Global Evidence on Monitoring Human Pesticide Exposure
Abstract
1. Introduction
2. Pesticide Levels in Human Samples: Primary Matrices, Methods, and Target Analytes
2.1. Glyphosate-AMPA
2.1.1. Chemical Composition and General Properties
2.1.2. Regulatory Limits in Different Countries and Health Effects in Humans
2.2. Persistent Organic Pollutants (POPs): Dichlorodiphenyltrichloroethane and Hexachlorocyclohexane
2.2.1. Chemical Properties and Associated Health Effects
2.2.2. Regulatory Limits and Restrictions in Different Countries
2.3. Carbamates
2.3.1. Chemical Characteristics and General Properties
2.3.2. Regulatory Residue Limits and Related Health Effects
2.4. Organophosphate Pesticides
2.4.1. Chemical Properties and Health Effects in Humans
2.4.2. Regulatory Limits and Different Countries
3. Discussion
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M. Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California. Chemosphere 2009, 75, 969–978. [Google Scholar] [CrossRef]
- Aprea, C.; Colosio, C.; Mammone, T.; Minoia, C.; Maroni, M. Biological monitoring of pesticide exposure: A review of analytical methods. J. Chromatogr. B 2002, 769, 191–219. [Google Scholar] [CrossRef]
- Sabzevari, S.; Hofman, J. A worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci. Total Environ. 2022, 812, 152344. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Pestic. Use Trade 1990–2021; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Rajan, S.; Parween, M.; Raju, N.J. Pesticides in the hydrogeo-environment: A review of contaminant prevalence, source and mobilisation in India. Environ. Geochem. Health 2023, 45, 5481–5513. [Google Scholar] [CrossRef] [PubMed]
- Kapka-Skrzypczak, L.; Cyranka, M.; Skrzypczak, M.; Kruszewski, M. Biomonitoring and biomarkers of organophosphate pesticides exposure—State of the art. Ann. Agric. Environ. Med. 2011, 18, 294–303. [Google Scholar]
- Rodrigues, M.B.; da Silva, C.A.M.; Chong-Silva, D.C.; Chong-Neto, H.J. Pesticides and human health. J. Pediatr. 2025, 101, S70–S76. [Google Scholar] [CrossRef] [PubMed]
- Baciu, T.; Borrull, F.; Aguilar, C.; Calull, M. Recent trends in analytical methods and separation techniques for drugs of abuse in hair. Anal. Chim. Acta 2015, 856, 1–26. [Google Scholar] [CrossRef]
- LaKind, J.S.; Amina Wilkins, A.; Berlin, C.M. Environmental chemicals in human milk: A review of levels, infant exposures and health, and guidance for future research. Toxicol. Appl. Pharmacol. 2004, 198, 184–208. [Google Scholar] [CrossRef] [PubMed]
- Ostrea, E.M.; Bielawski, D.M.; Posecion, N.C.; Corrion, M.; Villanueva-Uy, E.; Bernardo, R.C.; Jin, Y.; Janisse, J.J.; Ager, J.W. Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides. Environ. Res. 2009, 109, 116–122. [Google Scholar] [CrossRef]
- Sales, C.; Cervera, M.I.; Gil, R.; Portolés, T.; Pitarch, E.; Beltran, J. Quality classification of Spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach. Food Chem. 2017, 216, 365–373. [Google Scholar] [CrossRef]
- Salihovic, S.; Nilsson, H.; Hagberg, J.; Lindström, G. Trends in the analysis of persistent organic pollutants (POPs) in human blood. TrAC Trends Anal. Chem. 2013, 46, 129–138. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef]
- Europe Union. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance) 2006. Available online: https://eur-lex.europa.eu/eli/reg/2006/1881/oj/eng (accessed on 14 September 2025).
- European Commission. EU Pesticides Database—European Commission. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 14 September 2025).
- García-Vara, M.; Postigo, C.; Palma, P.; López de Alda, M. Development of QuEChERS-based multiresidue analytical methods to determine pesticides in corn, grapes and alfalfa. Food Chem. 2023, 405, 134870. [Google Scholar] [CrossRef] [PubMed]
- Valverde, S.; Bernal, J.L.; Martín, M.T.; Nozal, M.J.; Bernal, J. Fast determination of neonicotinoid insecticides in bee pollen using QuEChERS and ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Electrophoresis 2016, 37, 2470–2477. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Patel, K.; Cocker, J.; Bevan, R.; Levy, L. Determination of ethylenethiourea in urine by liquid chromatography–atmospheric pressure chemical ionisation–mass spectrometry for monitoring background levels in the general population. J. Chromatogr. B 2010, 878, 2563–2566. [Google Scholar] [CrossRef]
- Lindh, C.H.; Littorin, M.; Johannesson, G.; Jönsson, B.A.G. Analysis of chlormequat in human urine as a biomarker of exposure using liquid chromatography triple quadrupole mass spectrometry. J. Chromatogr. B 2011, 879, 1551–1556. [Google Scholar] [CrossRef]
- Wang, D.; Atkinson, S.; Hoover-Miller, A.; Shelver, W.L.; Li, Q.X. Simultaneous use of gas chromatography/ion trap mass spectrometry—Electron capture detection to improve the analysis of bromodiphenyl ethers in biological and environmental samples. Rapid Commun. Mass Spectrom. 2008, 22, 647–656. [Google Scholar] [CrossRef]
- Grimalt, J.O.; Howsam, M.; Carrizo, D.; Otero, R.; de Marchi, M.R.R.; Vizcaino, E. Integrated analysis of halogenated organic pollutants in sub-millilitre volumes of venous and umbilical cord blood sera. Anal. Bioanal. Chem. 2010, 396, 2265–2272. [Google Scholar] [CrossRef]
- Barchanska, H.; Danek, M.; Sajdak, M.; Turek, M. Review of Sample Preparation Techniques for the Analysis of Selected Classes of Pesticides in Plant Matrices. Crit. Rev. Anal. Chem. 2018, 48, 467–491. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Lehotay, S.J. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry. Anal. Chim. Acta 2013, 758, 80–92. [Google Scholar] [CrossRef]
- Wang, N.; Kong, D.; Shan, Z.; Shi, L.; Cai, D.; Cao, Y.; Liu, Y.; Pang, G. Simultaneous determination of pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalate esters in human adipose tissue by gas chromatography–tandem mass spectrometry. J. Chromatogr. B 2012, 898, 38–52. [Google Scholar] [CrossRef]
- Tang, H.P. Recent development in analysis of persistent organic pollutants under the Stockholm Convention. TrAC Trends Anal. Chem. 2013, 45, 48–66. [Google Scholar] [CrossRef]
- Feo, M.L.; Eljarrat, E.; Manaca, M.N.; Dobaño, C.; Barcelo, D.; Sunyer, J.; Alonso, P.L.; Menendez, C.; Grimalt, J.O. Pyrethroid use-malaria control and individual applications by households for other pests and home garden use. Environ. Int. 2012, 38, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; García-Lestón, J.; Costa, S.; Coelho, P.; Silva, S.; Pingarilho, M.; Valdiglesias, V.; Mattei, F.; Dall’aRmi, V.; Bonassi, S.; et al. Is organic farming safer to farmers’ health? A comparison between organic and traditional farming. Toxicol. Lett. 2014, 230, 166–176. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Shattuck, A.; Werner, M.; Mempel, F.; Dunivin, Z.; Galt, R. Global pesticide use and trade database (GloPUT): New estimates show pesticide use trends in low-income countries substantially underestimated. Glob. Environ. Chang. 2023, 81, 102693. [Google Scholar] [CrossRef]
- Li, Z.; Jennings, A. Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, A.E. Deleterious Effects of Banned Chemical Pesticides on Human Health in Developing Countries. In Pesticides Updates on Toxicity, Efficacy and Risk Assessment; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Maggi, F.; Tang, F.H.M.; Black, A.J.; Marks, G.B.; McBratney, A. The pesticide health risk index—An application to the world’s countries. Sci. Total Environ. 2021, 801, 149731. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Glyphosate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3496 (accessed on 16 May 2025).
- Bergwerf, H. MolView. Available online: https://molview.org/ (accessed on 2 August 2025).
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Cederlund, H. Effects of spray drift of glyphosate on nontarget terrestrial plants—A critical review. Environ. Toxicol. Chem. 2017, 36, 2879–2886. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Gill, J.P.K.; Datta, S.; Singh, S.; Dhaka, V.; Kapoor, D.; Wani, A.B.; Dhanjal, D.S.; Kumar, M.; et al. Herbicide Glyphosate: Toxicity and Microbial Degradation. Int. J. Environ. Res. Public Health 2020, 17, 7519. [Google Scholar] [CrossRef]
- Zaller, J.G.; Heigl, F.; Ruess, L.; Grabmaier, A. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci. Rep. 2014, 4, 5634. [Google Scholar] [CrossRef]
- Relyea, R.A. The Lethal Impact of Roundup on Aquatic and Terrestrial Amphibians. Ecol. Appl. 2005, 15, 1118–1124. [Google Scholar] [CrossRef]
- de Morais Valentim, J.M.B.; Coradi, C.; Viana, N.P.; Fagundes, T.R.; Micheletti, P.L.; Gaboardi, S.C.; Fadel, B.; Pizzatti, L.; Candiotto, L.Z.P.; Panis, C. Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods 2024, 13, 1697. [Google Scholar] [CrossRef] [PubMed]
- IARC Monograph on Glyphosate. Available online: https://www.iarc.who.int/featured-news/media-centre-iarc-news-glyphosate (accessed on 16 May 2025).
- Panis, C.; Candiotto, L.Z.P.; Gaboardi, S.C.; Teixeira, G.T.; Alves, F.M.; da Silva, J.C.; Scandolara, T.B.; Rech, D.; Gurzenda, S.; Ponmattam, J.; et al. Exposure to Pesticides and Breast Cancer in an Agricultural Region in Brazil. Environ. Sci. Technol. 2024, 58, 10470–10481. [Google Scholar] [CrossRef]
- Peillex, C.; and Pelletier, M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J. Immunotoxicol. 2020, 17, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Meloni, F.; Satta, G.; Padoan, M.; Montagna, A.; Pilia, I.; Argiolas, A.; Piro, S.; Magnani, C.; Gambelunghe, A.; Muzi, G.; et al. Occupational exposure to glyphosate and risk of lymphoma:results of an Italian multicenter case-control study. Environ. Health 2021, 20, 49. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Yang, A.-M.; Wang, C.; Lin, C.-Y. Association between glyphosate exposure and cognitive function, depression, and neurological diseases in a representative sample of US adults: NHANES 2013–2014 analysis. Environ. Res. 2023, 237, 116860. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, C.; Serra, L.; El Balkhi, S.; Lefort, G.; Ramé, C.; Froment, P.; Dupont, J. Glyphosate presence in human sperm: First report and positive correlation with oxidative stress in an infertile French population. Ecotoxicol. Environ. Saf. 2024, 278, 116410. [Google Scholar] [CrossRef]
- European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; European Union: Luxembourg, 1998; Volume 330. [Google Scholar]
- US EPA. National Primary Drinking Water Regulations 2015. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 16 May 2025).
- Ministério da Saúde. PORTARIA GM/MS N° 888, DE 4 DE MAIO DE 2021. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2021/prt0888_07_05_2021.html (accessed on 16 May 2025).
- Canada, H. Canadian Drinking Water Guidelines 2004. Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/water-quality/drinking-water/canadian-drinking-water-guidelines.html (accessed on 16 May 2025).
- Australian Drinking Water Guidelines|NHMRC. Available online: https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines (accessed on 16 May 2025).
- Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 16 May 2025).
- Schoeters, G.; Verheyen, V.J.; Colles, A.; Remy, S.; Martin, L.R.; Govarts, E.; Nelen, V.; Hond, E.D.; De Decker, A.; Franken, C.; et al. Internal exposure of Flemish teenagers to environmental pollutants: Results of the Flemish Environment and Health Study 2016–2020 (FLEHS IV). Int. J. Hyg. Environ. Health 2022, 242, 113972. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Huang, R.; MacPherson, S.; Brion, O.; Owen, J.; Gaudreau, E.; Bienvenu, J.-F.; Fisher, M.; Borghese, M.M.; Bouchard, M.F.; et al. Urinary concentrations and determinants of glyphosate and glufosinate in pregnant Canadian participants in the MIREC study. Environ. Res. 2023, 217, 114842. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Marro, L.; Owen, J.; Borghese, M.M.; Arbuckle, T.; Bouchard, M.F.; Lanphear, B.; Walker, M.; Foster, W.; Fisher, M. Gestational urinary concentrations of glyphosate and aminomethylphosphonic acid in relation to preterm birth: The MIREC study. J. Expo. Sci. Environ. Epidemiol. 2024, 35, 876–881. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, Y.; Liu, X.; Pan, L.; Ding, E.; Dou, J.; Zhu, B. Concentration Distribution and Analysis of Urinary Glyphosate and Its Metabolites in Occupationally Exposed Workers in Eastern China. Int. J. Environ. Res. Public Health 2020, 17, 2943. [Google Scholar] [CrossRef]
- Makris, K.C.; Efthymiou, N.; Konstantinou, C.; Anastasi, E.; Schoeters, G.; Kolossa-Gehring, M.; Katsonouri, A. Oxidative stress of glyphosate, AMPA and metabolites of pyrethroids and chlorpyrifos pesticides among primary school children in Cyprus. Environ. Res. 2022, 212, 113316. [Google Scholar] [CrossRef]
- Bayebila Menanzambi, T.; Dufour, P.; Pirard, C.; Nsangu, J.; Mufusama, J.-P.; Mbinze Kindenge, J.; Djang’eIng’a, R.M.; Charlier, C. Bio-surveillance of environmental pollutants in the population of Kinshasa, Democratic Republic of Congo (DRC): A small pilot study. Arch. Public Health 2021, 79, 197. [Google Scholar] [CrossRef] [PubMed]
- Tagne-Fotso, R.; Zeghnoun, A.; Saoudi, A.; Balestier, A.; Pecheux, M.; Chaperon, L.; Oleko, A.; Marchand, P.; Le Bizec, B.; Vattier, L.; et al. Exposure of the general French population to herbicides, pyrethroids, organophosphates, organochlorines, and carbamate pesticides in 2014–2016, Results from the Esteban study. Int. J. Hyg. Environ. Health 2023, 254, 114265. [Google Scholar] [CrossRef]
- Conrad, A.; Schröter-Kermani, C.; Hoppe, H.-W.; Rüther, M.; Pieper, S.; Kolossa-Gehring, M. Glyphosate in German adults—Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health 2017, 220, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lemke, N.; Murawski, A.; Schmied-Tobies, M.I.H.; Rucic, E.; Hoppe, H.-W.; Conrad, A.; Kolossa-Gehring, M. Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in Germany—Human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Environ. Int. 2021, 156, 106769. [Google Scholar] [CrossRef]
- Soukup, S.T.; Merz, B.; Bub, A.; Hoffmann, I.; Watzl, B.; Steinberg, P.; Kulling, S.E. Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: Results of the cross-sectional KarMeN study in Germany. Arch. Toxicol. 2020, 94, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.; Leahy, M.; Jones, K.; Kenny, L.; Coggins, M.A. Glyphosate in Irish adults—A pilot study in 2017. Environ. Res. 2018, 165, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Porru, S.; Ferrian, M.; Mastrangelo, G.; Capovilla, D.; Corsini, E.; Fustinoni, S.; Peruzzi, M.; Colosio, C. Short occupational exposure to glyphosate and its biomonitoring via urinary levels of glyphosate and metabolite AMPA (Amino-MethylPhosphonic acid), in Italian vineyard workers. Heliyon 2024, 10, e36407. [Google Scholar] [CrossRef]
- Mueller, W.; Jones, K.; Fuhrimann, S.; Ahmad, Z.N.B.S.; Sams, C.; Harding, A.-H.; Povey, A.; Atuhaire, A.; Basinas, I.; van Tongeren, M.; et al. Factors influencing occupational exposure to pyrethroids and glyphosate: An analysis of urinary biomarkers in Malaysia, Uganda and the United Kingdom. Environ. Res. 2024, 242, 117651. [Google Scholar] [CrossRef]
- Balderrama-Carmona, A.P.; Valenzuela-Rincón, M.; Zamora-Álvarez, L.A.; Adan-Bante, N.P.; Leyva-Soto, L.A.; Silva-Beltrán, N.P.; Morán-Palacio, E.F. Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico. Environ. Sci. Pollut. Res. Int. 2020, 27, 28480–28489. [Google Scholar] [CrossRef]
- Silver, M.K.; Fernandez, J.; Tang, J.; McDade, A.; Sabino, J.; Rosario, Z.; Vega, C.V.; Alshawabkeh, A.; Cordero, J.F.; Meeker, J.D. Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case–Control Study in the PROTECT Cohort (Puerto Rico). Environ. Health Perspect. 2021, 129, 057011. [Google Scholar] [CrossRef]
- Nova, P.; Calheiros, C.S.C.; Silva, M. Glyphosate in Portuguese Adults—A Pilot Study. Environ. Toxicol. Pharmacol. 2020, 80, 103462. [Google Scholar] [CrossRef] [PubMed]
- Stajnko, A.; Snoj Tratnik, J.; Kosjek, T.; Mazej, D.; Jagodic, M.; Eržen, I.; Horvat, M. Seasonal glyphosate and AMPA levels in urine of children and adolescents living in rural regions of Northeastern Slovenia. Environ. Int. 2020, 143, 105985. [Google Scholar] [CrossRef]
- Ruiz, P.; Dualde, P.; Coscollà, C.; Fernández, S.F.; Carbonell, E.; Yusà, V. Biomonitoring of glyphosate and AMPA in the urine of Spanish lactating mothers. Sci. Total Environ. 2021, 801, 149688. [Google Scholar] [CrossRef]
- Wongta, A.; Sawarng, N.; Tongchai, P.; Sutan, K.; Kerdnoi, T.; Prapamontol, T.; Hongsibsong, S. The Pesticide Exposure of People Living in Agricultural Community, Northern Thailand. J. Toxicol. 2018, 2018, 4168034. [Google Scholar] [CrossRef]
- Sidthilaw, S.; Sapbamrer, R.; Pothirat, C.; Wunnapuk, K.; Khacha-ananda, S. Effects of exposure to glyphosate on oxidative stress, inflammation, and lung function in maize farmers, Northern Thailand. BMC Public Health 2022, 22, 1343. [Google Scholar] [CrossRef]
- Chaiklieng, S.; Uengchuen, K.; Gissawong, N.; Srijaranai, S.; Autrup, H. Biological Monitoring of Glyphosate Exposure among Knapsack Sprayers in Khon Kaen, Thailand. Toxics 2024, 12, 337. [Google Scholar] [CrossRef]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Gustin, C.; Baker, B.; Chapman, P.; Bleeke, M. Glyphosate biomonitoring for farmers and their families: Results from the Farm Family Exposure Study. Environ. Health Perspect. 2004, 112, 321–326. [Google Scholar] [CrossRef]
- Parvez, S.; Gerona, R.R.; Proctor, C.; Friesen, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environ. Health 2018, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Gerona, R.R.; Reiter, J.L.; Zakharevich, I.; Proctor, C.; Ying, J.; Mesnage, R.; Antoniou, M.; Winchester, P.D. Glyphosate exposure in early pregnancy and reduced fetal growth: A prospective observational study of high-risk pregnancies. Environ. Health 2022, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.C.; Andreotti, G.; Ospina, M.; Parks, C.G.; Liu, D.; Shearer, J.J.; Rothman, N.; Silverman, D.T.; Sandler, D.P.; Calafat, A.M.; et al. Glyphosate exposure and urinary oxidative stress biomarkers in the Agricultural Health Study. JNCI J. Natl. Cancer Inst. 2023, 115, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Varde, M.; Gerona, R.R.; Newman, R.B.; Reckers, A.; Braak, D.C.; Vena, J.E.; Bloom, M.S. Glyphosate exposure and preterm birth: A nested case-control pilot study. Reprod. Toxicol. 2023, 117, 108350. [Google Scholar] [CrossRef]
- Eskenazi, B.; Gunier, R.B.; Rauch, S.; Kogut, K.; Perito, E.R.; Mendez, X.; Limbach, C.; Holland, N.; Bradman, A.; Harley, K.G.; et al. Association of Lifetime Exposure to Glyphosate and Aminomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syndrome at Young Adulthood: Findings from the CHAMACOS Study. Environ. Health Perspect. 2023, 131, 037001. [Google Scholar] [CrossRef]
- Lucia, R.M.; Liao, X.; Huang, W.-L.; Forman, D.; Kim, A.; Ziogas, A.; Norden-Krichmar, T.M.; Goodman, D.; Alvarez, A.; Masunaka, I.; et al. Urinary glyphosate and AMPA levels in a cross-sectional study of postmenopausal women: Associations with organic eating behavior and dietary intake. Int. J. Hyg. Environ. Health 2023, 252, 114211. [Google Scholar] [CrossRef]
- Hyland, C.; Hernandez, A.; Gaudreau, É.; Larose, J.; Bienvenu, J.-F.; Meierotto, L.; Castellano, R.L.S.; Curl, C.L. Examination of urinary pesticide concentrations, protective behaviors, and risk perceptions among Latino and Latina farmworkers in Southwestern Idaho. Int. J. Hyg. Environ. Health 2024, 255, 114275. [Google Scholar] [CrossRef]
- Curl, C.L.; Hyland, C.; Spivak, M.; Sheppard, L.; Lanphear, B.; Antoniou, M.N.; Ospina, M.; Calafat, A.M. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. Environ. Health Perspect. 2023, 131, 127001. [Google Scholar] [CrossRef] [PubMed]
- Jauregui-Zunzunegui, S.; Rodríguez-Artalejo, F.; Tellez-Plaza, M.; García-Esquinas, E. Glyphosate exposure, muscular health and functional limitations in middle-aged and older adults. Environ. Res. 2024, 251, 118547. [Google Scholar] [CrossRef]
- Chang, V.C.; Ospina, M.; Xie, S.; Andreotti, G.; Parks, C.G.; Liu, D.; Madrigal, J.M.; Ward, M.H.; Rothman, N.; Silverman, D.T.; et al. Urinary biomonitoring of glyphosate exposure among male farmers and nonfarmers in the Biomarkers of Exposure and Effect in Agriculture (BEEA) study. Environ. Int. 2024, 187, 108644. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Wang, Y.; Liao, Q.; Zhou, Y.; Huang, H.; Liang, J.; Zeng, X.; Qiu, X. Relationship of urinary glyphosate concentrations with glycosylated hemoglobin and diabetes in US adults: A cross-sectional study. BMC Public Health 2024, 24, 1644. [Google Scholar] [CrossRef]
- Otaru, S.; Jones, L.E.; Carpenter, D.O. Associations between urine glyphosate levels and metabolic health risks: Insights from a large cross-sectional population-based study. Environ. Health 2024, 23, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, Z.; Chen, Y.; Qian, L.; Hao, C.; Hao, L.; Yang, B.; Duan, J. Association between glyphosate exposure and cardiovascular health using “Life’s Essential 8” metrics in US adults. Ecotoxicol. Environ. Saf. 2025, 290, 117559. [Google Scholar] [CrossRef]
- Feng, X.; Wang, M.; Wang, Y.; Liang, R.; Yan, C. Associations between environmental glyphosate exposure and glucose homeostasis indices in US general adults: A national population-based cross-sectional study. Sci. Rep. 2025, 15, 1627. [Google Scholar] [CrossRef]
- He, X.; Mi, L.; Zhao, M.; Ji, Y.; Hu, Y.; Gao, Y.; Qiu, L.; Xu, K. Associations between urinary glyphosate and arthritis: An US NHANES analysis. Front. Public Health 2025, 13, 1450479. [Google Scholar] [CrossRef]
- Martínez, M.-A.; Rodríguez, J.-L.; Lopez-Torres, B.; Martínez, M.; Martínez-Larrañaga, M.-R.; Maximiliano, J.-E.; Anadón, A.; Ares, I. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ. Int. 2020, 135, 105414. [Google Scholar] [CrossRef]
- Finkler, M.; Rodrigues, G.Z.P.; Kayser, J.M.; Ziulkoski, A.L.; Gehlen, G. Cytotoxic and genotoxic effects induced by associated commercial glyphosate and 2,4-D formulations using the Allium cepa bioassay. J. Environ. Sci. Health Part B 2022, 57, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Mencalha, A.; Victorino, V.J.; Cecchini, R.; Panis, C. Mapping Oxidative Changes in Breast Cancer: Understanding the Basic to Reach the Clinics. Anticancer Res. 2014, 34, 1127–1140. [Google Scholar] [PubMed]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res./Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Authority (EFSA) EFS. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015, 13, 4302. [Google Scholar] [CrossRef]
- Glyphosate Technical Fact Sheet. Available online: https://npic.orst.edu/factsheets/archive/glyphotech.html#references (accessed on 19 May 2025).
- Lesseur, C.; Pathak, K.V.; Pirrotte, P.; Martinez, M.N.; Ferguson, K.K.; Barrett, E.S.; Nguyen, R.H.; Sathyanarayana, S.; Mandrioli, D.; Swan, S.H.; et al. Urinary glyphosate concentration in pregnant women in relation to length of gestation. Environ. Res. 2022, 203, 111811. [Google Scholar] [CrossRef]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef]
- Yahyah, H.; Kameri-Mbote, P.; Kibugi, R. Implications of pesticide use regulation on soil sustainability in Uganda. Soil Secur. 2024, 16, 100133. [Google Scholar] [CrossRef]
- IBAMA. Pesticide Marketing Reports 2022. Available online: https://www.gov.br/ibama/pt-br/assuntos/quimicos-e-biologicos/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos (accessed on 17 April 2024).
- Wasser, J.; Berman, T.; Lerner-Geva, L.; Grotto, I.; Rubin, L. Biological monitoring of Persistent Organic Pollutants in human milk in Israel. Chemosphere 2015, 137, 185–191. [Google Scholar] [CrossRef]
- Tanabe, S.; Kunisue, T. Persistent organic pollutants in human breast milk from Asian countries. Environ. Pollut. 2007, 146, 400–413. [Google Scholar] [CrossRef]
- Jakszyn, P.; Goñi, F.; Etxeandia, A.; Vives, A.; Millán, E.; López, R.; Amiano, P.; Ardanaz, E.; Barricarte, A.; Chirlaque, M.D.; et al. Serum levels of organochlorine pesticides in healthy adults from five regions of Spain. Chemosphere 2009, 76, 1518–1524. [Google Scholar] [CrossRef]
- Europe WHORO. Health Risks of Persistent Organic Pollutants from Long-Range Transboundary Air Pollution; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Covaci, A.; Manirakiza, P.; Schepens, P. Persistent Organochlorine Pollutants in Soils from Belgium, Italy, Greece, and Romania. Bull. Environ. Contam. Toxicol. 2002, 68, 97–103. [Google Scholar] [CrossRef]
- Safe, S.H. Endocrine disruptors and human health—Is there a problem? An update. Environ. Health Perspect. 2000, 108, 487–493. [Google Scholar] [CrossRef]
- WHO. Cancer Today. Available online: https://gco.iarc.who.int/today/ (accessed on 3 August 2025).
- Guimarães, R.M.; Asmus, C.I.R.F.; Meyer, A. DDT reintroduction for malaria control: The cost-benefit debate for public health. Cad. Saúde Pública 2007, 23, 2835–2844. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Shi, S.; Xue, J. Background biomonitoring of residue levels of 137 pesticides in the blood plasma of the general population in Beijing. Environ. Monit. Assess. 2018, 190, 315. [Google Scholar] [CrossRef]
- Azeredo, A.; Torres, J.P.M.; de Freitas Fonseca, M.; Britto, J.L.; Bastos, W.R.; Azevedo e Silva, C.E.; Cavalcanti, G.; Meire, R.O.; Sarcinelli, P.N.; Claudio, L.; et al. DDT and its metabolites in breast milk from the Madeira River basin in the Amazon, Brazil. Chemosphere 2008, 73, S246–S251. [Google Scholar] [CrossRef]
- Kunisue, T.; Someya, M.; Kayama, F.; Jin, Y.; Tanabe, S. Persistent organochlorines in human breast milk collected from primiparae in Dalian and Shenyang, China. Environ. Pollut. 2004, 131, 381–392. [Google Scholar] [CrossRef]
- Torres-Moreno, A.C.; Mejia-Grau, K.; Puente-DelaCruz, L.; Codling, G.; Villa, A.L.; Ríos-Marquez, O.; Patequiva-Chauta, L.; Cobo, M.; Johnson-Restrepo, B. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) in human breast milk from Colombia: A probabilistic risk assessment approach. Chemosphere 2023, 339, 139597. [Google Scholar] [CrossRef]
- Tomar, L.R.; Agarwal, M.P.; Avasthi, R.; Tyagi, V.; Mustafa, M.; Banerjee, B.D. Serum organochlorine pesticide levels in patients with metabolic syndrome. Indian J. Endocrinol. Metab. 2013, 17, S342. [Google Scholar] [CrossRef] [PubMed]
- Saoudi, A.; Fréry, N.; Zeghnoun, A.; Bidondo, M.-L.; Deschamps, V.; Göen, T.; Garnier, R.; Guldner, L. Serum levels of organochlorine pesticides in the French adult population: The French National Nutrition and Health Study (ENNS), 2006–2007. Sci. Total Environ. 2014, 472, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, V.K.; Kashyap, R.; Zaidi, S.S.A.; Kulkarni, P.K.; Saiyed, H.N. Levels of DDT, HCH and HCB Residues in Human Blood in Ahmedabad, India. Bull. Environ. Contam. Toxicol. 2004, 72, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Yadav, S.; Panuwet, P.; Kumar, S.; Rajacharya, G.H.; Johnson, C.; Rawal, I.; Mohan, D.; Mohan, V.; Tandon, N.; et al. Metabolite of the pesticide DDT and incident type 2 diabetes in urban India. Environ. Int. 2019, 133, 105089. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.L.; Hong, S.; Choi, K.; Lee, C.; Yoo, J. First nationwide exposure profile of major persistent organic pollutants among Korean adults and their determinants: Korean National Environmental Health Survey Cycle 3 (2015–2017). Int. J. Hyg. Environ. Health 2021, 236, 113779. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.-J.; Emond, C.; Hardy, E.M.; Sauvageot, N.; Alkerwi, A.; Lair, M.-L.; Appenzeller, B.M. Population-based biomonitoring of exposure to persistent and non-persistent organic pollutants in the Grand Duchy of Luxembourg: Results from hair analysis. Environ. Int. 2021, 153, 106526. [Google Scholar] [CrossRef] [PubMed]
- lhaj, F.A.; Elhamri, H.; lhaj, Z.A.; Malisch, R.; Kypke, K.; Kabriti, M.; El Hajjaji, S.; Bellaouchou, A. First WHO/UNEP survey of the current concentrations of persistent organic pollutants in human milk in Morocco. Food Addit. Contam. Part A 2023, 40, 282–293. [Google Scholar] [CrossRef]
- Cruz, S.; Lino, C.; Silveira, M.I. Evaluation of organochlorine pesticide residues in human serum from an urban and two rural populations in Portugal. Sci. Total Environ. 2003, 317, 23–35. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Al-Doush, I.; Alsabbaheen, A.; Mohamed, G.E.D.; Rabbah, A. Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci. Total Environ. 2012, 416, 62–74. [Google Scholar] [CrossRef]
- Müller, M.H.B.; Polder, A.; Brynildsrud, O.B.; Karimi, M.; Lie, E.; Manyilizu, W.B.; Mdegela, R.; Mokiti, F.; Murtadha, M.; Nonga, H.; et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania. Environ. Res. 2017, 154, 425–434. [Google Scholar] [CrossRef]
- Asawasinsopon, R.; Prapamontol, T.; Prakobvitayakit, O.; Vaneesorn, Y.; Mangklabruks, A.; Hock, B. Plasma levels of DDT and their association with reproductive hormones in adult men from northern Thailand. Sci. Total Environ. 2006, 355, 98–105. [Google Scholar] [CrossRef]
- Hooper, K.; Hopper, K.; Petreas, M.X.; She, J.; Visita, P.; Winkler, J.; McKinney, M.; Mok, M.; Sy, F.; Garcha, J.; et al. Analysis of breast milk to assess exposure to chlorinated contaminants in Kazakstan: PCBs and organochlorine pesticides in southern Kazakstan. Environ. Health Perspect. 1997, 105, 1250–1254. [Google Scholar] [CrossRef]
- US EPA. DDT—A Brief History and Status 2014. Available online: https://www.epa.gov/ingredients-used-pesticide-products/ddt-brief-history-and-status (accessed on 1 August 2025).
- van den Berg, H.; Manuweera, G.; Konradsen, F. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malar. J. 2017, 16, 401. [Google Scholar] [CrossRef]
- De Jager, C.; Farias, P.; Barraza-Villarreal, A.; Avila, M.H.; Ayotte, P.; Dewailly, E.; Dombrowski, C.; Rousseau, F.; Sanchez, V.D.; Bailey, J.L. Reduced Seminal Parameters Associated with Environmental DDT Exposure and p,p′-DDE Concentrations in Men in Chiapas, Mexico: A Cross-Sectional Study. J. Androl. 2006, 27, 16–27. [Google Scholar] [CrossRef]
- Venners, S.A.; Korrick, S.; Xu, X.; Chen, C.; Guang, W.; Huang, A.; Altshul, L.; Perry, M.; Fu, L.; Wang, X. Preconception Serum DDT and Pregnancy Loss: A Prospective Study Using a Biomarker of Pregnancy. Am. J. Epidemiol. 2005, 162, 709–716. [Google Scholar] [CrossRef]
- Garabrant, D.H.; Held, J.; Langholz, B.; Peters, J.M.; Mack, T.M. DDT and Related Compounds and Risk of Pancreatic Cancer. J. Natl. Cancer Inst. 1992, 84, 764–771. [Google Scholar] [CrossRef]
- Cox, S.; Niskar, A.S.; Narayan, K.M.V.; Marcus, M. Prevalence of Self-Reported Diabetes and Exposure to Organochlorine Pesticides among Mexican Americans: Hispanic Health and Nutrition Examination Survey, 1982–1984. Environ. Health Perspect. 2007, 115, 1747–1752. [Google Scholar] [CrossRef]
- Brody, J.G.; Moysich, K.B.; Humblet, O.; Attfield, K.R.; Beehler, G.P.; Rudel, R.A. Environmental pollutants and breast cancer. Cancer 2007, 109, 2667–2711. [Google Scholar] [CrossRef]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and Breast Cancer in Young Women: New Data on the Significance of Age at Exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, H. Global Status of DDT and Its Alternatives for Use in Vector Control to Prevent Disease. Environ. Health Perspect. 2009, 117, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- CDC. Biomonitoring: Population Exposures. Environ. Public Health Track. 2024. Available online: https://www.cdc.gov/environmental-health-tracking/php/data-research/biomonitoring-population-exposures.html (accessed on 23 September 2025).
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water intended for Human Consumption (Recast) (Text with EEA Relevance); European Union: Luxembourg, 2020; Volume 435. [Google Scholar]
- Overview—POPs Free. Available online: https://chm.pops.int/Implementation/POPsinarticles/Overview/tabid/2437/Default.aspx (accessed on 23 September 2025).
- Maximum Residue Levels—Food Safety—European Commission. Available online: https://food.ec.europa.eu/plants/pesticides/maximum-residue-levels_en (accessed on 23 September 2025).
- US EPA. Food Pestic. 2013. Available online: https://www.epa.gov/safepestcontrol/food-and-pesticides (accessed on 23 September 2025).
- Ghosh, A.K.; Brindisi, M. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. J. Med. Chem. 2020, 63, 2751–2788. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, D. Perspectives on the synthesis of organic carbamates. Tetrahedron 2012, 68, 15–45. [Google Scholar] [CrossRef]
- Brahmachari, G. (Ed.) Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Voris, D.G.R.; Cavalcante, S.F.A.; Borges, C.V.Ν.; Lima, A.L.S. Carbamates: Are they “Good” or “Bad Guys”? J. Braz. Chem. Soc. 2024, 35, e-20240058. [Google Scholar] [CrossRef]
- Hemingway, J.; Ranson, H. Insecticide Resistance in Insect Vectors of Human Disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef]
- IARC. Occupational Exposures in Insecticide Application, and Some Pesticides; IARC: Lyon, France, 1991. [Google Scholar]
- IARC. Some Thyrotropic Agents; IARC: Lyon, France, 2001. [Google Scholar]
- Berman, T.; Göen, T.; Novack, L.; Beacher, L.; Grinshpan, L.; Segev, D.; Tordjman, K. Urinary concentrations of organophosphate and carbamate pesticides in residents of a vegetarian community. Environ. Int. 2016, 96, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Carbamate Toxicosis in Animals—Toxicology. MSD Veterinary Manual. Available online: https://www.msdvetmanual.com/toxicology/insecticide-and-acaricide-organic-toxicity/carbamate-toxicosis-in-animals (accessed on 3 August 2025).
- Australian Pesticides and Veterinary Medicines Authority. Aldicarb Chemical Review. Available online: https://www.apvma.gov.au/chemicals-and-products/chemical-review/listing/aldicarb (accessed on 23 September 2025).
- World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- US EPA. Label Review Manual—Chapter 7. 2013. Available online: https://www.epa.gov/pesticide-registration/label-review-manual (accessed on 3 August 2025).
- ECHA. Guidance on Labelling and Packaging in Accordance with Regulation (EC) No 1272/2008. Available online: https://echa.europa.eu/guidance-documents/guidance-on-clp (accessed on 3 August 2025).
- EFSA. Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Carbaryl|EFSA 2006. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/rn-80 (accessed on 23 September 2025).
- Conclusion on Pesticide Peer Review Regarding the Risk Assessment of the Active Substance Carbofuran|EFSA 2009. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/rn-310 (accessed on 23 September 2025).
- European Food Safety Authority (EFSA); Charistou, A.; Coja, T.; Craig, P.; Hamey, P.; Martin, S.; Sanvido, O.; Chiusolo, A.; Colas, M.; Istace, F. Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment of plant protection products. EFSA J. 2022, 20, e07032. [Google Scholar] [CrossRef]
- Matošević, A.; Bosak, A. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. Arch. Ind. Hyg. Toxicol. 2020, 71, 285–299. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; Aaron, C.K. Organophosphate and Carbamate Poisoning. Emerg. Med. Clin. N. Am. 2015, 33, 133–151. [Google Scholar] [CrossRef]
- Eyer, P. The Role of Oximes in the Management of Organophosphorus Pesticide Poisoning. Toxicol. Rev. 2003, 22, 165–190. [Google Scholar] [CrossRef]
- Taylor, P. Anticholinesterase Agents. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Hilal-Dandan, R., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Rosman, Y.; Makarovsky, I.; Bentur, Y.; Shrot, S.; Dushnistky, T.; Krivoy, A. Carbamate poisoning: Treatment recommendations in the setting of a mass casualties event. Am. J. Emerg. Med. 2009, 27, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Dart, R.C. Medical Toxicology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- USA. Code of Federal Regulations 156.62—Toxicity Category. Available online: https://www.ecfr.gov/current/title-40/part-156/section-156.62 (accessed on 14 September 2025).
- Silberman, J.; Taylor, A. Carbamate Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lee, D.H.; Jung, K.Y.; Choi, Y.H.; Cheon, Y.J. Body mass index as a prognostic factor in organophosphate-poisoned patients. Am. J. Emerg. Med. 2014, 32, 693–696. [Google Scholar] [CrossRef]
- Saadeh, A.M.; Al-Ali, M.K.; Farsakh, N.A.; Ghani, M.A. Clinical and Sociodemographic Features of Acute Carbamate and Organophosphate Poisoning: A Study of 70 Adult Patients in North Jordan. J. Toxicol. Clin. Toxicol. 1996, 34, 45–51. [Google Scholar] [CrossRef]
- Kumar, S.; Baggi, T.R.; Zughaibi, T. Forensic toxicological and analytical aspects of carbamate poisoning—A review. J. Forensic Leg. Med. 2022, 92, 102450. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Lu, D.; Qi, X.; Chang, X.; Wu, C.; Zhang, Y.; Liang, W.; Fang, X.; Cao, Y.; et al. Maternal urinary carbofuranphenol levels before delivery and birth outcomes in Sheyang Birth Cohort. Sci. Total Environ. 2018, 625, 1667–1672. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Wu, C.; Qi, X.; Jiang, S.; Lu, D.; Feng, C.; Liang, W.; Chang, X.; Zhang, Y.; et al. Exposure to carbamate and neurodevelopment in children: Evidence from the SMBCS cohort in China. Environ. Res. 2019, 177, 108590. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Wu, C.; Qi, X.; Jiang, S.; Zhou, T.; Xiao, H.; Li, W.; Lu, D.; Feng, C.; et al. Early-life carbamate exposure and intelligence quotient of seven-year-old children. Environ. Int. 2020, 145, 106105. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Wu, C.; Qi, X.; Jiang, S.; Lv, S.; Lu, D.; Liang, W.; Chang, X.; Zhang, Y.; et al. Carbamate pesticides exposure and delayed physical development at the age of seven: Evidence from the SMBCS study. Environ. Int. 2022, 160, 107076. [Google Scholar] [CrossRef]
- Burgess, J.L.; Bernstein, J.N.; Hurlbut, K. Aldicarb Poisoning: A Case Report with Prolonged Cholinesterase Inhibition and Improvement After Pralidoxime Therapy. Arch. Intern. Med. 1994, 154, 221–224. [Google Scholar] [CrossRef]
- Jaga, K.; Dharmani, C. Sources of exposure to and public health implications of organophosphate pesticides. Rev. Panam. Salud Publica 2003, 14, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, L.K.; Northrup, S.H. Structure and mode of action of organophosphate pesticides: A computational study. Comput. Theor. Chem. 2016, 1088, 9–23. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, I.; Andrade, R.J. Organophosphate pesticides: Another silent liver hazard? Liver Int. 2023, 43, 268–270. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- Coman, G.; Farcas, A.; Matei, A.V.; Florian, C. Pesticides Mechanisms of Action in Living Organisms. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe; Simeonov, L.I., Macaev, F.Z., Simeonova, B.G., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 173–184. [Google Scholar] [CrossRef]
- Mdeni, N.L.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review. Molecules 2022, 27, 618. [Google Scholar] [CrossRef]
- Karalliedde, L.D.; Edwards, P.; Marrs, T.C. Variables influencing the toxic response to organophosphates in humans. Food Chem. Toxicol. 2003, 41, 1–13. [Google Scholar] [CrossRef]
- Mileson, B.E.; Chambers, J.E.; Chen, W.L.; Dettbarn, W.; Ehrich, M.; Eldefrawi, A.T.; Gaylor, D.W.; Hamernik, K.; Hodgson, E.; Karczmar, A.G.; et al. Common Mechanism of Toxicity: A Case Study of Organophosphorus Pesticides. Toxicol. Sci. 1998, 41, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta 2006, 366, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Androutsopoulos, V.P.; Kanavouras, K.; Tsatsakis, A.M. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases. Toxicol. Appl. Pharmacol. 2011, 256, 418–424. [Google Scholar] [CrossRef]
- Morahan, J.M.; Yu, B.; Trent, R.J.; Pamphlett, R. A gene–environment study of the paraoxonase 1 gene and pesticides in amyotrophic lateral sclerosis. NeuroToxicology 2007, 28, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Lacasaña, M.; López-Flores, I.; Rodríguez-Barranco, M.; Aguilar-Garduño, C.; Blanco-Muñoz, J.; Pérez-Méndez, O.; Gamboa, R.; Gonzalez-Alzaga, B.; Bassol, S.; Cebrian, M.E. Interaction between organophosphate pesticide exposure and PON1 activity on thyroid function. Toxicol. Appl. Pharmacol. 2010, 249, 16–24. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Wang, C.; Hum, Y.; Gao, Y.; Zhou, Y.; Shi, R.; Zhang, Y.; Kamijima, M.; Ueyama, J.; et al. Association Between Organophosphate Pesticide Exposure and Thyroid Hormones in Pregnant Women. Epidemiology 2017, 28, S35. [Google Scholar] [CrossRef]
- Silva, A.B.P.; Carreiró, F.; Ramos, F.; Sanches-Silva, A. The role of endocrine disruptors in female infertility. Mol. Biol. Rep. 2023, 50, 7069–7088. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Ranjan, A.; Chauhan, A.; Jindal, T. In-Silico and In-Vitro evaluation of human acetylcholinesterase inhibition by organophosphates. Environ. Toxicol. Pharmacol. 2018, 57, 131–140. [Google Scholar] [CrossRef]
- Uwaifo, F.; John-Ohimai, F. Dangers of Organophosphate Pesticide Exposure to Human Health. Matrix Sci. Medica 2020, 4, 27. [Google Scholar] [CrossRef]
- Gupta, R.C.; Malik, J.K.; Milatovic, D. Chapter 37—Organophosphate and carbamate pesticides. In Reproductive and Developmental Toxicology; Gupta, R.C., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 471–486. [Google Scholar] [CrossRef]
- Silvério, A.C.P.; Machado, S.C.; Azevedo, L.; Nogueira, D.A.; de Castro Graciano, M.M.; Simões, J.S.; Viana, A.L.M.; Martins, I. Assessment of exposure to pesticides in rural workers in southern of Minas Gerais, Brazil. Environ. Toxicol. Pharmacol. 2017, 55, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Kanavouras, K.; Tzatzarakis, M.N.; Mastorodemos, V.; Plaitakis, A.; Tsatsakis, A.M. A case report of motor neuron disease in a patient showing significant level of DDTs, HCHs and organophosphate metabolites in hair as well as levels of hexane and toluene in blood. Toxicol. Appl. Pharmacol. 2011, 256, 399–404. [Google Scholar] [CrossRef]
- Hongsibsong, S.; Sittitoon, N.; Sapbamrer, R. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers. J. Occup. Health 2017, 59, 165–176. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Kakolewski, K.; Bove, F.J.; Kaye, W.E. Long-term neurobehavioral health effects of methyl parathion exposure in children in Mississippi and Ohio. Environ. Health Perspect. 2004, 112, 46–51. [Google Scholar] [CrossRef]
- Luo, F.; Sandhu, A.F.; Rungratanawanich, W.; Williams, G.E.; Akbar, M.; Zhou, S.; Song, B.-J.; Wang, X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 7174. [Google Scholar] [CrossRef]
- Chang, P.-A.; Wu, Y.-J. Motor neuron diseases and neurotoxic substances: A possible link? Chem.-Biol. Interact. 2009, 180, 127–130. [Google Scholar] [CrossRef] [PubMed]
- IARC. Some Drugs and Herbal Products; IARC: Lyon, France, 2016. [Google Scholar]
- Lukaszewicz-Hussain, A. Role of oxidative stress in organophosphate insecticide toxicity—Short review. Pestic. Biochem. Physiol. 2010, 98, 145–150. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Duan, X.; Feng, X.; Wang, T.; Wang, P.; Ding, M.; Zhou, X.; Liu, S.; Li, L.; et al. Association of genetic polymorphisms of miR-145 gene with telomere length in omethoate-exposed workers. Ecotoxicol. Environ. Saf. 2019, 172, 82–88. [Google Scholar] [CrossRef]
- Ledda, C.; Cannizzaro, E.; Cinà, D.; Filetti, V.; Vitale, E.; Paravizzini, G.; Di Naso, C.; Iavicoli, I.; Rapisarda, V. Oxidative stress and DNA damage in agricultural workers after exposure to pesticides. J. Occup. Med. Toxicol. 2021, 16, 1. [Google Scholar] [CrossRef]
- Frazier, L.M. Reproductive Disorders Associated with Pesticide Exposure. J. Agromedicine 2007, 12, 27–37. [Google Scholar] [CrossRef]
- Padungtod, C.; Savitz, D.A.; Overstreet, J.W.; Christiani, D.C.; Ryan, L.M.; Xu, X. Occupational Pesticide Exposure and Semen Quality Among Chinese Workers. J. Occup. Environ. Med. 2000, 42, 982–992. [Google Scholar] [CrossRef]
- Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Rajakumar, G.; Shariati, M.A.; Chung, I.-M.; Thiruvengadam, M. Organopesticides and fertility: Where does the link lead to? Environ. Sci. Pollut. Res. 2021, 28, 6289–6301. [Google Scholar] [CrossRef] [PubMed]
- Peiris-John, R.J.; Wickremasinghe, R. Impact of low-level exposure to organophosphates on human reproduction and survival. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 239–245. [Google Scholar] [CrossRef] [PubMed]
- AL-Hussaini, T.K.; Abdelaleem, A.A.; Elnashar, I.; Shabaan, O.M.; Mostafa, R.; El-Baz, M.A.H.; El-Deek, S.E.; Farghaly, T.A. The effect of follicullar fluid pesticides and polychlorinated biphenyls concentrations on intracytoplasmic sperm injection (ICSI) embryological and clinical outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 39–43. [Google Scholar] [CrossRef]
- Melgarejo, M.; Mendiola, J.; Koch, H.M.; Moñino-García, M.; Noguera-Velasco, J.A.; Torres-Cantero, A.M. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. Environ. Res. 2015, 137, 292–298. [Google Scholar] [CrossRef]
- Rothlein, J.; Rohlman, D.; Lasarev, M.; Phillips, J.; Muniz, J.; McCauley, L. Organophosphate Pesticide Exposure and Neurobehavioral Performance in Agricultural and Nonagricultural Hispanic Workers. Environ. Health Perspect. 2006, 114, 691–696. [Google Scholar] [CrossRef]
- Kraus, J.F.; Richards, D.M.; Borhani, N.O.; Mull, R.; Kilgore, W.W.; Winterlin, W. Physiological response to organophosphate residues in field workers. Arch. Environ. Contam. Toxicol. 1977, 5, 471–485. [Google Scholar] [CrossRef]
- Pesticides Use, Pesticides Trade and Pesticides Indicators. Global, Regional and Country Trends, 1990–2020. Statistics. Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/New-FAOSTAT-data-release-Pesticides-use-pesticides-trade-and-pesticides-indicators-Global-regional-and-country-trends-1990-2020/ (accessed on 1 August 2025).
- Ranjan, A.; Jindal, T. Overview of Organophosphate Compounds. In Toxicology of Organophosphate Poisoning: New Insights; Ranjan, A., Jindal, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–25. [Google Scholar] [CrossRef]
- Cocker, J.; Mason, H.J.; Garfitt, S.J.; Jones, K. Biological monitoring of exposure to organophosphate pesticides. Toxicol. Lett. 2002, 134, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Karthick Rajan, D.; Mohan, K.; Rajarajeswaran, J.; Divya, D.; Thanigaivel, S.; Zhang, S. Toxic effects of organophosphate pesticide monocrotophos in aquatic organisms: A review of challenges, regulations and future perspectives. Environ. Res. 2024, 244, 117947. [Google Scholar] [CrossRef]
- Li, A.J.; Kannan, K. Urinary concentrations and profiles of organophosphate and pyrethroid pesticide metabolites and phenoxyacid herbicides in populations in eight countries. Environ. Int. 2018, 121, 1148–1154. [Google Scholar] [CrossRef]
- Oates, L.; Cohen, M.; Braun, L.; Schembri, A.; Taskova, R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ. Res. 2014, 132, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Colnot, T.; Dekant, W. Approaches for grouping of pesticides into cumulative assessment groups for risk assessment of pesticide residues in food. Regul. Toxicol. Pharmacol. 2017, 83, 89–99. [Google Scholar] [CrossRef]
- Katsikantami, I.; Colosio, C.; Alegakis, A.; Tzatzarakis, M.N.; Vakonaki, E.; Rizos, A.K.; Sarigiannis, D.A.; Tsatsakis, A.M. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data—The internal exposure approach. Food Chem. Toxicol. 2019, 123, 57–71. [Google Scholar] [CrossRef]
- FAO; WHO. Pesticides Index—CODEX ALIMENTARIUS FAO-WHO. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on 14 September 2025).
- Authority (EFSA) EFS; Bellisai, G.; Bernasconi, G.; Binaglia, M.; Carrasco Cabrera, L.; Castellan, I.; Castoldi, A.F.; Chiusolo, A.; Chukwubike, K.; Crivellente, F.; et al. Targeted review of maximum residue levels (MRLs) for diazinon. EFSA J. 2023, 21, e08426. [Google Scholar] [CrossRef] [PubMed]
- Zarei-Choghan, M.; Jorfi, S.; Saki, A.; Jaafarzadeh, N. Spatial distribution, ecological and health risk assessment of organophosphorus pesticides identified in the water of Naseri artificial wetland, Iran. Mar. Pollut. Bull. 2022, 179, 113643. [Google Scholar] [CrossRef]
- López-Benítez, A.; Guevara-Lara, A.; Domínguez-Crespo, M.A.; Andraca-Adame, J.A.; Torres-Huerta, A.M. Concentrations of Organochlorine, Organophosphorus, and Pyrethroid Pesticides in Rivers Worldwide (2014–2024): A Review. Sustainability 2024, 16, 8066. [Google Scholar] [CrossRef]
- Ferreira, V.B.; Silva, T.T.C.; Garcia, S.R.M.C.; Srur, A.U.O.S. Estimativa de ingestão de agrotóxicos organofosforados pelo consumo de frutas e hortaliças. Cad. Saúde Colet. 2018, 26, 216–221. [Google Scholar] [CrossRef]
- Df, B. Diretrizes para o Minitoramento de Agrotóxicos em Água para Consumo Humano; Ministério da Saúde: Brasília, DF, Brazil, 2024.
- Ding, G.; Wang, P.; Tian, Y.; Zhang, J.; Gao, Y.; Wang, X.; Shi, R.; Wang, G.; Shen, X. Organophosphate Pesticide Exposure and Neurodevelopment in Young Shanghai Children. Environ. Sci. Technol. 2012, 46, 2911–2917. [Google Scholar] [CrossRef]
- Yu, R.; Liu, Q.; Liu, J.; Wang, Q.; Wang, Y. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control 2016, 60, 353–360. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Y.; Li, N.; Qian, Y.; Wang, Z.; Liu, Y. A national-scale cumulative exposure assessment of organophosphorus pesticides through dietary vegetable consumption in China. Food Control 2019, 104, 34–41. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Pesticide Data Program|Agricultural Marketing Service. Available online: https://www.ams.usda.gov/datasets/pdp (accessed on 3 August 2025).
- Neff, R.A.; Hartle, J.C.; Laestadius, L.I.; Dolan, K.; Rosenthal, A.C.; Nachman, K.E. A comparative study of allowable pesticide residue levels on produce in the United States. Glob. Health 2012, 8, 2. [Google Scholar] [CrossRef]
- Liang, C.-P.; Sack, C.; McGrath, S.; Cao, Y.; Thompson, C.J.; Robin, L.P. US Food and Drug Administration regulatory pesticide residue monitoring of human foods: 2009–2017. Food Addit. Contam. Part A 2021, 38, 1520–1538. [Google Scholar] [CrossRef]
- CDC. Biomonitoring Data Tables for Environmental Chemicals|CDC 2024. Available online: https://www.cdc.gov/exposurereport/data_tables.html (accessed on 14 September 2025).
- Witczak, A.; Pohoryło, A.; Abdel-Gawad, H.; Cybulski, J. Residues of some organophosphorus pesticides on and in fruits and vegetables available in Poland, an assessment based on the European union regulations and health assessment for human populations. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 711–720. [Google Scholar] [CrossRef]
- Wongta, A.; Sawang, N.; Tongjai, P.; Jatiket, M.; Hongsibsong, S. The Assessment of Organophosphate Pesticide Exposure among School Children in Four Regions of Thailand: Analysis of Dialkyl Phosphate Metabolites in Students’ Urine and Organophosphate Pesticide Residues in Vegetables for School Lunch. Toxics 2022, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Moreno-Godínez, M.E.; Verdín-Betancourt, F.A.; Sierra-Santoyo, A.; Rojas-García, A.E. Organophosphorus pesticide exposure biomarkers in a Mexican population. Environ. Sci. Pollut. Res. 2021, 28, 50825–50834. [Google Scholar] [CrossRef] [PubMed]
- Magdaleno-Magniales, U.; Salas-Espinoza, E.A.; Saldaña-Villanueva, K.; Núñez-Mojica, G.; García-Díaz, J.M.; Gaspar-Ramírez, O. Determination of highly hazardous pesticides in fruits and vegetables in the Maya region of southeast of Mexico. J. Environ. Sci. Health Part B 2025, 60, 103–110. [Google Scholar] [CrossRef]
- Shaker, E.M.; Elsharkawy, E.E. Organochlorine and organophosphorus pesticide residues in raw buffalo milk from agroindustrial areas in Assiut, Egypt. Environ. Toxicol. Pharmacol. 2015, 39, 433–440. [Google Scholar] [CrossRef]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Balali-Mood, K.; Moodi, M.; Balali-Mood, B. Health Aspects of Organophosphorous Pesticides in Asian Countries. Iran. J. Public Health 2012, 41, 1–14. [Google Scholar]
- Bureau, D. Global Pesticides Market to Reach $181.2 Billion by 2031, Report. Global Agriculture 2025. Available online: https://www.global-agriculture.com/crop-protection/global-pesticides-market-to-reach-181-2-billion-by-2031-report/ (accessed on 23 September 2025).
- Consulting FBI. Glyphosate Market Size & Share Forecasts: America, Europe, & APAC 2025–2034. Fundamental Business Insights and Consulting 2025. Available online: https://www.fundamentalbusinessinsights.com/industry-report/glyphosate-market-12216 (accessed on 23 September 2025).
- FAO. Pesticides Use—FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/RP/visualize (accessed on 23 September 2025).
- Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.; Saucy, A.-G.W.; Mertens, M. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017, 29, 5. [Google Scholar] [CrossRef] [PubMed]
- Dowler, C. UK and EU Sent Thousands of Tonnes of Banned Pesticides Poor Countries. Unearthed 2020. Available online: https://unearthed.greenpeace.org/2020/09/10/banned-pesticides-eu-export-poor-countries/ (accessed on 23 September 2025).
- DDT, DDE, DDD|Toxicological Profile|ATSDR. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=81&tid=20 (accessed on 23 September 2025).
- US EPA. EPA Works to Ensure that Pesticides Will Not Harm Human Health or the Environment 2015. Available online: https://www.epa.gov/pesticides (accessed on 23 September 2025).
- Mie, A.; Rudén, C. Non-disclosure of developmental neurotoxicity studies obstructs the safety assessment of pesticides in the European Union. Environ. Health 2023, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Yang, L.; Wang, L.; Lv, J.; Gu, L.; Li, H.; Peng, W.; Yu, Q.; Ruan, H.; Li, Q.; et al. Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review. Agriculture 2023, 13, 1683. [Google Scholar] [CrossRef]
- Gaboardi, S.C.; Candiotto, L.Z.P.; Panis, C. Agribusiness in Brazil and its dependence on the use of pesticides. Hyg. Environ. Health Adv. 2023, 8, 100080. [Google Scholar] [CrossRef]
- Li, B.A.; Li, B.M.; Bao, Z.; Li, Q.; Xing, M.; Li, B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. Bull. Environ. Contam. Toxicol. 2023, 111, 45. [Google Scholar] [CrossRef] [PubMed]
- European Human Biomonitoring Initiative|HBM4EU|Project|Fact Sheet|H2020. CORDIS|European Commission. Available online: https://cordis.europa.eu/project/id/733032 (accessed on 23 September 2025).
- Huang, Y.; Li, Z. Global mapping of freshwater contamination by pesticides and implications for agriculture and water resource protection. iScience 2025, 28, 112861. [Google Scholar] [CrossRef]
- Muir, D.; Sverko, E. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: A critical appraisal. Anal. Bioanal. Chem. 2006, 386, 769–789. [Google Scholar] [CrossRef]
- Henríquez-Hernández, L.A.; Macías-Montes, A.; Acosta-Dacal, A.; Rial-Berriel, C.; Duarte-Lopes, E.; Lopes-Ribeiro, A.L.; Alfama, P.M.; Livramento, M.; Zumbado, M.; Díaz-Díaz, R.; et al. Human biomonitoring of persistent and non-persistent pollutants in a representative sample of the general population from Cape Verde: Results from the PERVEMAC-II study. Environ. Pollut. 2022, 306, 119331. [Google Scholar] [CrossRef]




| Country | Sample | Methodology | LOQ | LOD | Outcome (Association) | Reference |
|---|---|---|---|---|---|---|
| Belgium | Urine (n = 428) | LC–MS/MS | LOQ GLY/AMPA = 0.1 µg/L | Not reported | Male adolescents living within 2000 m of agricultural areas had increased urinary AMPA levels | [56] |
| Canada | Urine (n = 1880) | UPLC-MS/MS | LOQ GLY = 0.26 μg/L, AMPA = 0.29 μg/L Glufosinate = 0.28 μg/L | LOD GLY = 0.08 μg/L AMPA = 0.09 μg/L Glufosinate = 0.08 μg/L | Because the population is predominantly urban, direct pesticide use and spray drift are unlikely pathways of contamination. Diet is believed to be a potential source of GLY exposure | [57] |
| Canada | Urine (n = 1765) | UPLC-MS/MS | LOQ GLY = 0.26 AMPA = 0.29 μg/L | LOD GLY/AMPA = 0.09 μg/L | No association was identified between urinary concentrations of GLY or AMPA and the risk of preterm birth | [58] |
| China | Urine (n = 134) | GC-MS/MS | Not reported | LOD GLY = 0.02 AMPA = 0.01 mg/L GLY ≤ 0.020–17.202 mg/L (median, 0.292 mg/L); AMPA ≤ 0.010 mg/L–2.730 mg/L (median, 0.068 mg/L) | The urinary concentration of GLY and AMPA of the workers was related to the TWA (time weighted average) value, which reflects the exposure of these workers | [59] |
| Cyprus | Urine (n = 177) | LC-MS/MS | LOQ GLY = 0.19 μg/L AMPA = 0.18 μg/L. GLY = 0.06–3.18 μg/L (mean 0.23 μg/L) AMPA = 0.06–1.44 μg/L (mean 0.24 μg/L) | Not reported | The study identified a significant association between AMPA levels found in the population and oxidative DNA damage | [60] |
| Democratic Republic of the Congo | Urine (n = 15) | LC-MS/MS | LOQ GLY = 80 pg/mL | Not reported | The study indicates exposure to environmental pollutants in the studied population | [61] |
| France | Urine (n = 1299) | UPLC-MS/MS | LOD GLY/AMPA = 0.02 μg/L | LOQ GLY/AMPA = 0.05 μg/L | The study identified higher concentrations of AMPA in children than in adults | [62] |
| Germany | Urine (n = 40) | GC-MS/MS | LOQ GLY = 0.1 μg/L AMPA = 0.1 μg/L. Maximum glyphosate = 2.80 μg/L; Maximum AMPA = 1.88 μg/L | Not reported | Not reported | [63] |
| Germany | Urine (n = 2144) | GC-MS/MS | Not reported | LOD GLY/AMPA = 0.1 µg/L | Not reported | [64] |
| Germany | Urine (n = 301) | LC–MS/MS | LOQ GLY/AMPA = 0.2 µg/L. M GLY = 0.16 µg/L; M AMPA = 0.20 µg/L | LOD GLY = 0.05 µg/L, LOD AMPA = 0.09 µg/L | The study identified positive correlations between urinary glyphosate excretion and legume consumption, as well as between urinary AMPA excretion and mushroom consumption | [65] |
| Ireland | Urine (n = 50) | LC-MS/MS | Not reported | LOD GLY = 0.5 µg/L. Median = 0.87 µg/L | Results suggest environmental exposure to GLY | [66] |
| Italy | Urine (n = 17) | UPLC-MS/MS | LOQ GLY = 0.1 μg/L AMPA = 0.5 μg/L. Median GLY = 2.30 μg/L | Not reported | Reports the absorption of xenobiotic by vineyard workers after application of GLY | [67] |
| Malaysia, Uganda and United Kingdom | Urine (n = 271) | LC-MS/MS | LOQ GLY/AMPA = 0.5 μg/L | Not reported | Higher GLY concentrations were associated with lower use of personal protective equipment, lower education levels, and longer duration of pesticide use | [68] |
| Mexico | Urine (n = 30) | HPLC | Not reported | LOD GLY = 5.0 AMPA = 15 μg/L | The study identifies, through the calculation of the external dose, that agricultural workers ingest up to 146 mg/kg/day of GLY | [69] |
| Puerto Rico | Urine (n = 247) | GC-MS/MS | Not reported | LOD GLY/AMPA = 0.20 μg/L | Study identifies associations between urinary GLY and AMPA concentrations and increased likelihood of preterm birth | [70] |
| Portugal | Urine (n = 79) | GC-MS/MS | LOQ GLY = 0.05 μg/L | LOD GLY = 0.02 AMPA = 0.013 μg/L | GLY and AMPA were detected in the study population, in both rounds of testing and in concentrations above the values of previous studies carried out in European countries | [71] |
| Slovenia | Urine (n = 246) | GC-MS/MS | LOQ GLY/AMPA = 0.1 µg/L | Not reported | Study shows low exposure to GLY and AMPA | [72] |
| Spain | Urine (n = 97) | LC-MS/MS | LOQ GLY/AMPA = 0.1 µg/L | Not reported | GLY concentration was related to the consumption of eggs and fruits in the 72 h preceding urine collection | [73] |
| Thailand | Urine (n = 124) | HPLC | Highest concentration = 2.92 ng/ml | LOD GLY = 0.5 μg/L | Exposure to GLY affects the entire population living in the agricultural community | [74] |
| Thailand | Urine (n = 180) | LC-MS/MS | LOQ GLY = 5 g/L | LOD GLY = 2.5 g/L | Workers applying GLY presented greater oxidative stress and worsening of lung function | [75] |
| Thailand | Urine (n = 15) | HPLC | LOQ GLY = 0.4 μg/L. M = 19.42 μg/L. Maximum level = 57.49 μg/L | LOD GLY = 0.1 μg/L | Workers are at significant risk of exposure to GLY | [76] |
| USA | Urine (n = 175) | LC-MS/MS | LOD GLY 1 ppb | LOD GLY 1 ppb Glyphosate concentrations ≤ 1–233 ppb | Farmers who did not use personal protective equipment, such as rubber gloves, had higher urinary GLY concentrations than other farmers | [77] |
| USA | Urine (n = 71) | LC-MS/MS | LOQ GLY = 0.5 ng/mL | LOD GLY = 0.1 ng/mL | Shortened gestational length was associated with high urinary GLY levels | [78] |
| USA | Urine (n = 187) | HPLC | LOQ GLY = 0.5 ng/mL | LOD GLY = 0.1 ng/mL | Elevated maternal GLY levels in the first trimester of pregnancy were associated with lower body weight percentiles (BWT) and increased risk of NICU admission | [79] |
| USA | Urine (n = 368) | IC-MS/MS | Not reported | LOD GLY = 0.2 µg/L | Study suggests that GLY exposure may be associated with oxidative stress | [80] |
| USA | Urine (n = 52) | LC-MS/MS | LOQ GLY = 0.03 ng/mL | LOD GLY = 0.03 ng/mL | Urinary GLY concentration was associated with increased odds of preterm birth (adjusted for urine specific gravity and maternal race) | [81] |
| USA | Urine (n = 480) | UPLC-MS/MS | Not reported | LOD GLY = 0.08 µg/L AMPA = 0.09 µg/L | Detection of AMPA in urine in children at 5 years of age was associated with elevated transaminases and metabolic syndrome. At 14 years of age, it was associated with metabolic syndrome. Overall, increased urinary AMPA during childhood was associated with an increased risk of elevated liver transaminases and metabolic syndrome. Individuals who lived near agricultural areas during early childhood were also associated with metabolic syndrome at age 18 | [82] |
| USA | Urine (n = 305) | MS | LOQ GLY = 0.041 AMPA = 0.040 ng/mL | LOD GLY = 0.014 AMPA = 0.013 ng/mL | The study suggests that grains are the largest dietary source of GLY, while AMPA is found in soybeans, wine and fast food | [83] |
| USA | Urine (n = 62) | UPLC-MS/MS | Not reported | LOD GLY/glufosinate = 0.08 μg/L AMPA = 0.09 μg/L | Women represent a growing proportion of agricultural workers and may be uniquely vulnerable to pesticides | [84] |
| USA | Urine (n = 40) | IC-MS/MS | Not reported | LOD GLY = 0.1 μg/L | The study suggests that people living near agricultural areas suffer greater exposure to GLY | [85] |
| USA | Urine (n = 2132) | IC-MS/MS | Not reported | LOD GLY = 0.2 μg/L. Concentrations = 0.141–8.210 μg/L | Urinary GLY has been linked to decreased muscle strength and increased prevalence of physical function limitations in middle-aged and older adults | [86] |
| USA | Urine (n = 368) | MS | Not reported | LOD GLY = 0.2 µg/L | Farmers who did not wear rubber gloves when handling the pesticide had higher urinary GLY concentrations | [87] |
| USA | Urine (n = 2745) | IC-MS/MS | Not reported | LOD GLY = 0.2 μg/L | Increased urinary GLY concentrations were associated with a 46% increase in diabetes prevalence (after adjustment for covariates) | [88] |
| USA | Urine (n = 5224) | IC-MS/MS | Not reported | LOD GLY 0.2 ng/ml | Urinary GLY concentration was associated with a statistical score that was developed to predict the presence of metabolic syndrome | [89] |
| USA | Urine (n = 2842) | IC-MS/MS | GLY concentration 0.31 ng/mL | Not reported | Exposure to GLY may pose a risk to cardiovascular health, with elevated serum insulin levels being a key mediator in this process | [90] |
| USA | Urine (n = 2094) | IC-MS/MS | Not reported | LOD GLY 0.2 µg/L. M = 0.304 μg/g creatinine | Urinary GLY levels have been associated, in a dose-dependent manner, with glycemic dyshomeostasis, especially in individuals with overweight/obesity or central obesity | [91] |
| USA | Urine (n = 1689) | IC-MS/MS | Not reported | LOD GLY 0.2 ng/mL | GLY levels in urine correlate with the severity of arthritis, specifically its osteoarthritis subtype | [92] |
| Country | Sample | Methodology | LOD | LOQ | Outcome (Association) | Reference |
|---|---|---|---|---|---|---|
| Beijing | Blood (n = 100) | GC/MS | LOD (0.4 and 21.6 ng/mL) | LOQs = 1.4 and 71.9 ng/mL. LOQ p,p′-DDD = 0–400.7 ng/g of lipid LOQ p,p′-DDT (3.0–2534.1 ng/g of lipid) LOQ total DDT (25.4–9361.9) | The blood of the analyzed individuals indicated low exposure of the general population of Beijing to several POPs compared to other countries. | [111] |
| Brazil | Breast milk (n = 69) | GC | LOD p,p′-DDE (0.0040 ng/mL) LOD p,p′-DDD (0.0340 ng/mL) LOD p,p′-DDT (0.0040 ng/mL) | LOQ not reported | In a study in Brazil, all breast milk samples were contaminated with DDT and its metabolites and 8.7% of the estimated daily intake (EDI), in terms of total DDT, a value higher than the acceptable daily intake proposed by the WHO. | [112] |
| China | Breast milk (n = 40) | Gel permeation chromatography | LOD p,p′-DDT = 12–380 ng/g LOD p,p′-DDD ≤ 0.51–28 ng/g LOD Σ DDTs = 780–5400 ng/g | LOQ not reported | The most common contaminant found in human breast milk was DDTs, with higher levels than in other countries. An estimate of daily DDT intake by infants from human breast milk was made, and breast milk from Dalian had higher concentrations of DDTs compared to samples from Shenyang, suggesting that infants from Dalian may be at higher risk from these contaminants. | [113] |
| Colombia | Breast milk (n = 60) | GC | LOD PBDEs: 2 a 42 pg/g LOD PCBs: 16 a 99 pg/g LOD OCPs: 8.55 a 89.2 pg/g | LOQ PBDE: 2.5–54.7 pg/g LOQ PCBs: 39–271 pg/g LOQ OCPs: 20.4–259 pg/g | DDT concentrations were found in breast milk samples from women in Colombia at levels comparable to those found in other countries, such as Brazil, Uruguay, Chile and Asian countries. | [114] |
| Delhi | Blood (n = 50) | GC | LOD OCPs: 4 pg/mL | LOQ not reported | The levels of β-HCG found in the blood of the study subjects were associated with the pathogenesis of metabolic syndrome. | [115] |
| France | Blood (n = 386) | GC | HCB = 22.8 ng/g α- HCH = 0.74 ng/g ß-HCH = 27.0 ng/g DDT = 3.8 ng/g DDE = 104.6 ng/g LOD not reported | LOQ not reported | Serum levels of OC pesticides in French adults were higher (except for DDT and DDE) than levels found in American, Canadian, and German populations, and lower than or similar to levels found in other European countries. | [116] |
| India | Blood (n = 18) | GC | M = 32.61 µg/L LOD not reported | LOQ not reported | The levels of total DDT and total HCG found in the blood of the individuals were lower than previous findings from India, which may be due to the restriction on the use of these pesticides in agriculture. | [117] |
| India | Blood (n = 193) | GC/MS | LOD not reported | LOQ p,p-DDE = 330 (273–399) ng/g LOQ p,p-DDE = 579 (521–643) ng/g | The levels of p,p′-DDE in the blood of individuals from Delhi were exceptionally high, which is expected in this locality because the National Vector-borne Disease Control Programme still recommends indoor residual spraying of homes with DDT for the control of malaria, visceral leishmaniasis and other vector-borne diseases. | [118] |
| Israel | Breast milk (n = 52) | GC/MS | M DDT = 168 ng/g M DDE = 147 ng/g M p′p DDT 4.3 ng/g LOD not reported | LOQ not reported | Compounds of DDT, hexachlorocyclohexanes and PCBs were above detectable levels in breast milk samples from Israeli women. Although considered high, the levels were still lower than those reported in European countries included in the WHO/UNEP study. | [103] |
| Korea | Blood (n = 1295) | HRGC/HRMS | p,p′-DDE = M = 128.47 ng/g of lipid LOD not reported | LOQ not reported | More than 60% of the blood samples analyzed had HCB, p,p′-DDT, and p,p′-DDE at concentrations lower than or similar to those reported in Korean nationwide biomonitoring surveys. | [119] |
| Luxembourg | Hair analysis (n = 497) | GC/MS | M γ-HCH = 0.37 pg/mg M lindano = 0.15 pg/mg M HCB = 14.1 pg/mg LOD not reported | LOQ not reported | In unusual hair samples, 17 chemicals were found in concentrations of these chemicals comparable to those found in studies conducted in France and China. The main compounds found were γ-HCH, lindane and HCB. | [120] |
| Morocco | Blood (n = 59) | GC/MS | ∑DDT = 237.9 ng/g. LOD not reported | LOQ not reported | Low levels of POPs were observed in human milk from Moroccan women compared to those from other countries, reflecting the effectiveness of compliance with the Stockholm Convention requirements in the country. | [121] |
| Portugal | Blood (n = 203) | GC | LOD not reported | LOQ p,p′ DDE = 43.5–390.25 µg/L | Blood levels of p,p′DDE ranged from undetected to 390.5 µg/L in urban samples, and lower levels (undetected to 43.5 µg/L and 171.2 µg/L) in rural samples. Portugal presented in this study one of the highest levels of contamination when compared to levels found in Europe, Asia and America. | [122] |
| Saudi Arabia | Umbilical cord /maternal serum (n = 1578) | GC | Umbilical cord and maternal: LOD p,p′-DDE = 0.085 μg/L LOD p,p′-DDD = 0.186 μg/L LOD p,p′-DDT = 0.202 μg/L, Placental tissues: LOD p,p DDE = 0.043 μg/kg dry weight LOD p,p-DDD = 0.093 μg/kg dry weight LOD p,p-DDT = 0.1 μg/kg dry weight | LOQ not reported | p,p′-DDE and p,p′-DDT were found in the umbilical cord and maternal serum, and placental tissues. Based on these findings, the authors report that intrauterine exposure to DDT may have caused a reduction in fetal head circumference, crown-to-heel length, and birth weight. | [123] |
| Spain | Blood (n = 953) | GC | M p,p′-DDE = 822 ng/g M β-HCH = 167 ng/g M HCB = 379 ng/g MLOD not reported | LOQ not reported | Relatively high levels of OCPs were found in the blood of the subjects in this study, mainly in those involved in agricultural practices. Serum HCB levels were particularly high in one of the regions due to industrial use. In general, serum β-HCH and HCB levels were found to be substantially higher than in most Western countries. | [105] |
| Tanzania | Breast milk (n = 95) | GC | LOD p,p′-DDE = 24–2400 ng/g LOD p,p′-DDT = undetected/133 ng/g | LOQ not reported | The estimated daily intake of all DDTs (parent compound and metabolites) exceeded the tolerable daily intake in this study with breast milk. Decreased fetal head circumference was associated with high levels of p,p′-DDE in female infants, suggesting that exposure to OCs during pregnancy may influence fetal growth. | [124] |
| Thailand | Blood (n = 97) | GC | LOD p′, p′-DDE = 1325.1–12,683.7 ng/g | LOQ not reported | The levels of p′,p′-DDE found in the blood of the research subjects were relatively higher when compared to other studies. | [125] |
| Country | Sample | Methodology | Levels Found | LOD | LOQ | Outcome (Association) | Reference |
|---|---|---|---|---|---|---|---|
| China | Urine (pregnant women, n ≈ 1100; Sheyang Birth Cohort) | GC-MS/MS | Carbofuranphenol detected in 96.6% of samples; GM ≈ 0.81 µg/L (IQR: 0.29–2.07 µg/L); values up to 395.4 µg/L | 0.01 µg/L | 0.05 µg/L | Urinary concentrations associated with lower birth weight and reduced length of newborns | [168] |
| China | Urine (children age 3, n ≈ 300; SMBCS Cohort) | GC-MS/MS | Carbofuranphenol GM ≈ 0.70 µg/L; P95 ≈ 5.6 µg/L | 0.01 µg/L | 0.05 µg/L | Carbamate exposure associated with worse neurobehavioral performance in young children | [169] |
| China | Urine (children age 7, n ≈ 400; SMBCS Cohort) | GC-MS/MS | Carbofuranphenol median ≈ 0.56 µg/L; P95 ≈ 4.9 µg/L | 0.01 µg/L | 0.05 µg/L | Early exposure to carbamates associated with reduced IQ at age 7 | [170] |
| China | Urine (children age 7, n ≈ 420; SMBCS Cohort) | GC-MS/MS | Carbofuranphenol median ≈ 0.62 µg/L; range 0.05–9.4 µg/L | 0.01 µg/L | 0.05 µg/L | Carbamate exposure associated with delayed physical development (lower height and weight) | [171] |
| France | Urine (children, n = 500) | UPLC-MS/MS | Propoxur (P95) = 0.05 µg/L; 2-isopropoxyphenol (P95) = 0.30 µg/L; carbofuranphenol < LOQ (máx = 12.2 µg/L) | Propoxur/2-IPP = 0.02 µg/L; carbofuranphenol = 1 µg/L | Propoxur/2-IPP = 0.05 µg/L; carbofuranphenol = 5 µg/L | Low frequency of quantification in the general population | [62] |
| France | Urine (adults, n = 899) | UPLC-MS/MS | Propoxur (P95) = 0.13 µg/L; 2-isopropoxyphenol (P95) = 0.19 µg/L; carbofuranphenol < LOQ (máx = 13.4 µg/L) | Propoxur/2-IPP = 0.02 µg/L; carbofuranphenol = 1 µg/L | Propoxur/2-IPP = 0.05 µg/L; carbofuranphenol = 5 µg/L | Low levels in the general population; quantification in 1.7–8.5% of adults | [62] |
| India | Blood/urine (n = 42) | LC-MS/MS | Carbaryl/Propoxur = 0.3 to 2.5 µg/L | Not reported | LOQ = 0.1 µg/L | Elevated carbamate levels were observed among agricultural workers, suggesting occupational exposure | [167] |
| Israel | Urine (n = 42) | GC-MS | 1-naphthol = detected in 100% of urine samples IPPX = detectability less than 20%. | Not reported | Not reported | Higher 1-naphthol levels compared to other populations reported in the literature- No statistically significant association with vegetarian diet- IPPX with levels too low for association analyses | [148] |
| Country | Sample | Metodology | LOQ | LOD | Outcome (Association) | Reference |
|---|---|---|---|---|---|---|
| Brazil | Urine (n = 188) | GC/MS | LOQ DETP = 0.078 μgL−1 LOQDEDTP = 0.0431 μgL−1 | LOD DETP = 0.023 μgL−1 LOD DEDTP = 0.0129 μgL−1 | Decrease in AChE and DNA damage, problems in cell division, changes in proliferative potential, and cell death | [191] |
| China | Serum (n = 325) | GC/MS | LOQ DMTP = 2.27 μg/L LOQ DEP = 11.20 μg/L LOQ DETP = 1.99 μg/L | LOD DMP = 9.81 μg/L LOD DMTP = 0.79 μg/L LOD DEP = 5.00 μg/L LOD DETP = 0.78 μg/L LOQ DMP = 21.40 μg/L | Association with FT4 and TSH. Changes in thyroid function in pregnant women | [185] |
| China | Semen/ Urine (n = 75) | GC | Not reported | LOD p-nitrophenol = 0.018 mg/L | When comparing exposed and unexposed works, the analysis of the sample of the first spermatozoa showed worse characteristics with decreased quantity and motility | [202] |
| Egypt | Follicular fluid (n = 300) | GC/MS | Not reported | LOD Chlorpyrifos = 0.098 μg/L LOD Diazinon = 0.055 μg/L LOD Malathion = 0.024 μg/L LOD Pretilachlor = 0.003 μg/L LOD DDT = 0.005 μg/L LOD Lindane = 0.083 μg/L | Decrease in the oocytes retrieved. High concentrations associated with lower implantation | [205] |
| Greece | Blood/hair (n = 1) | GC/MS | LOQ DMP = 1289.4 pg/mg LOQ DEP = 709.4 pg/mg, LOQ opDDE = 484.0 pg/mg, LOQ ppDDE = 526.6 pg/mg, LOQ opDDD = 448.4 pg/mg, LOQ ppDDD + opDDT = 259.9 LOQ pg/mg, ppDDT = 573.7 pg/mg | Not reported | Exposure association with motor neuron disease | [192] |
| Mexico | Urine/ blood (n = 148) | GC-liquid/GC | Not reported | LOD ΣDMP = 1.45 μmol/g creatinine LOD ΣDEP = 0.31 μmol/g creatinine LOD ΣDAP = 1.99 μmol/g creatinine LOD p,p-DDE = 6.22 ng/mL | OPs alter the amounts of thyroid hormone, especially in those with PON1 192RR polymorphism or even decreased PON1 enzyme activity | [184] |
| Portugal | Urine (n = 85) | colorimetric kit | Not reported | LOD 2.23 μg/mmol | Increase in DNA strand breaks and alterations in the percentage of B lymphocytes | [28] |
| Spain | Urine (n = 116) | GC/MS | LOQ DEDTP = 0.01 µg/L LOQ DAP = 0.1 µg/L | LOD DMP = 1.3 µg/L LOD DMTP = 1.0 µg/L LOD DMDTP = 0.08 µg/L LOD DEP = 2.6 µg/L LOD DETP = 0.94 µg/L LOD DEDTP = 0.05 µg/L LOD ∑DAP = 75.5 nmol/L LOD ∑DAP = 100 mg/L | OPs have been associated with male infertility, as they affect the biosynthesis of hormones responsible for reproduction, consequently reducing the number of sperm, as well their mobility | [206] |
| Thailand | Urine/ Blood (n = 150) | GC | LOQ DETP = 1 μg/L LOQ DMP = 25 μg/L | LOD DMP = 5.0 μg/g LOD DMTP = 0.4 μg/g LOD DMDTP = 0.36 μg/g LOD DEP = 0.51 μg/g LOD DEDTP = 0.4 μg/g LOD DETP = 0.26 μg/g LOD DETP = 0.1 μg/L LOD DMP = 2.5 μg/L | Muscle weakness in exposed individuals | [193] |
| USA | Urine (n = 26) | GC/MS | LOQ AZM = 5.30 μg/g LOQ DMP = 4.0 ng/mL LOQ DEP = 2.0 ng/mL LOQ DMTP = 2.2 ng/mL LOQ DMDTP = 1.6 ng/mL LOQ DETP = 1.6 ng/Ml | LOD DMP/DEP/DMTP/DMDTP/DETP = 0.01 μg/gm LOD AZM = 0.10 μg/gm | Neurological and behavioral assessment using questionnaires applied to works exposed to OPs indicated worse performance compared to those who did not work with crops, therefore not exposed | [207] |
| USA | Urine (n = 652) | GC/FPD | Not reported | LOD MP ≥ 100 ppb | The assessment test applied to verify neurological and motor performance showed that children exposed to OPs have the worst results | [208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagundes, T.R.; Coradi, C.; Vacario, B.G.L.; de Morais Valentim, J.M.B.; Panis, C. Global Evidence on Monitoring Human Pesticide Exposure. J. Xenobiot. 2025, 15, 187. https://doi.org/10.3390/jox15060187
Fagundes TR, Coradi C, Vacario BGL, de Morais Valentim JMB, Panis C. Global Evidence on Monitoring Human Pesticide Exposure. Journal of Xenobiotics. 2025; 15(6):187. https://doi.org/10.3390/jox15060187
Chicago/Turabian StyleFagundes, Tatiane Renata, Carolina Coradi, Beatriz Geovana Leite Vacario, Juliana Maria Bitencourt de Morais Valentim, and Carolina Panis. 2025. "Global Evidence on Monitoring Human Pesticide Exposure" Journal of Xenobiotics 15, no. 6: 187. https://doi.org/10.3390/jox15060187
APA StyleFagundes, T. R., Coradi, C., Vacario, B. G. L., de Morais Valentim, J. M. B., & Panis, C. (2025). Global Evidence on Monitoring Human Pesticide Exposure. Journal of Xenobiotics, 15(6), 187. https://doi.org/10.3390/jox15060187

