DNA Damage and Bisphenol Levels in Chronic Kidney Disease Patients Undergoing Hemodialysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Determination of BP Levels in Blood
2.3.1. Instrumentation
2.3.2. Sample Treatment
2.3.3. Reagents and Chemicals
2.4. Determination of Genomic and Chromosomal Damage
- Comet (Single-Cell Gel Electrophoresis—SCGE) assay
- Micronucleus assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Study Population
3.2. Bisphenol Levels in the Blood of HD-CKD Patients Included in the Study
3.3. Genomic Damage in HD-CKD Patients Before and After Moving to Use BP-Free Dialyzers
3.4. Factors Modulating the DNA Damage Decrease (Comet Assay) When Moving to BP-Free Dialyzers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, L.; Guo, S.; Liu, Y.; Zhou, Y.; Liu, Y.; Zheng, X.; Yu, X.; Shuai, P. Global, regional, and national burden of chronic kidney disease and its underlying etiologies from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. BMC Public Health 2025, 25, 636. [Google Scholar] [CrossRef]
- Wieringa, F.P.; Suran, S.; Søndergaard, H.; Ash, S.; Cummins, C.; Chaudhuri, A.R.; Irmak, T.; Gerritsen, K.; Vollenbroek, J. The future of technology-based kidney replacement therapies: An update on portable, wearable, and implantable artificial kidneys. Am. J. Kidney Dis. 2025, 85, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Pawelzik, S.C.; Witasp, A.; Arefin, S.; Hobson, S.; Kublickiene, K.; Shiels, P.G.; Bäck, M.; Stenvinkel, P. Inflammation and premature ageing in chronic kidney disease. Toxins 2020, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, L.; Olsen, M.; Tajouri, L.; Beaver, D.; Hudson, C.; Alghafri, R.; McKirdy, S.; Goldsworthy, A.J. Plastic induced urinary tract disease and dysfunction: A scoping review. Expo. Sci. Environ. Epidemiol. 2024, 35, 770–784. [Google Scholar] [CrossRef]
- de Oliveira, R.B.; Pelepenko, L.E.; Masaro, D.A.; Lustosa, G.M.M.M.; de Oliveira, M.C.; Roza, N.A.V.; Marciano, M.A.; Dos Reis, L.M.; Kamel, S.; Louvet, L.; et al. Effects of microplastics on the kidneys: A narrative review. Kidney Int. 2024, 106, 400–407. [Google Scholar] [CrossRef]
- Mas, S.; Bosch-Panadero, E.; Abaigar, P.; Camarero, V.; Mahillo, I.; Civantos, E.; Sanchez-Ospina, D.; Ruiz-Priego, A.; Egido, J.; Ortiz, A.; et al. Influence of dialysis membrane composition on plasma bisphenol A levels during online hemodiafiltration. PLoS ONE 2018, 13, e0193288. [Google Scholar] [CrossRef]
- Bacle, A.; Dupuis, A.; Belmouaz, M.; Bauwens, M.; Cambien, G.; Venisse, N.; Pierre-Eugene, P.; Potin, S.; Migeot, V.; Ayraud-Thevenot, S. Overexposure to bisphenol A and its chlorinated derivatives of patients with end-stage renal disease during online hemodiafiltration. Biomolecules 2019, 9, 403. [Google Scholar] [CrossRef]
- Murakami, K.; Ohashi, A.; Hori, H.; Hibiya, M.; Shoji, Y.; Kunisaki, M.; Akita, M.; Yagi, A.; Sugiyama, K.; Shimozato, S.; et al. Accumulation of bisphenol A in hemodialysis patients. Blood Purif. 2007, 25, 290–294. [Google Scholar] [CrossRef]
- Huang, H.; Lei, P.; Yu, H.; Du, J.; Wu, B.; Wang, H.; Yang, Q.; Cheng, Y.; Sun, D.; Wan, L. Micro/nano plastics in the urinary system: Pathways, mechanisms, and health risks. Environ. Int. 2024, 193, 109109. [Google Scholar] [CrossRef]
- Fricano, A.; Bianchi, F.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Simonetti, G.; Buiarelli, F. Determination of additives as markers of microplastic contamination in the environment. Talanta 2025, 285, 127344. [Google Scholar] [CrossRef]
- Luca, B.G.; Almeida, P.P.; Junior, R.R.; Soares, D.J.S.; Frantz, E.D.C.; Miranda-Alves, L.; Stockler-Pinto, M.B.; Machado Dos Santos, C.; Magliano, D.C. Environmental contamination by bisphenols: From plastic production to modulation of the intestinal morphophysiology in experimental models. Food Chem. Toxicol. 2025, 197, 115280. [Google Scholar] [CrossRef]
- Gonkowski, S.; Makowska, K. Environmental pollution with bisphenol-A and phthalates-a serious risk to human and animal health. Int. J. Environ. Res. Public Health 2022, 19, 3983. [Google Scholar] [CrossRef]
- Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med. 2020, 25, 29. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, E.M.; Ehlers, S.M.; Dick, J.T.A.; Sigwart, J.D.; Linse, K.; Dick, J.J.; Kiriakoulakis, K. High Abundances of microplastic pollution in deep-sea sediments: Evidence from Antarctica and the Southern Ocean. Environ. Sci. Technol. 2020, 54, 13661–13671. [Google Scholar] [CrossRef] [PubMed]
- Jurek, A.; Leitner, E. Comparing different gas chromatographic methods for the quantification of bisphenol A (BPA) trace levels in paper and cardboard products from the market. Food Addit. Contam. Part A 2015, 32, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Raysyan, A.; Zwigart, S.D.; Eremin, S.A.; Schneider, R.J. BPA Endocrine disruptor detection at the cutting Edge: FPIA and ELISA immunoassays. Biosensors 2023, 13, 664. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Rubio, S.; Pérez-Bendito, D. Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A 2009, 1216, 449–469. [Google Scholar] [CrossRef]
- González, N.; Cunha, S.C.; Monteiro, C.; Fernandes, J.O.; Marquès, M.; Domingo, J.L.; Nadal, M. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator. Environ. Res. 2019, 176, 108576. [Google Scholar] [CrossRef]
- Kiejza, D.; Kotowska, U.; Polińska, W.; Karpińska, J. USAEME-GC/MS Method for easy and sensitive determination of nine bisphenol analogues in water and wastewater. Molecules 2022, 27, 4977. [Google Scholar] [CrossRef]
- Acevedo, J.M.; Kahn, L.G.; Pierce, K.A.; Carrasco, A.; Rosenberg, M.S.; Trasande, L. Temporal and geographic variability of bisphenol levels in humans: A systematic review and meta-analysis of international biomonitoring data. Environ. Res. 2025, 264 Pt 1, 120341. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, T.; Shi, Y.; Zhuang, F.; Lu, J.; Zhu, Q.; Ding, F. Bisphenol A analogs in patients with chronic kidney disease and dialysis therapy. Ecotoxicol. Environ. Saf. 2019, 185, 109684. [Google Scholar] [CrossRef]
- Quiroga, B. Strategies to protect dialysis patients against bisphenol A. Biomolecules 2021, 11, 1375. [Google Scholar] [CrossRef] [PubMed]
- Cambien, G.; Dupuis, A.; Belmouaz, M.; Bauwens, M.; Bacle, A.; Ragot, S.; Migeot, V.; Albouy, M.; Ayraud-Thevenot, S. Bisphenol A and chlorinated derivatives of bisphenol A assessment in end stage renal disease patients: Impact of dialysis therapy. Ecotoxicol. Environ. Saf. 2024, 270, 115880. [Google Scholar] [CrossRef] [PubMed]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 2008, 300, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Doherty, L.F.; Bromer, J.G.; Zhou, Y.; Aldad, T.S.; Taylor, H.S. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: An epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010, 1, 146–155. [Google Scholar] [CrossRef]
- Li, M.; Bi, Y.; Qi, L.; Wang, T.; Xu, M.; Huang, Y.; Xu, Y.; Chen, Y.; Lu, J.; Wang, W.; et al. Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults. Kidney Int. 2012, 81, 1131–1139. [Google Scholar] [CrossRef]
- Usman, A.; Ikhlas, S.; Ahmad, M. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol. Lett. 2019, 312, 222–227. [Google Scholar] [CrossRef]
- Thoene, M.; Dzika, E.; Gonkowski, S.; Wojtkiewicz, J. Bisphenol S in food causes hormonal and obesogenic effects comparable to or worse than bisphenol A: A literature review. Nutrients 2020, 12, 532. [Google Scholar] [CrossRef]
- Carbone, M.; Arron, S.T.; Beutler, B.; Bononi, A.; Cavenee, W.; Cleaver, J.E.; Croce, C.M.; D’Andrea, A.; Foulkes, W.D.; Gaudino, G.; et al. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat. Rev. Cancer 2020, 20, 533–549. [Google Scholar] [CrossRef]
- Corredor, Z.; Stoyanova, E.; Rodríguez-Ribera, L.; Coll, E.; Silva, I.; Diaz, J.M.; Ballarin, J.; Marcos, R.; Pastor, S. Genomic damage as a biomarker of chronic kidney disease status. Environ. Mol. Mutagen. 2015, 56, 301–312. [Google Scholar] [CrossRef]
- Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E.E.; Bonassi, S.; Boutet-Robinet, E.; Brunborg, G.; et al. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc. 2023, 18, 929–989. [Google Scholar] [CrossRef]
- McNamee, J.; McLean, J.; Ferrarotto, C.; Bellier, P. Comet assay: Rapid processing of multiple samples. Mutat. Res. Toxicol. Environ. Mutagen. 2000, 466, 63–69. [Google Scholar] [CrossRef]
- Milić, M.; Ceppi, M.; Bruzzone, M.; Azqueta, A.; Brunborg, G.; Godschalk, R.; Koppen, G.; Langie, S.; Møller, P.; Teixeira, J.P.; et al. The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108371. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, F.; Tripepi, G. Risk factors of chronic kidney disease progression: Between old and new concepts. J. Clin. Med. 2024, 13, 678. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Panadero, E.; Mas, S.; Sanchez-Ospina, D.; Camarero, V.; Pérez-Gómez, M.V.; Saez-Calero, I.; Abaigar, P.; Ortiz, A.; Egido, J.; González-Parra, E. The choice of hemodialysis membrane affects bisphenol A levels in blood. J. Am. Soc. Nephrol. 2016, 27, 1566–1574. [Google Scholar] [CrossRef]
- Domenech, J.; Annangi, B.; Marcos, R.; Hernández, A.; Catalán, J. Insights into the potential carcinogenicity of micro- and nano-plastics. Mutat. Res./Rev. Mutat. Res. 2023, 791, 108453. [Google Scholar] [CrossRef]
- Stopper, H.; Bankoglu, E.E.; Marcos, R.; Pastor, S. Micronucleus frequency in chronic kidney disease patients: A review. Mutat. Res. Rev. Mutat. Res. 2020, 786, 108340. [Google Scholar] [CrossRef]
- Ďurovcová, I.; Kyzek, S.; Fabová, J.; Makuková, J.; Gálová, E.; Ševčovičová, A. Genotoxic potential of bisphenol A: A review. Environ. Pollut. 2022, 306, 119346. [Google Scholar] [CrossRef]
- Yüzbaşıoğlu, Y.; Hazar, M.; Aydın Dilsiz, S.; Yücel, C.; Bulut, M.; Cetinkaya, S.; Erdem, O.; Basaran, N. Biomonitoring of oxidative-stress-related genotoxic damage in patients with end-stage renal disease. Toxics 2024, 12, 69. [Google Scholar] [CrossRef]
- Rodríguez-Ribera, L.; Corredor, Z.; Silva, I.; Díaz, J.M.; Ballarín, J.; Marcos, R.; Pastor, S.; Coll, E. Vitamin E-coated dialysis membranes reduce the levels of oxidative genetic damage in hemodialysis patients. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 815, 16–21. [Google Scholar] [CrossRef]
- Corredor, Z.; Rodríguez-Ribera, L.; Silva, I.; Díaz, J.M.; Ballarín, J.; Marcos, R.; Coll, E.; Pastor, S. Levels of DNA damage in peripheral blood lymphocytes of patients undergoing standard hemodialysis vs on-line hemodiafiltration: A comet assay investigation. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 808, 1–7. [Google Scholar] [CrossRef]
- Coll, E.; Stoyanova, E.; Rodríguez-Ribera, L.; Solozábal, M.; Pastor, S.; Silva, I.; Diaz, J.M.; Ballarin, J.; Xamena, N.; Marcos, R. Genomic damage as an independent predictor marker of mortality in hemodialysis patients. Clin. Nephrol. 2013, 80, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Corredor, Z.; Rodríguez-Ribera, L.; Coll, E.; Montañés, R.; Diaz, J.M.; Ballarin, J.; Marcos, R.; Pastor, S. Unfermented grape juice reduces genomic damage on patients undergoing hemodialysis. Food Chem. Toxicol. 2016, 92, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.G.; Tungekar, B.; Adiga, D.; Chakrabarty, S.; Rai, P.S.; Kabekkodu, S.P. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. Biochim. Biophys. Acta Mol. Cell Res. 2023, 1870, 119505. [Google Scholar] [CrossRef] [PubMed]
- Seewoo, B.J.; Wong, E.V.S.; Mulders, Y.R.; Gozt, A.; Elagali, A.; Symeonides, C.; Dunlop, S.A. A systematic evidence map protocol for mapping global exposure to bisphenols and their alternatives and social and environmental justice implications. Environ. Int. 2024, 194, 109091. [Google Scholar] [CrossRef]
- Stanojević, M.; Sollner Dolenc, M. Mechanisms of bisphenol A and its analogs as endocrine disruptors via nuclear receptors and related signaling pathways. Arch. Toxicol. 2025, 99, 2397–2417. [Google Scholar] [CrossRef]
- Wu, L.H.; Liu, Y.X.; Zhang, Y.J.; Jia, L.L.; Guo, Y. Occurrence of bisphenol diglycidyl ethers and bisphenol analogs, and their associations with DNA oxidative damage in pregnant women. Environ. Res. 2023, 227, 115739. [Google Scholar] [CrossRef]
- Li, Y.J.; Liu, A.X.; Zeng, J.Y.; Miao, Y.; Zhang, M.; Liu, X.Y.; Yang, W.; Li, R.C.; Zhu, J.Q.; Liu, C.J.; et al. Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage. J. Hazard. Mater. 2025, 487, 137157. [Google Scholar] [CrossRef]
Compound | Retention Time (min) | Quantitative Transition (m/z) | Qualitative Transition (m/z) | Qualitative Transition (m/z) |
---|---|---|---|---|
BPAF | 7.218 | 378 → 336 | 267 → 227 | 336 → 267 |
BPF 13C6 | 7.853 | 206 → 113 | 248 → 206 | 206 → 107 |
BPF | 7.857 | 200 → 107 | 242 → 107 | 200 → 94 |
BPAd16 | 8.215 | 242 → 224 | 242 → 125 | 224 → 97 |
BPA | 8.256 | 228 → 213 | 228 → 119 | 213 → 91 |
BPB | 8.653 | 213 → 119 | 213 → 91 | 255 → 119 |
BPS 13C12 | 10.151 | 304 → 262 | 262 → 147 | 262 → 116 |
BPS | 10.155 | 250 → 141 | 250 → 110 | 292 → 110 |
n = 25 | Mean (SE) | Range |
---|---|---|
Age (years) | 75 (14) | 39–92 |
Weight (kg) | 65.61 (11.07) | 42–90 |
Height (m) | 1.65 (0.08) | 1.49–1.79 |
Body mass index (kg/m2) | 24.16 (3.90) | 15–30 |
HD time (months) | 40.96 (47.88) | 3–240 |
Hours per week HD | 10.71 (1.65) | 6–12 |
Charlson comorbidity index | 7.32 (2.36) | 3–10 |
n = 25 | Yes | No |
Previous kidney transplant | 6 (24%) | 19 (76%) |
Diuresis residual | 6 (24%) | 19 (76%) |
Smoking active | 6 (24%) | 19 (76%) |
Ex-smoking | 11(44%) | 14 (56%) |
High blood pressure | 24 (96%) | 1 (4%) |
Diabetes mellitus | 8 (32%) | 17 (68%) |
Dyslipidemia | 19 (76%) | 6 (24%) |
Cardiovascular Disease | 12 (48%) | 13 (52%) |
Previous neoplasms | 10 (40%) | 15 (60%) |
Catheter/Fistula | 17 (68%) | 8 (32%) |
n: 25 | First Sample | Second Sample | p-Value | |
---|---|---|---|---|
BPA (µg/L) | Mean (SD) | 0.50 (0.21) | 0.71 (0.68) | 0.554 |
Range | 0.14–0.95 | 0.16–3.20 | ||
BPAF (µg/L) | Mean (SD) | 0.46 (0.75) | 0.14 (0.61) | 0.025 * |
Range | 0.01–2.79 | 0.01–3.13 | ||
BPF (µg/L) | Mean (SD) | 0.97 (1.41) | 0.92 (0.96) | 0.439 |
Range | 0.01–6.50 | 0.00–4.24 | ||
BPB (µg/L) | Mean (SD) | 0.01 (0.00) | 0.05 (0.23) | 1 |
Range | 0.01–0.01 | 0.01–1.17 | ||
BPS (µg/L) | Mean (SD) | 0.10 (0.48) | 0.18 (0.41) | 0.855 |
Range | 0.01–2.44 | 0.01–1.22 | ||
ALL BPs (µg/L) | Mean (SD) | 1.93 (1.39) | 1.77 (1.61) | 0.6 |
Range | 0.29–6.80 | 0.45–7.45 |
n: 25 | First Sample | Second Sample | p-Value * | |
---|---|---|---|---|
DNA damage | Mean (SD) | 10.01 (1.71) | 7.79 (0.86) | <0.001 |
Range | 7.04–14.54 | 6.12–9.54 | ||
Oxidative DNA damage | Mean (SD) | 4.99 (1.99) | 5.72 (2.60) | 0.237 |
Range | 1.67–8.53 | 1.79–14.79 |
n: 25 | First Sample | Second Sample | p-Value * | |
---|---|---|---|---|
MN | Mean (SD) | 10.20 (5.66) | 12.69 (10.35) | 0.361 |
Range | 4.00–25.00 | 2.00–46.00 | ||
BNMN | Mean (SD) | 9.44 (5.25) | 11.35 (3.40) | 0.376 |
Range | 4.00–25.00 | 2.00–34.00 | ||
CBPI | Mean (SD) | 1.50 (0.18) | 1.55 (0.16) | 0.157 |
Range | 1.18–1.89 | 1.19–1.81 |
n: 25 | Coefficient | LI IC 95% | LS IC 95% | p-Value |
---|---|---|---|---|
Initial DNA damage levels | 0.85 | 0.61 | 1.09 | <0.001 |
Time in HD (≥24 months) | 1.04 | 0.23 | 1.84 | 0.017 |
Hour/week in HD (≥12 h) | −0.35 | −1.01 | 0.32 | 0.268 |
Diabetes (Si) | 1.13 | 0.30 | 1.96 | 0.013 |
Neoplasia (SI) | −0.50 | −1.21 | 0.21 | 0.145 |
ECV (Si) | −0.74 | −1.52 | −0.04 | 0.050 |
Kt/V (≥1.3) | 0.34 | −0.37 | 1.05 | 0.309 |
CRP (≥5) | 0.69 | −0.01 | 1.39 | 0.054 |
Pre-albumin | −3.40 | −9.31 | 2.52 | 0.226 |
Charlson index ≥ 8 | −0.71 | −1.51 | 0.08 | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, C.E.; Vela, L.; Nadal, M.; González, N.; Marcos, R.; Hernández, A.; Pastor, S.; Coll, E. DNA Damage and Bisphenol Levels in Chronic Kidney Disease Patients Undergoing Hemodialysis. J. Xenobiot. 2025, 15, 167. https://doi.org/10.3390/jox15050167
Ruiz CE, Vela L, Nadal M, González N, Marcos R, Hernández A, Pastor S, Coll E. DNA Damage and Bisphenol Levels in Chronic Kidney Disease Patients Undergoing Hemodialysis. Journal of Xenobiotics. 2025; 15(5):167. https://doi.org/10.3390/jox15050167
Chicago/Turabian StyleRuiz, Cesar Emilio, Lourdes Vela, Martí Nadal, Neus González, Ricard Marcos, Alba Hernández, Susana Pastor, and Elisabeth Coll. 2025. "DNA Damage and Bisphenol Levels in Chronic Kidney Disease Patients Undergoing Hemodialysis" Journal of Xenobiotics 15, no. 5: 167. https://doi.org/10.3390/jox15050167
APA StyleRuiz, C. E., Vela, L., Nadal, M., González, N., Marcos, R., Hernández, A., Pastor, S., & Coll, E. (2025). DNA Damage and Bisphenol Levels in Chronic Kidney Disease Patients Undergoing Hemodialysis. Journal of Xenobiotics, 15(5), 167. https://doi.org/10.3390/jox15050167