google Scholar] [CrossRef]
- Koning, S.H.; Hoogenberg, K.; Scheuneman, K.A.; Baas, M.G.; Korteweg, F.J.; Sollie, K.M.; Schering, B.J.; van Loon, A.J.; Wolffenbuttel, B.H.; van den Berg, P.P.; et al. Neonatal and obstetric outcomes in diet- and insulin-treated women with gestational diabetes mellitus: A retrospective study. BMC Endocr. Disord. 2016, 16, 52. [Google Scholar] [CrossRef]
- Simeonova-Krstevska, S.; Bogoev, M.; Bogoeva, K.; Zisovska, E.; Samardziski, I.; Velkoska-Nakova, V.; Livrinova, V.; Todorovska, I.; Sima, A.; Blazevska-Siljanoska, V. Maternal and Neonatal Outcomes in Pregnant Women with Gestational Diabetes Mellitus Treated with Diet, Metformin or Insulin. Open Access Maced. J. Med. Sci. 2018, 6, 803–807. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S254–S266. [Google Scholar] [CrossRef] [PubMed]
- Ogonowski, J.; Miazgowski, T. Intergenerational transmission of macrosomia in women with gestational diabetes and normal glucose tolerance. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 195, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Vally, F.; Presneill, J.; Cade, T. Macrosomia Rates in Women with Diet-Controlled Gestational Diabetes: A Retrospective Study. J. Pregnancy 2017, 2017, 4935397. [Google Scholar] [CrossRef]
- Hua, X.G.; Jiang, W.; Hu, R.; Hu, C.Y.; Huang, K.; Li, F.L.; Zhang, X.J. Large for gestational age and macrosomia in pregnancies without gestational diabetes mellitus. J. Matern. Fetal. Neonatal. Med. 2020, 33, 3549–3558. [Google Scholar] [CrossRef]
- Mission, J.F.; Marshall, N.E.; Caughey, A.B. Obesity in pregnancy: A big problem and getting bigger. Obstet. Gynecol. Surv. 2013, 68, 389–399. [Google Scholar] [CrossRef]
- Song, X.; Shu, J.; Zhang, S.; Chen, L.; Diao, J.; Li, J.; Li, Y.; Wei, J.; Liu, Y.; Sun, M.; et al. Pre-Pregnancy Body Mass Index and Risk of Macrosomia and Large for Gestational Age Births with Gestational Diabetes Mellitus as a Mediator: A Prospective Cohort Study in Central China. Nutrients 2022, 14, 1072. [Google Scholar] [CrossRef] [PubMed]
- Usta, A.; Usta, C.S.; Yildiz, A.; Ozcaglayan, R.; Dalkiran, E.S.; Savkli, A.; Taskiran, M. Frequency of fetal macrosomia and the associated risk factors in pregnancies without gestational diabetes mellitus. Pan. Afr. Med. J. 2017, 26, 62. [Google Scholar] [CrossRef]
- Agudelo-Espitia, V.; Parra-Sosa, B.E.; Restrepo-Mesa, S.L. Factors associated with fetal macrosomia. Rev. Saude Publica 2019, 53, 100. [Google Scholar] [CrossRef] [PubMed]
- Juan, J.; Wei, Y.; Song, G.; Su, R.; Chen, X.; Shan, R.; Yan, J.; Xiao, M.; Li, Y.; Cui, S.; et al. Risk Factors for Macrosomia in Multipara: A Multi-Center Retrospective Study. Children 2022, 9, 935. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, M.; Frey, H.A.; Lynch, C.D.; Klebanoff, M.A.; Thung, S.F.; Costantine, M.M.; Landon, M.B.; Venkatesh, K.K. Association between Diabetes in Pregnancy and Shoulder Dystocia by Infant Birth Weight in an Era of Cesarean Delivery for Suspected Macrosomia. Am. J. Perinatol. 2023, 40, 929–936. [Google Scholar] [CrossRef]
- Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; McIntyre, H.D.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef]
- Shulman, Y.; Shah, B.R.; Berger, H.; Yoon, E.W.; Helpaerin, I.; Mei-Dan, E.; Aviram, A.; Retnakaran, R.; Melamed, N. Prediction of birthweight and risk of macrosomia in pregnancies complicated by diabetes. Am. J. Obstet. Gynecol. MFM 2023, 5, 101042. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, W.Y.; Chang, C.Y.; Cho, C.Y.; Tang, Y.H.; Yeh, C.C.; Yang, Y.H.; Tsao, P.C.; Lee, Y.S. Association between maternal factors and fetal macrosomia in full-term singleton births. J. Chin. Med. Assoc. 2023, 86, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Mou, S.S.; Gillies, C.; Hu, J.; Danielli, M.; Al Wattar, B.H.; Khunti, K.; Tan, B.K. Association between HbA1c Levels and Fetal Macrosomia and Large for Gestational Age Babies in Women with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of 17,711 Women. J. Clin. Med. 2023, 12, 3852. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W., Jr. Care of the infant of the diabetic mother. Curr. Diab. Rep. 2012, 12, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.F.; Penning, S.; Ansley, D.; Porto, M.; Garite, T. The incidence and severity of shoulder dystocia correlates with a sonographic measurement of asymmetry in patients with diabetes. Am. J. Perinatol. 1999, 16, 197–201. [Google Scholar] [CrossRef]
- Catalano, P.M.; Thomas, A.; Huston-Presley, L.; Amini, S.B. Increased fetal adiposity: A very sensitive marker of abnormal in utero development. Am. J. Obstet. Gynecol. 2003, 189, 1698–1704. [Google Scholar] [CrossRef]
- Durnwald, C.; Huston-Presley, L.; Amini, S.; Catalano, P. Evaluation of body composition of large-for-gestational-age infants of women with gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am. J. Obstet. Gynecol. 2004, 191, 804–808. [Google Scholar] [CrossRef]
- Karkia, R.; Giacchino, T.; Shah, S.; Gough, A.; Ramadan, G.; Akolekar, R. Gestational Diabetes Mellitus: Association with Maternal and Neonatal Complications. Medicina 2023, 59, 2096. [Google Scholar] [CrossRef]
- Battarbee, A.N.; Venkatesh, K.K.; Aliaga, S.; Boggess, K.A. The association of pregestational and gestational diabetes with severe neonatal morbidity and mortality. J. Perinatol. 2020, 40, 232–239. [Google Scholar] [CrossRef]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef]
- Combs, C.A.; Kumar, N.R.; Morgan, J.L. Society for Maternal-Fetal Medicine Special Statement: Prophylactic low-dose aspirin for preeclampsia prevention-quality metric and opportunities for quality improvement. Am. J. Obstet. Gynecol. 2023, 229, B2–B9. [Google Scholar] [CrossRef]
Non GDM (n: 1177) | GDM (n: 165) | p-Value | |
---|---|---|---|
Baseline characteristics | |||
Maternal age | 26.78 ± 6.22 | 32.59 ± 6.11 | <0.001 |
Body weight (kg) | 68.52 ± 12.28 | 73.7 ± 13.80 | <0.001 |
Height (cm) | 158.40 ± 6.00 | 157.92 ± 6.30 | 0.338 |
BMI (kg/m2) | 27.30 ± 4.63 | 29.51 ± 4.97 | <0.001 |
Parity | 0.080 | ||
| 469/1177 (39.8%) | 48/165 (29.1%) | |
| 708/1177 (60.2%) | 117/165 (70.9%) | |
Pregnancy outcomes | |||
Gestational age (week) | 38.66 ± 1.47 | 38.37 ± 1.54 | 0.021 |
Birth weight (g) | 3013.47 ± 429.93 | 3045.64 ± 462.33 | 0.373 |
Placental weight (g) | 610 ± 124 | 617 ± 124 | 0.471 |
Estimated blood loss (mL) | 333.97 ± 6.22 | 371.21 ± 162.97 | 0.008 |
Preterm birth | 77/1177 (6.5%) | 15/165 (9.1%) | 0.225 |
Hypertensive disorders | 0.004 | ||
| 10/1177 (0.8%) | 6/165 (3.6%) | |
| 21/1177 (1.8%) | 7/165 (4.2%) | |
Cesarean delivery | 489/1177 (41.5%) | 90/165 (54.5%) | 0.002 |
Low Apgar score at 1 min | 50/1177 (4.2%) | 7/165 (4.2%) | 0.997 |
Low Apgar score at 5 min | 8/1177 (0.7%) | 2/165 (1.2%) | 0.456 |
Infant’s gender | 0.827 | ||
| 617/1177 (52.4%) | 85/165 (51.5%) | |
| 560/1177 (47.6%) | 80/165 (48.5%) | |
Large-for-gestational-age | 84/1177 (7.1%) | 25/165 (15.2%) | <0.001 |
Macrosomia | 40/1177 (3.4%) | 9/165 (5.5%) | 0.187 |
No LGA (n: 1233) | LGA (n: 109) | p-Value | |
---|---|---|---|
Maternal age | 27.33 ± 6.49 | 29.35 ± 6.15 | 0.002 |
Body weight (kg) | 68.27 ± 12.06 | 79.15 ± 14.01 | <0.001 |
Height (cm) | 158.16 ± 5.99 | 160.36 ± 6.19 | <0.001 |
BMI (kg/m2) | 27.29 ± 4.57 | 30.79 ± 5.30 | <0.001 |
Gestational age (week) | 38.59 ± 1.49 | 38.92 ± 1.38 | 0.300 |
Parity | 0.080 | ||
| 486/1233 (39.4%) | 31/109 (28.4%) | |
| 747/1233 (60.6%) | 78/109 (71.6%) | |
Preterm | 87/1233 (7.1%) | 5/109 (4.6%) | 0.328 |
Gestational diabetes | 140/1233 (11.4%) | 25/109 (22.9%) | <0.001 |
Estimated blood loss (mL) | 333.07 ± 164.63 | 400.45 ± 195.02 | 0.010 |
Placental weight | 599 ± 118 | 748 ± 112 | <0.001 |
Infant’s gender | 0.001 | ||
| 629/1233 (51.0%) | 73/109 (67.0%) | |
| 604/1233 (49.0%) | 36/109 (33.0%) | |
Birth weight | 2950.80 ± 380.7 | 3771.06 ± 246.68 | <0.001 |
Coefficeint (beta) | p-Value | Odds Ratio | 95% CI for Odds Ratio | ||
---|---|---|---|---|---|
Lower | Upper | ||||
For large-for-gestational-age | |||||
Maternal age | 0.0178 | 0.323 | 1.02 | 0.98 | 1.05 |
Parity (Multiparity) | 0.2473 | 0.312 | 1.28 | 0.79 | 2.07 |
Body mass index (kg/m2) | 0.1211 | <0.001 | 1.13 | 1.09 | 1.17 |
Gender (Male) | 0.6138 | 0.005 | 1.85 | 1.21 | 2.83 |
Gestational diabetes | 0.4948 | 0.064 | 1.64 | 0.97 | 2.77 |
For pregnancy-induced hypertension | |||||
Maternal age | 0.094 | <0.001 | 1.099 | 1.043 | 1.158 |
Parity (Multiparity) | −1.005 | 0.004 | 0.366 | 0.186 | 0.720 |
Body mass index (kg/m2) | 0.131 | <0.001 | 1.140 | 1.079 | 1.205 |
Infant’s gender (Male) | 0.055 | 0.863 | 1.057 | 0.566 | 1.974 |
Gestational diabetes | 0.531 | 0.150 | 1.700 | 0.825 | 3.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pittyanont, S.; Suriya, N.; Sirilert, S.; Tongsong, T. Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus. Clin. Pract. 2024, 14, 536-545. https://doi.org/10.3390/clinpract14020041
Pittyanont S, Suriya N, Sirilert S, Tongsong T. Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus. Clinics and Practice. 2024; 14(2):536-545. https://doi.org/10.3390/clinpract14020041
Chicago/Turabian StylePittyanont, Sirida, Narongwat Suriya, Sirinart Sirilert, and Theera Tongsong. 2024. "Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus" Clinics and Practice 14, no. 2: 536-545. https://doi.org/10.3390/clinpract14020041
APA StylePittyanont, S., Suriya, N., Sirilert, S., & Tongsong, T. (2024). Comparisons of the Rates of Large-for-Gestational-Age Newborns between Women with Diet-Controlled Gestational Diabetes Mellitus and Those with Non-Gestational Diabetes Mellitus. Clinics and Practice, 14(2), 536-545. https://doi.org/10.3390/clinpract14020041