Multisampling Strategies for Determining Contaminants of Emerging Concern (CECs) in the Marine Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Monitoring Sites
2.3. Sampling
2.3.1. Grab Water Sampling (Spatial and Time-Line Analyses)
2.3.2. Biofilm Mesocosm Sampling
2.3.3. Passive Sampling
2.4. Sample Treatment
2.5. Instrumental Analysis (LC-MS/MS)
2.6. Quality Assurance and Quality Control
2.7. Statistical Treatment
3. Results and Discussion
3.1. Method Validation
3.2. Spatial Occurrence of Contaminants of Emerging Concern
3.3. Time-Line Analysis of CECs
3.4. Biofilm Mesocosms as a New Contaminant Monitoring Tool
3.5. Passive Sampling and Sampling Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CECs | Contaminants of emerging concern |
PS | Passive sampling |
SPE | Solid-phase extraction |
HPLC-MS | High-performance liquid chromatography couple with triple quadrupole mass spectrum |
UVF | Ultraviolet filter |
LOD | Limit of detection |
LOQ | Limit of quantification |
ME | Matrix effect |
RSD | Relative standard deviation |
r2 | Correlation coefficient |
N.R. | No risk |
L.R. | Low risk |
M.R. | Moderate risk |
H.R. | High risk |
References
- Oberbeckmann, S.; Loeder, M.G.J.; Gerdts, G.; Osborn, A.M. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 2014, 90, 478–492. [Google Scholar] [CrossRef]
- Carvalho Ferreira, H.; Lôbo-Hajdu, G. Microplastics in coastal and oceanic surface waters and their role as carriers of pollutants of emerging concern in marine organisms. Mar. Environ. Res. 2023, 188, 106021. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Godlewska, K.; Stepnowski, P.; Paszkiewicz, M. Carbon nanotube-passive samplers as novel tools for sampling and determining micropollutants in the aquatic environment. Sci. Total Environ. 2022, 836, 155551. [Google Scholar] [CrossRef]
- Charriau, A.; Lissalde, S.; Poulier, G.; Mazzella, N.; Buzier, R.; Guibaud, G. Overview of the Chemcatcher® for the passive sampling of various pollutants in aquatic environments Part A: Principles, calibration, preparation and analysis of the sampler. Talanta 2016, 148, 556–571. [Google Scholar] [CrossRef]
- Cole, R.F.; Mills, G.A.; Parker, R.; Bolam, T.; Birchenough, A.; Kröger, S.; Fones, G.R. Trends in the analysis and monitoring of organotins in the aquatic environment. Trends Environ. Anal. Chem. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Bivins, A.; Kaya, D.; Ahmed, W.; Brown, J.; Butler, C.; Greaves, J.; Leal, R.; Maas, K.; Rao, G.; Sherchan, S.; et al. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Sci. Total Environ. 2022, 835, 155347. [Google Scholar] [CrossRef]
- González-Gaya, B.; Cherta, L.; Nozal, L.; Rico, A. An optimized sample treatment method for the determination of antibiotics in seawater, marine sediments and biological samples using LC-TOF/MS. Sci. Total Environ. 2018, 643, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.R.; Skjolding, L.M.; Sanchez, D.F.; Bernar Ntynez, A.G.; Ivanova, Y.D.; Feilberg, K.L.; Chhetri, R.K.; Andersen, H.R. Offshore produced water treatment by a biofilm reactor on the seabed: The effect of temperature and matrix characteristics. J. Environ. Manag. 2024, 365, 121391. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Alonso, M.B.; Bertozzi, C.P.; Marigo, J.; Barbosa, L.; Cremer, M.; Secchi, E.R.; Azevedo, A.; Lailson-Brito, J., Jr.; Torres, J.P.M.; et al. First Determination of UV Filters in Marine Mammals. Octocrylene Levels in Franciscana Dolphins. Environ. Sci. Technol. 2013, 47, 5619–5625. [Google Scholar] [CrossRef] [PubMed]
- Fenni, F.; Sunyer-Caldú, A.; Ben Mansour, H.; Diaz-Cruz, M.S. Contaminants of emerging concern in marine areas: First evidence of UV filters and paraben preservatives in seawater and sediment on the eastern coast of Tunisia. Environ. Pollut. 2022, 309, 119749. [Google Scholar] [CrossRef]
- Iancu, V.-I.; Chiriac, L.F.; Paun, I.; Dinu, C.; Pirvu, F.; Cojocary, V.; Tenea, A.G.; Cimpean, I.A. Pharmaceutical Contaminants Occurrence and Ecological Risk Assessment Along the Romanian Black Sea Coast. Toxics 2025, 13, 498. [Google Scholar] [CrossRef]
- Boti, V.; Toli, V.; Efthymiou, C.; Albanis, T. Screening of Commonly Used Antibiotics in Fresh and Saltwater Samples Impacted by Aquacultures: Analytical Methodology, Occurrence and Environmental Risk Assessment. Sustainability 2023, 15, 9199. [Google Scholar] [CrossRef]
- Jeppe, K.; Kellar, C.R.; Marshall, S.; Colombo, V.; Sinclair, G.M.; Pettigrove, V. Bifenthrin Causes Toxicity in Urban Stormwater Wetlands: Field and Laboratory Assessment Using Austrochiltonia (Amphipoda). Environ. Sci. Technol. 2017, 51, 7254–7262. [Google Scholar] [CrossRef]
- Downs, C.A.; Diaz-Cruz, M.S.; White, W.T.; Rice, M.; Jim, L.; Punihaole, C.; Dant, M.; Gautam, K.; Woodley, C.M.; Walsh, K.O.; et al. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. J. Hazard. Mater. 2022, 438, 129546. [Google Scholar] [CrossRef] [PubMed]
- Munaron, D.; Mérigot, B.; Derolez, V.; Tapie, N.; Budzinski, H.; Fiandrino, A. Evaluating pesticide mixture risks in French Mediterranean coastal lagoons waters. Sci. Total Environ. 2023, 867, 161303. [Google Scholar] [CrossRef] [PubMed]
- Postigo, C.; Ginebreda, A.; Barbieri, M.V.; Barceló, D.; Martín-Alonso, J.; de la Cal, A.; Boleda, M.R.; Otero, N.; Carrey, R.; Solá, V.; et al. Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: The lower Llobregat River basin case study (Barcelona, Spain). Sci Total Environ. 2021, 755, 142377. [Google Scholar] [CrossRef]
- Campo, J.; Masiá, A.; Blasco, C.; Picó, Y. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J. Hazard. Mater. 2013, 263, 146–157. [Google Scholar] [CrossRef]
- NORMAN Network. NORMAN Database System (NDS). Available online: https://www.norman-network.com/nds/ (accessed on 15 June 2025).
- Aguirre-Martínez, G.; DelValss, T.A.; Martín-Díaz, M.L. General stress, detoxification pathways, neurotoxicity and genotoxicity evaluated in Ruditapes philippinarum exposed to human pharmaceuticals. Ecotoxicol. Environ. Saf. 2016, 124, 18–31. [Google Scholar] [CrossRef]
- Vieira, L.R.; Soares, A.M.V.M.; Freitas, R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. Chemosphere 2022, 286, 131675. [Google Scholar] [CrossRef]
- de Paula, V.C.S.; Gomes, M.F.; Martins, L.R.R.; Yamamoto, F.Y.; de Freitas, A.M. Acute toxicity characterization of organic UV-filters and chronic exposure revealing multigenerational effects in Daphnia magna. Ecotoxicology 2022, 31, 1413–1425. [Google Scholar] [CrossRef]
- Ka, Y.; Ji, K. Waterborne exposure to avobenzone and octinoxate induces thyroid endocrine disruption in wild-type and thraα−/− zebrafish larvae. Ecotoxicology 2022, 31, 948–955. [Google Scholar] [CrossRef]
- Klopcic, I.; Dolenc, M.S. Endocrine activity of AVB, 2MR, BHA, and their mixtures. Toxicol. Sci. 2017, 240–251. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, N.; Jiang, S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci. Total Environ. 2022, 806, 150681. [Google Scholar] [CrossRef] [PubMed]
- Mundy, P.C.; Carte, M.F.; Brander, S.M.; Hung, T.-C.; Fangue, N.; Connon, R.E. Bifenthrin exposure causes hyperactivity in early larval stages of an endangered fish species at concentrations that occur during their hatching season. Aquat. Toxicol. 2020, 228, 105611. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, T.; Gonçalves, M.; Silva-Reis, R.; Medeiros-Fonseca, B.; Roboredo, M.; Sousa, J.R.; Oliveira, P.A.; Pinto, M.D.L.; Peixoto, F.; Gaivão, I.; et al. Do endocrine disrupting compounds impact earthworms? A comprehensive evidence review. Rev. Environ. Sci. Biotechnol. 2024, 23, 633–677. [Google Scholar] [CrossRef]
- Boyd, A.; Stewart, C.B.; Philibert, D.A.; How, Z.T.; El-Din, M.G.; Tierney, K.B.; Blewett, T.A. A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. Sci. Total Environ. 2021, 750, 141707. [Google Scholar] [CrossRef]
- Böhm, L.; Schlechtriem, C.; Düring, R.-A. Sorption of highly hydrophobic organic chemicals to organic matter relevant for fish bioconcentration studies. Environ. Sci. Technol. 2016, 50, 8316–8323. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, S.; Lanzinger, A.C.; Dolich, T.; Fübl, S.; Salinas, E.R.; Zok, S.; Weiss, B.; Hefner, N.; Van Sloun, P.; Hombeck, H.; et al. Evaluation of the bioaccumulation of octocrylene after dietary and aqueous exposure. Sci. Total Environ. 2019, 672, 669–679. [Google Scholar] [CrossRef]
- Straub, J.O. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters. Antibiotics 2013, 2, 115–162. [Google Scholar] [CrossRef]
- Sardiña, P.; Leahy, P.; Metzeling, L.; Stevenson, G.; Hinwood, A. Emerging and legacy contaminants across land-use gradients and the risk to aquatic ecosystems. Sci. Total Environ. 2019, 695, 133842. [Google Scholar] [CrossRef] [PubMed]
- Smedes, F.; Sobotka, J.; Rusina, T.P.; Fialová, P.; Carlsson, P.; Kopp, R.; Vrana, B. Unraveling the Relationship between the Concentrations of Hydrophobic Organic Contaminants in Freshwater Fish of Different Trophic Levels and Water Using Passive Sampling. Environ. Sci. Technol. 2020, 54, 7942–7951. [Google Scholar] [CrossRef] [PubMed]
- Martinaiou, P.; Manoli, P.; Boti, V.; Hela, D.; Makou, E.; Albanis, T.; Konstantinou, I. Quality Control of Emerging Contaminants in Marine Aquaculture Systems by Spot Sampling-Optimized Solid Phase Extraction and Passive Sampling. Sustainability 2022, 14, 3452. [Google Scholar] [CrossRef]
Chemical Compound | General Group | Functional Category | Empirical Formula | CAS No. | Highest m/z Fragment | MS Transition (Quantifier and Qualifier) | Internal Standard |
---|---|---|---|---|---|---|---|
Caffeine | Pharmaceuticals | Stimulant | C8H10N4O2 | 558-08-2 | 195.0 | 195.0–138.0 195.0–110.0 | Caffeine-d10 |
Carbamazepine | Anticonvulsant | C15H12N2O | 298-46-4 | 194.0 | 237.1–194.0 237.1–193.2 | Carbamazepine-d10 | |
Clarithromycin | Antibiotic | C38H69NO13 | 81103-11-9 | 748.5 | 748.5–590.4 748.5–158.1 | Clarithromycin-d3 | |
Erythromycin | Antibiotic | C37H67NO13 | 114-07-8 | 734.5 | 734.5–576.4 734.5–158.1 | Erythromycin-d3 | |
Gabapentin | Anticonvulsant | C9H17NO2 | 60142-96-3 | 172.1 | 172.1–154.1 172.1–137.0 | Gabapentin-d4 | |
O-Desvenlafaxine | Antidepressant | C16H25NO2 | 93413-62-8 | 163.8 | 264.2–107.0 264.2–77.0 | O-Desvenlafaxine-d6 | |
Ofloxacin | Antibiotic | C18H20FN3O4 | 82419-36-1 | 362.2 | 362.2–318.3 362.2–261.3 | Ofloxacin-d3 | |
Sulfamethoxazole | Antibiotic | C10H11N3O3S | 723-46-6 | 156.0 | 254.0–156.0 254.0–108.4 | Sulfamethoxazole-d13 | |
Trimethoprim | Antibiotic | C14H18N4O3 | 738-70-5 | 291.2 | 291.2–258.0 291.2–230.1 | Trimethoprim-d9 | |
Venlafaxine | Antidepressant | C17H27NO2 | 99300-78-4 | 215.0 | 278.2–215.0 278.2–121.0 | Venlafaxine-d6 | |
Avobenzone | Sun agents | UV filter | C20H22O3 | 70356-09-1 | 161.0 | 311.0–161.0 311.0–135.0 | Avobenzone-d3 |
Octocrylene | UV filter | C24H27NO2 | 6197-30-4 | 250.1 | 362.2–250.1 362.2–231.0 | Octocrylene-d10 | |
Oxybenzone | UV filter | C14H12O3 | 131-57-7 | 151.2 | 229.2–151.2 229.2–128.0 | Oxybenzone-d5 | |
Azoxystrobin | Pesticides | Fungicide | C22H17N3O5 | 131860-33-8 | 372.1 | 404.1–372.1 404.1–344.1 | Azoxystrobin-d4 |
Clotrimazole | Fungicide | C22H17ClN2 | 23593-75-1 | 277.0 | 277.0–241.1 277.0–199.0 | Clotrimazole-d10 | |
Bifenthrin | Insecticide | C23H22ClF3O2 | 99267-18-2 | 181.1 | 442.1–181.1 440.1–198.2 | Bifenthrin-d5 | |
Fluconazole | Fungicide | C13H12F2N6O | 86386-73-4 | 238.1 | 307.1–238.1 307.1–220.1 | Fluconazole-d4 | |
Miconazole | Fungicide | C18H14Cl4N2O | 22916-47-8 | 159.0 | 415.0–159.0 415.0–69.0 | Miconazole-d5 | |
Penconazole | Fungicide | C13H15Cl2N3 | 66246-88-6 | 159.0 | 284.1–159.0 284.1–70.0 | Penconazole-d7 | |
Prochloraz | Fungicide | C15H16Cl3N3O | 67749-09-5 | 376.0 | 376.0–308.0 376.0–266.0 | Prochloraz(ethylene)-d4 |
Sampling Code | Longitude | Latitude | Main Activity of the Area |
---|---|---|---|
L1 | 36.673905 N | 4.449118 W | Beach/Swimming |
L2 | 36.682097 N | 4.444226 W | Beach/Swimming |
L3 | 36.690012 N | 4.440707 W | Beach/Swimming |
L4 | 36.696688 N | 4.436844 W | Beach/Swimming |
L5 | 36.702469 N | 4.426030 W | Swimming/Navigation |
L6 | 36.701368 N | 4.418906 W | Harbour/Navigation |
L7 | 36.708868 N | 4.418048 W | Harbour/Navigation |
L8 | 36.717607 | 4.416588 | Harbour/Navigation |
Chemical Compound | r2 | LOD (×10−3 ng/L) | LOQ (×10−3 ng/L) | R * (%) | RSD * (%) | R ** (%) | RSD ** (%) | ME (%) |
---|---|---|---|---|---|---|---|---|
Caffeine | 0.9994 | 0.2 | 0.7 | 82.7 | 2.1 | 94.1 | 6.0 | −35.5 |
Carbamazepine | 0.9924 | 1.0 | 3.2 | 85.6 | 1.7 | 88.9 | 7.8 | −43.5 |
Clarithromycin | 0.9956 | 0.4 | 1.3 | 82.9 | 2.8 | 104.5 | 4.9 | 42.8 |
Erythromycin | 0.9912 | 0.8 | 2.9 | 94.1 | 4.6 | 91.6 | 3.6 | −39.3 |
Gabapentin | 0.9969 | 1.1 | 3.3 | 109.8 | 5.4 | 85.1 | 8.5 | 30.1 |
O-Desvenlafaxine | 0.9967 | 0.8 | 2.9 | 96.2 | 0.9 | 86.1 | 3.1 | 10.8 |
Ofloxacin | 0.9914 | 0.1 | 0.6 | 91.4 | 7.9 | 97.9 | 1.1 | 22.4 |
Sulfamethoxazole | 0.9966 | 0.6 | 2.0 | 112.5 | 5.1 | 103.7 | 6.3 | −15.1 |
Trimethoprim | 0.9923 | 0.2 | 0.7 | 84.9 | 3.2 | 111.9 | 3.9 | −44.5 |
Venlafaxine | 0.9986 | 0.3 | 1.0 | 110.8 | 2.5 | 88.5 | 6.4 | −32.2 |
Avobenzone | 0.9943 | 0.9 | 3.0 | 96.4 | 8.6 | 100.6 | 3.5 | 26.5 |
Octocrylene | 0.9988 | 0.8 | 2.9 | 108.9 | 6.4 | 108.4 | 8.1 | −18.7 |
Oxybenzone | 0.9916 | 0.9 | 2.9 | 89.3 | 1.3 | 95.2 | 8.5 | 45.4 |
Azoxystrobin | 0.9924 | 0.1 | 0.4 | 106.7 | 7.8 | 91.3 | 1.4 | −30.5 |
Clotrimazole | 0.9953 | 1.0 | 3.1 | 97.7 | 3.1 | 94.7 | 5.2 | −31.3 |
Bifenthrin | 0.9927 | 0.1 | 0.3 | 104.1 | 5.6 | 109.5 | 4.3 | 51.2 |
Fluconazole | 0.9931 | 0.4 | 1.1 | 97.5 | 4.7 | 93.3 | 7.2 | 38.1 |
Miconazole | 0.9945 | 0.6 | 2.0 | 111.6 | 5.0 | 107.8 | 4.9 | 26.1 |
Penconazole | 0.9978 | 0.3 | 1.0 | 98.2 | 1.9 | 90.6 | 2.8 | −16.1 |
Prochloraz | 0.9980 | 0.1 | 0.2 | 113.4 | 2.8 | 103.4 | 1.6 | 27.5 |
Locations | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 |
---|---|---|---|---|---|---|---|---|
Caffeine | 0.313 ± 0.010 | 0.367 ± 0.012 | 0.376 ± 0.027 | 0.363 ± 0.016 | 0.391 ± 0.007 | 0.322 ± 0.014 | 0.358 ± 0.025 | 0.361 ± 0.019 |
Carbamazepine | 0.185 ± 0.009 | 0.339 ± 0.031 | 0.191 ± 0.012 | 0.261 ± 0.010 | 0.134 ± 0.009 | 0.189 ± 0.014 | 0.246 ± 0.022 | 0.179 ± 0.008 |
Clarythromycin | 0.309 ± 0.007 | 0.271 ± 0.022 | 0.270 ± 0.014 | 0.188 ± 0.016 | 0.237 ± 0.015 | 0.270 ± 0.020 | 0.342 ± 0.028 | 0.350 ± 0.017 |
Erythromycin | 0.044 ± 0.008 | 0.050 ± 0.006 | 0.049 ± 0.007 | 0.050 ± 0.005 | 0.028 ± 0.004 | 0.052 ± 0.006 | 0.055 ± 0.002 | 0.032 ± 0.004 |
Gabapentin | 0.298 ± 0.021 | 0.265 ± 0.014 | 0.283 ± 0.011 | 0.251 ± 0.015 | 0.314 ± 0.006 | 0.271 ± 0.012 | 0.292 ± 0.024 | 0.277 ± 0.026 |
O-Desmovenlafaxine | 0.376 ± 0.019 | 0.198 ± 0.015 | 0.374 ± 0.016 | 0.364 ± 0.028 | 0.262 ± 0.018 | 0.334 ± 0.023 | 0.267 ± 0.029 | 0.235 ± 0.021 |
Ofloxacin | 0.156 ± 0.011 | 0.201 ± 0.005 | 0.286 ± 0.017 | 0.131 ± 0.021 | 0.348 ± 0.022 | 0.314 ± 0.016 | 0.285 ± 0.009 | 0.222 ± 0.030 |
Sulfamethoxazole | 0.246 ± 0.013 | 0.361 ± 0.026 | 0.293 ± 0.012 | 0.360 ± 0.034 | 0.243 ± 0.017 | 0.211 ± 0.019 | 0.362 ± 0.020 | 0.284 ± 0.016 |
Trimethoprim | 0.073 ± 0.008 | 0.099 ± 0.006 | 0.096 ± 0.009 | 0.084 ± 0.004 | 0.081 ± 0.006 | 0.112 ± 0.005 | 0.062 ± 0.04 | 0.120 ± 0.009 |
Venlafaxine | 0.128 ± 0.004 | 0.200 ± 0.032 | 0.321 ± 0.023 | 0.365 ± 0.026 | 0.340 ± 0.029 | 0.142 ± 0.019 | 0.270 ± 0.030 | 0.174 ± 0.011 |
Locations | Azoxystrobin | Bifenthrin | Clotrimazole | Fluconazole | Miconazole | Penconazole | Prochloraz |
---|---|---|---|---|---|---|---|
L1 | <LOQ | 0.008 ± 0.001 | <LOQ | <LOQ | <LOQ | <LOQ | 0.002 ± 0.001 |
L2 | <LOQ | 0.023 ± 0.004 | 0.003 ± 0.001 | <LOQ | <LOQ | <LOQ | 0.002 ± 0.001 |
L3 | <LOQ | 0.007 ± 0.001 | <LOQ | <LOQ | <LOQ | <LOQ | 0.003 ± 0.001 |
L4 | <LOQ | 0.008 ± 0.001 | 0.003 ± 0.001 | <LOQ | 0.002 ± 0.001 | 0.003 ± 0.001 | 0.003 ± 0.001 |
L5 | <LOQ | 0.027 ± 0.003 | <LOQ | 0.002 ± 0.001 | 0.002 ± 0.001 | <LOQ | 0.004 ± 0.001 |
L6 | <LOQ | 0.010 ± 0.001 | <LOQ | 0.002 ± 0.001 | 0.004 ± 0.001 | <LOQ | 0.002 ± 0.001 |
L7 | <LOQ | 0.015 ± 0.002 | <LOQ | <LOQ | <LOQ | <LOQ | 0.003 ± 0.001 |
L8 | <LOQ | 0.014 ± 0.001 | <LOQ | 0.003 ± 0.001 | <LOQ | 0.004 ± 0.001 | 0.002 ± 0.001 |
Compound | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 |
---|---|---|---|---|---|
Caffeine | L.R. | L.R. | L.R. | L.R. | L.R. |
Carbamazepine | N.R. | N.R. | N.R. | N.R. | N.R. |
Erythromycin | N.R. | N.R. | N.R. | N.R. | N.R. |
Gabapentin | N.R. | N.R. | N.R. | N.R. | N.R. |
O-desvenlafaxine | L.R. | L.R. | L.R. | L.R. | L.R. |
Sulfamethoxazole | N.R. | N.R. | N.R. | N.R. | N.R. |
Trimethoprim | N.R. | N.R. | N.R. | N.R. | N.R. |
Venlafaxine | L.R. | L.R. | L.R. | L.R. | N.R. |
Avobenzone | H.R. | H.R. | H.R. | H.R. | H.R. |
Octocrylene | N.R. | N.R. | N.R. | N.R. | N.R. |
Oxybenzone | N.R. | N.R. | N.R. | N.R. | N.R. |
Azoxystrobin | N.R. | L.R. | L.R. | L.R. | N.R. |
Bifenthrin | H.R. | H.R. | H.R. | H.R. | H.R. |
Clotrimazole | N.R. | N.R. | N.R. | N.R. | N.R. |
Fluconazole | N.R. | N.R. | N.R. | N.R. | N.R. |
Miconazole | N.R. | N.R. | N.R. | N.R. | N.R. |
Penconazole | N.R. | N.R. | N.R. | N.R. | N.R. |
Prochloraz | N.R. | N.R. | N.R. | N.R. | N.R. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Montaña, E.J.; Domínguez-Gil, S. Multisampling Strategies for Determining Contaminants of Emerging Concern (CECs) in the Marine Environment. J. Xenobiot. 2025, 15, 149. https://doi.org/10.3390/jox15050149
Díaz-Montaña EJ, Domínguez-Gil S. Multisampling Strategies for Determining Contaminants of Emerging Concern (CECs) in the Marine Environment. Journal of Xenobiotics. 2025; 15(5):149. https://doi.org/10.3390/jox15050149
Chicago/Turabian StyleDíaz-Montaña, Enrique J., and Sofía Domínguez-Gil. 2025. "Multisampling Strategies for Determining Contaminants of Emerging Concern (CECs) in the Marine Environment" Journal of Xenobiotics 15, no. 5: 149. https://doi.org/10.3390/jox15050149
APA StyleDíaz-Montaña, E. J., & Domínguez-Gil, S. (2025). Multisampling Strategies for Determining Contaminants of Emerging Concern (CECs) in the Marine Environment. Journal of Xenobiotics, 15(5), 149. https://doi.org/10.3390/jox15050149