An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Collection and Filtering
2.2. Multiple Sequence Alignment, Protein Domains, and Conserved Motifs Exploration
2.3. Phylogenetic Analysis
3. Results
3.1. The Selected FAD-Dependent Proteins
3.2. Multiple Sequence Alignment
3.3. Phylogenetic Analysis
3.4. Conserved Motifs: Multiple Alignment Results
3.5. Protein Domains
4. Discussion
Limitations of the Present Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPA | alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
ECHA | European Chemicals Agency |
GO | Glycine Oxidase |
Gox | Glyphosate oxidoreductase |
IARC | International Agency for Research on Cancer |
IDA | iminodiacetic acid |
MSA | Multiple sequence alignment |
PBMCs | peripheral blood mononuclear cells |
PRM | proline-rich motif |
References
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; p. 54. ISBN 978-0-08-103017-2. [Google Scholar]
- Mertens, M.; Höss, S.; Neumann, G.; Afzal, J.; Reichenbecher, W. Glyphosate, a Chelating Agent—Relevant for Ecological Risk Assessment? Environ. Sci. Pollut. Res. 2018, 25, 5298–5317. [Google Scholar] [CrossRef]
- 3496, P.I.C.I.D. Glyphosate 2D Structure. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glyphosate (accessed on 25 June 2025).
- Martinelli, R.; Rufino, L.R.; de Melo, A.C.; Alcántara-de la Cruz, R.; da Silva, M.F.d.G.F.; da Silva, J.R.; Boaretto, R.M.; Monquero, P.A.; Mattos, D.; de Azevedo, F.A. Glyphosate Excessive Use Chronically Disrupts the Shikimate Pathway and Can Affect Photosynthesis and Yield in Citrus Trees. Chemosphere 2022, 308, 136468. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate Perturbs the Gut Microbiota of Honey Bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [PubMed]
- Nouvian, M.; Foster, J.J.; Weidenmüller, A. Glyphosate Impairs Aversive Learning in Bumblebees. Sci. Total Environ. 2023, 898, 165527. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.J.; Stout, J.C.; Stanley, D.A. Contrasting Effects of Fungicide and Herbicide Active Ingredients and Their Formulations on Bumblebee Learning and Behaviour. J. Exp. Biol. 2023, 226, jeb245180. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, E.; Reszka, E.; Jabłońska, E.; Balcerczyk, A.; Broncel, M.; Bukowska, B. Glyphosate Affects Methylation in the Promoter Regions of Selected Tumor Suppressors as Well as Expression of Major Cell Cycle and Apoptosis Drivers in PBMCs (In Vitro Study). Toxicol. Vitr. 2020, 63, 104736. [Google Scholar] [CrossRef]
- Woźniak, E.; Reszka, E.; Jabłońska, E.; Michałowicz, J.; Huras, B.; Bukowska, B. Glyphosate and Ampa Induce Alterations in Expression of Genes Involved in Chromatin Architecture in Human Peripheral Blood Mononuclear Cells (In Vitro). Int. J. Mol. Sci. 2021, 22, 2966. [Google Scholar] [CrossRef]
- EFSA. EFSA Explains the Scientific Assessment of Glyphosate. 2023. Available online: https://www.efsa.europa.eu/en/factsheets/efsa-explains-scientific-assessment-glyphosate (accessed on 20 July 2025).
- Davoren, M.J.; Schiestl, R.H. Glyphosate-Based Herbicides and Cancer Risk: A Post-IARC Decision Review of Potential Mechanisms, Policy and Avenues of Research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef]
- Stur, E.; Aristizabal-Pachon, A.F.; Peronni, K.C.; Agostini, L.P.; Waigel, S.; Chariker, J.; Miller, D.M.; Thomas, S.D.; Rezzoug, F.; Detogni, R.S.; et al. Glyphosate-Based Herbicides at Low Doses Affect Canonical Pathways in Estrogen Positive and Negative Breast Cancer Cell Lines. PLoS ONE 2019, 14, e0219610. [Google Scholar] [CrossRef]
- Winstone, J.K.; Pathak, K.V.; Winslow, W.; Piras, I.S.; White, J.; Sharma, R.; Huentelman, M.J.; Pirrotte, P.; Velazquez, R. Glyphosate Infiltrates the Brain and Increases Pro-Inflammatory Cytokine TNFα: Implications for Neurodegenerative Disorders. J. Neuroinflamm. 2022, 19, 193. [Google Scholar] [CrossRef]
- Chianese, T.; Trinchese, G.; Leandri, R.; De Falco, M.; Mollica, M.P.; Scudiero, R.; Rosati, L. Glyphosate Exposure Induces Cytotoxicity, Mitochondrial Dysfunction and Activation of ERα and ERβ Estrogen Receptors in Human Prostate PNT1A Cells. Int. J. Mol. Sci. 2024, 25, 7039. [Google Scholar] [CrossRef]
- Gastiazoro, M.P.; Durando, M.; Milesi, M.M.; Lorenz, V.; Vollmer, G.; Varayoud, J.; Zierau, O. Glyphosate Induces Epithelial Mesenchymal Transition-Related Changes in Human Endometrial Ishikawa Cells via Estrogen Receptor Pathway. Mol. Cell. Endocrinol. 2020, 510, 110841. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Zhang, K.; Chen, Y.; Lin, Y.; Wu, G.; Zhang, L.; Yao, P.; Shao, Z.; Liu, Z. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus Cereus by Directed Evolution. PLoS ONE 2013, 8, e79175. [Google Scholar] [CrossRef] [PubMed]
- Giannakara, M.; Koumandou, V.L. New Insights on the Glyphosate-Degrading Enzymes C-P Lyase and Glyphosate Oxidoreductase Based on Bioinformatics. Bacteria 2024, 3, 314–329. [Google Scholar] [CrossRef]
- Pedotti, M.; Rosini, E.; Molla, G.; Moschetti, T.; Savino, C.; Vallone, B.; Pollegioni, L. Glyphosate Resistance by Engineering the Flavoenzyme Glycine Oxidase. J. Biol. Chem. 2009, 284, 36415–36423. [Google Scholar] [CrossRef]
- Barry, G.F.; Kishore, G.M. Glyphosate Tolerant Plants. U.S. Patent 5,463,175, 31 October 1995. [Google Scholar]
- Bhatt, P.; Joshi, T.; Bhatt, K.; Zhang, W.; Huang, Y.; Chen, S. Binding Interaction of Glyphosate with Glyphosate Oxidoreductase and C–P Lyase: Molecular Docking and Molecular Dynamics Simulation Studies. J. Hazard. Mater. 2021, 409, 124927. [Google Scholar] [CrossRef]
- NCBI Architecture Viewer. Available online: https://www.ncbi.nlm.nih.gov/Structure/sparcle/archview.html?archid=12015107 (accessed on 20 May 2025).
- Expasy ENZYME Database, Class: 1. Available online: https://enzyme.expasy.org (accessed on 20 May 2025).
- Pearson, W.R. Selecting the Right Similarity-Scoring Matrix. Curr. Protoc. Bioinform. 2013, 43, 3.5.1–3.5.9. [Google Scholar] [CrossRef]
- Papageorgiou, L.; Mangana, E.; Papakonstantinou, E.; Diakou, I.; Pierouli, K.; Dragoumani, K.; Bacopoulou, F.; Chrousos, G.P.; Exarchos, T.P.; Vlamos, P.; et al. An Updated Evolutionary and Structural Study of TBK1 Reveals Highly Conserved Motifs as Potential Pharmacological Targets in Neurodegenerative Diseases. Adv. Exp. Med. Biol. 2023, 1423, 41–57. [Google Scholar]
- Vlachakis, D.; Papageorgiou, L.; Papadaki, A.; Georga, M.; Kossida, S.; Eliopoulos, E. An Updated Evolutionary Study of the Notch Family Reveals a New Ancient Origin and Novel Invariable Motifs as Potential Pharmacological Targets. PeerJ 2020, 8, e10334. [Google Scholar] [CrossRef]
- Lapage, S.P.; Sneath, P.H.A.; Lessel, E.F.; Skerman, V.B.D.; Seeliger, H.P.R.; Clark, W.A. Rules of Nomenclature with Recommendations; ASM Press: Washington, DC, USA, 1992. [Google Scholar]
- Sobie, E.A. An Introduction to MATLAB. Sci. Signal. 2011, 4, tr7. [Google Scholar] [CrossRef]
- Papageorgiou, L.; Shalzi, L.; Pierouli, K.; Papakonstantinou, E.; Manias, S.; Dragoumani, K.; Nicolaides, N.; Giannakakis, A.; Bacopoulou, F.; Chrousos, G.; et al. An Updated Evolutionary Study of the Nuclear Receptor Protein Family. World Acad. Sci. J. 2021, 3, 51. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2-A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Madden, T. The BLAST Sequence Analysis Tool. In The NCBI Handbook; National Center for Biotechnology Information: Bethesda, MD, USA, 2013. [Google Scholar]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2022, 51, D418–D427. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Sepp, S.-K.; Vasar, M.; Davison, J.; Oja, J.; Anslan, S.; Al-Quraishy, S.; Bahram, M.; Bueno, C.G.; Cantero, J.J.; Fabiano, E.C.; et al. Global Diversity and Distribution of Nitrogen-Fixing Bacteria in the Soil. Front. Plant Sci. 2023, 14, 1100235. [Google Scholar] [CrossRef] [PubMed]
- Satola, B.; Wübbeler, J.H.; Steinbüchel, A. Metabolic Characteristics of the Species Variovorax Paradoxus. Appl. Microbiol. Biotechnol. 2013, 97, 541–560. [Google Scholar] [CrossRef] [PubMed]
- Trisolini, L.; Gambacorta, N.; Gorgoglione, R.; Montaruli, M.; Laera, L.; Colella, F.; Volpicella, M.; De Grassi, A.; Pierri, C.L. Clinical Medicine FAD/NADH Dependent Oxidoreductases: From Different Amino Acid Sequences to Similar Protein Shapes for Playing an Ancient Function. J. Clin. Med. 2019, 8, 2117. [Google Scholar] [CrossRef]
- Kleiger, G.; Eisenberg, D. GXXXG and GXXXA Motifs Stabilize FAD and NAD(P)-Binding Rossmann Folds through C(Alpha)-H···O Hydrogen Bonds and van Der Waals Interactions. J. Mol. Biol. 2002, 323, 69–76. [Google Scholar] [CrossRef]
- Larsen, R.A.; Wood, G.E.; Postle, K. The Conserved Proline-rich Motif Is Not Essential for Energy Transduction by Escherichia Coli TonB Protein. Mol. Microbiol. 1993, 10, 943–953. [Google Scholar] [CrossRef]
- Umumararungu, T.; Gahamanyi, N.; Mukiza, J.; Habarurema, G.; Katandula, J.; Rugamba, A.; Kagisha, V. Proline, a Unique Amino Acid Whose Polymer, Polyproline II Helix, and Its Analogues Are Involved in Many Biological Processes: A Review. Amino Acids 2024, 56, 50. [Google Scholar] [CrossRef]
- Otera, H.; Setoguchi, K.; Hamasaki, M.; Kumashiro, T.; Shimizu, N.; Fujiki, Y. Peroxisomal Targeting Signal Receptor Pex5p Interacts with Cargoes and Import Machinery Components in a Spatiotemporally Differentiated Manner: Conserved Pex5p WXXXF/Y Motifs Are Critical for Matrix Protein Import. Mol. Cell. Biol. 2002, 22, 1639–1655. [Google Scholar] [CrossRef]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; He, H.; Dalbey, R.E. Bacterial Signal Peptides-Navigating the Journey of Proteins. Front. Physiol. 2022, 13, 933153. [Google Scholar] [CrossRef]
- CATH-Gene Entry G3DSA:3.30.9.10 D-Amino Acid Oxidase, Subunit A, Domain 2. Available online: https://www.ebi.ac.uk/interpro/entry/cathgene3d/G3DSA:3.30.9.10/subfamilies/#table (accessed on 20 January 2025).
- InterPro PS51257. Prokaryotic Membrane Lipoprotein Lipid Attachment Site Profile. Available online: https://www.ebi.ac.uk/interpro/entry/profile/PS51257/ (accessed on 19 January 2025).
- Hernández Guijarro, K.; De Gerónimo, E.; Erijman, L. Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase Gene (thiO) from Bradyrhizobium. Curr. Microbiol. 2021, 78, 1991–2000. [Google Scholar] [CrossRef]
- Medvedev, K.E.; Kinch, L.N.; Schaeffer, R.D.; Pei, J.; Grishin, N.V. A Fifth of the Protein World: Rossmann-like Proteins as an Evolutionarily Successful Structural unit. J. Mol. Biol. 2021, 433, 166788. [Google Scholar] [CrossRef] [PubMed]
- Gox Structure AF-D2KI28-F1-V4. Available online: https://alphafold.ebi.ac.uk/entry/D2KI28 (accessed on 21 July 2025).
- Bucur, B.; Munteanu, F.D.; Marty, J.L.; Vasilescu, A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef]
- Santillan, J.Y.; Muzlera, A.; Molina, M.; Lewkowicz, E.S.; Iribarren, A.M. Microbial Degradation of Organophosphorus Pesticides Using Whole Cells and Enzyme Extracts. Biodegradation 2020, 31, 423–433. [Google Scholar] [CrossRef]
- Margolin, W. Green Fluorescent Protein as a Reporter for Macromolecular Localization in Bacterial Cells. Methods 2000, 20, 62–72. [Google Scholar] [CrossRef]
Phyla | Total Seq. | Classes | Total Seq. | Homology Percent | Ontologies |
---|---|---|---|---|---|
Pseudomonadota (Proteobacteriota) | 2199 | a-proteobacteria 1 | 1644 | 36–84% | D-amino acid dehydrogenase |
D-amino acid dehydrogenase small subunit | |||||
D-amino acid dehydrogenase 1 | |||||
FAD-binding/dependent oxidoreductase | |||||
* Glycine/D-amino acid oxidase (deaminating) | |||||
* Gox (Glyphosate oxidoreductase) | |||||
amino acid dehydrogenase | |||||
amino acid oxidase | |||||
* cytochrome C4 | |||||
* dadA1 | |||||
* ketopantoate reductase PanE/ApbA family protein | |||||
b-proteobacteria 1 | 293 | 37–56% | D-amino acid dehydrogenase | ||
D-amino acid dehydrogenase 1 | |||||
FAD-binding/dependent oxidoreductase | |||||
amino acid dehydrogenase | |||||
* pyridine nucleotide-disulfide oxidoreductase family protein | |||||
g-proteobacteria 1 | 195 | 37–69% | FAD-binding/dependent oxidoreductase | ||
amino acid dehydrogenase | |||||
d-proteobacteria 1 | 9 | 41–46% | FAD-binding/dependent oxidoreductase | ||
Undefined Proteobacteriota 1 | 58 | 36–48% | FAD-binding/dependent oxidoreductase | ||
- | - | Undefined Bacteria 4 | 10 | 40–41% | D-amino acid dehydrogenase small subunit |
FAD-binding/dependent oxidoreductase | |||||
* Gox (FAD-dependent glyphosate oxidase) | |||||
Actinomycetota | 3 | Actinobacteria 2 | 3 | 39–45% | FAD-binding/dependent oxidoreductase |
amino acid dehydrogenase | |||||
Acidobacteriota 1 | 3 | - | 3 | 40–43% | FAD-binding/dependent oxidoreductase |
Planctomycetota | 2 | - | 2 | 41–43% | FAD-binding/dependent oxidoreductase |
Chloroflexota 3 | 1 | - | 1 | 40% | amino acid dehydrogenase |
Verrucomicrobiota | 1 | Verrucomicrobia 1 | 1 | 41% | amino acid dehydrogenase |
Deinococcota 1 | 1 | - | 1 | 40% | FAD-dependent oxidoreductase |
Protein Type | Count |
---|---|
FAD-dependent/binding oxidoreductase | 2121 |
amino acid dehydrogenase a | 40 |
D-amino acid dehydrogenase a | 28 |
D-amino acid dehydrogenase 1 a | 8 |
dependent oxidoreductase b | 4 |
dependent oxidoreductase family protein b | 3 |
D-amino acid dehydrogenase small subunit a | 3 |
putative D-amino acid dehydrogenase protein a | 3 |
Dehydrogenase | 2 |
amino acid oxidase | 1 |
cytochrome C4 | 1 |
dadA1 | 1 |
FAD-dependent glyphosate oxidase c | 1 |
Glycine/D-amino acid oxidase _deaminating_ | 1 |
Gox c | 1 |
ketopantoate reductase PanE/ApbA family protein | 1 |
pyridine nucleotide-disulfide oxidoreductase family protein | 1 |
Clusters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Group 1 | 1a | x | x | x | x | x | x | x | x | x | x |
1b | x | x | x | x | x | x | |||||
1c | x | x | x | x | |||||||
1d | x | x | x | x | |||||||
1e | x | x | |||||||||
1f | x | ||||||||||
Group 2 | 2a | ||||||||||
2b | x | x | x | x | x | x | x | x | |||
2c | x | x | x | x | x | ||||||
2d | x |
Group 1 | Group | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phyla | 1a | 1b | 1c | 1d | 1e | 1f | 2a | 2b | 2c | 2d | |
g-proteobacteria | x | x | x | x | x | x | |||||
b-proteobacteria | x | x | x | x | x | ||||||
a-proteobacteria | x | x | x | x | x | x | x | x | |||
d-proteobacteria | x | ||||||||||
acidobacteriota | x | ||||||||||
deinococcota | x | ||||||||||
chloroflexota | x | ||||||||||
actinobacteria (actinomycetota) | x | ||||||||||
planctomycetota | x | ||||||||||
verrucomicrobiota | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannakara, M.; Koumandou, V.L.; Papageorgiou, L. An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role. J. Xenobiot. 2025, 15, 138. https://doi.org/10.3390/jox15050138
Giannakara M, Koumandou VL, Papageorgiou L. An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role. Journal of Xenobiotics. 2025; 15(5):138. https://doi.org/10.3390/jox15050138
Chicago/Turabian StyleGiannakara, Marina, Vassiliki Lila Koumandou, and Louis Papageorgiou. 2025. "An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role" Journal of Xenobiotics 15, no. 5: 138. https://doi.org/10.3390/jox15050138
APA StyleGiannakara, M., Koumandou, V. L., & Papageorgiou, L. (2025). An Evolutionary Study in Glyphosate Oxidoreductase Gox Highlights Distinct Orthologous Groups and Novel Conserved Motifs That Can Classify Gox and Elucidate Its Biological Role. Journal of Xenobiotics, 15(5), 138. https://doi.org/10.3390/jox15050138