Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Campaign (2013–2017)
2.2. Sampling Campaign (2018–2019)
2.3. River and WWTPs under Study
2.4. Reagents and Materials
2.5. Sample Pre-Treatment and Sampling Points
2.6. Analytical Method
2.7. Analytical Method Validation
2.8. Environmental Risk Characterization
3. Results and Discussion
3.1. Validation Results
3.1.1. Linearity and Correlation Coefficients
3.1.2. Recovery Tests
3.1.3. Matrix Effect
3.1.4. Intra- and Inter-Day Precision
3.1.5. Method Detection and Method Quantification Limits
3.2. Sampling Campaign Performed in 2018 and 2019
3.2.1. Number of Analytes Detected in Each Sampling Campaign
3.2.2. Main Results Obtained in River Water Samples
3.2.3. Main Results Obtained in the Wastewater Samples
3.2.4. Pharmaceuticals and Their Transformation Products
3.2.5. Therapeutical Classes
3.2.6. Detection Frequency
3.3. WWTP Removal Rate
3.4. Risk Assessment
3.5. Assessment of Pharmaceuticals from 2013 to 2019—Temporal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Enviroment Agency (EEA). Increasing Environmental Pollution. Available online: https://www.eea.europa.eu/soer/2015/global/pollution (accessed on 12 February 2024).
- Kümmerer, K. The presence of pharmaceuticals in the environment due to human use—Present knowledge and future challenges. J. Environ. Manag. 2009, 90, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- Chander, V.; Sharma, B.; Negi, V.; Aswal, R.; Singh, P.; Singh, R.; Dobhal, R. Pharmaceutical Compounds in Drinking Water. J. Xenobiot. 2016, 6, 5774. [Google Scholar] [CrossRef] [PubMed]
- Garrison, A.W.; Pope, J.D.; Allen, F.R. GC/MS analysis of organic compounds in domestic wastewater. In Identification and Analysis of Organic Pollutants in Water; Keith, L.H., Ed.; Ann Arbour Science: Minneapolis, MN, USA, 1976; pp. 517–566. [Google Scholar]
- EPA. Office of Water (4204): Environmental Protection Agency. May 1998. EPA 833-F-98-002. Available online: https://www3.epa.gov/npdes/pubs/bastre.pdf (accessed on 12 February 2024).
- Bradley, P.M.; Journey, C.A.; Button, D.T.; Carlisle, D.M.; Clark, J.M.; Mahler, B.J.; Nakagaki, N.; Qi, S.L.; Waite, I.R.; VanMetre, P.C. Metformin and Other Pharmaceuticals Widespread in Wadeable Streams of the Southeastern United States. Environ. Sci. Technol. Lett. 2016, 3, 243–249. [Google Scholar] [CrossRef]
- Gagnon, C.; Lajeunesse, A. Low Removal of Acidic and Hydrophilic Pharmaceutical Products by Various Types of Municipal Wastewater Treatment Plants. J. Xenobiot. 2012, 2, e3. [Google Scholar] [CrossRef]
- Celiz, M.D.; Tso, J.; Aga, D.S. Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Critical Review. Environ. Toxicol. Chem. 2009, 28, 2473–2484. [Google Scholar] [CrossRef]
- Guo, K.; Wu, Z.; Yan, S.; Yao, B.; Song, W.; Hua, Z.; Zhang, X.; Kong, X.; Li, X.; Fang, J. Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. Water Res. 2018, 147, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Veloutsou, S.; Bizani, E.; Fytianos, K. Photo-Fenton decomposition of β-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere 2014, 107, 180–186. [Google Scholar] [CrossRef]
- Lee, C.O.; Howe, K.J.; Thomson, B.M. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. Water Res. 2012, 46, 1005–1014. [Google Scholar] [CrossRef]
- Camargo-Perea, A.L.; Rubio-Clemente, A.; Peñuela, G.A. Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water Res. 2020, 12, 1068. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, S.; Song, Y.; Wang, B.Z.; Zhang, F. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 2018, 809, 74–79. [Google Scholar] [CrossRef]
- Wei, X.; Xu, X.; Li, C.; Wu, J.; Chen, J.; Lv, B.; Wang, J. Removal of Pharmaceuticals and Personal Care Products in Aquatic Environment by Membrane Technology. In Membranes for Environmental Applications; Zhang, Z., Zhang, W., Lichtfouse, E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 177–242. [Google Scholar]
- Liu, T.; Aniagor, C.O.; Ejimofor, M.I.; Menkiti, M.C.; Tang, K.H.D.; Chin, B.L.F.; Chan, Y.H.; Yiin, C.L.; Cheah, K.W.; Chai, Y.H.; et al. Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J. Mol. Liq. 2023, 374, 121144. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 2016, 573, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef] [PubMed]
- EU. Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 2022, L197, 117–121. [Google Scholar]
- EU. Directive 2013/39/EC of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union. 2013, L226, 1–17. [Google Scholar]
- EU. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union. 2015, L78, 40–42. [Google Scholar]
- EU. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field ofwater policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Off. J. Eur. Union. 2018, L141, 9–12. [Google Scholar]
- Swiss Federal Office for the Environment (FOEN). Environmental Report 2020. 2020. Available online: https://www.bafu.admin.ch/bafu/en/home/documentation/publications/environmental-report-2020.html (accessed on 5 January 2024).
- Deblonde, T.; Hartemann, P. Environmental impact of medical prescriptions: Assessing the risks and hazards of persistence, bioaccumulation and toxicity of pharmaceuticals. Public Health 2013, 127, 312–317. [Google Scholar] [CrossRef]
- Vieira, J.; Fonseca, A.; Vilar, V.J.P.; Boaventura, R.A.R.; Botelho, C.M.S. Water quality in Lis river, Portugal. Environ. Monit. Assess. 2012, 184, 7125–7140. [Google Scholar] [CrossRef]
- PubChem. Open Chemistry Database at the National Institutes of Health (NIH). Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 5 January 2024).
- HMDB. The Human Metabolone Database. Available online: http://www.hmdb.ca/metabolites/HMDB60463 (accessed on 5 February 2024).
- Paíga, P.; Lolić, A.; Hellebuyck, F.; Santos, L.H.M.L.M.; Correia, M.; Delerue-Matos, C. Development of a SPE–UHPLC–MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater. J. Pharm. Biomed. Anal. 2015, 106, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J. Pharm. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, J.; Lupo, S.; Cochran, J. Mitigating Matrix Effects: Examination of Dilution, QuEChERS, and Calibration Strategies for LC-MS/MS Analysis of Pesticide Residues in Diverse Food Types. Food Safety Application. Available online: https://chromtech.com.au/pdf2/Quechers-MitigatingMatrix_FFAN1796A-UNV.pdf (accessed on 2 January 2024).
- EMEA. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. European Medicines Agency Pre-Authorisation Evaluation of Medicines for Human Use. London, 01 June 2006. Doc. Ref. EMEA/CHMP/SWP/4447/00 Rev. 1. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-revision-1_en.pdf (accessed on 16 February 2024).
- ChemSafetyPro. How to Calculate Predicted No-Effect Concentration (PNEC). Available online: https://www.chemsafetypro.com/Topics/CRA/How_to_Calculate_Predicted_No-Effect_Concentration_(PNEC).html (accessed on 2 December 2023).
- US Environmental Protection Agency (USEPA). Ecological Structure Activity Relationships (ECOSAR) Predictive Model v1.11. 2012. Available online: https://goo.gl/xBM2VN (accessed on 2 December 2023).
- Ginebreda, A.; Muñoz, I.; López de Alda, M.; Brix, R.; López-Doval, J.; Barceló, D. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ. Int. 2010, 36, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Renew, J.E.; Huang, C.H. Simultaneous determination offluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. J. Chromatogr. A 2004, 1042, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Lacey, C.; McMahon, G.; Bones, J.; Barron, L.; Morrissey, A.; Tobin, J.M. An LCMS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta 2008, 75, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Lor, E.; Sancho, J.V.; Serrano, R.; Hernández, F. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 2012, 87, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Madureira, T.V.; Barreiro, J.C.; Rocha, M.J.; Cass, Q.B.; Tiritan, M.E. Pharmaceutical trace analysis in aqueous environmental matrices by liquid chromatography–ion trap tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 7033–7042. [Google Scholar] [CrossRef]
- Borecka, M.; Białk-Bielinska, A.; Siedlewicz, G.; Stepnowski, P.; Pazdro, K. The Influence of Matrix Effects on Trace Analysis of Pharmaceutical Residues in Aqueous Environmental Samples. In Insights on Environmental Changes; GeoPlanet: Earth and Planetary Sciences; Zieliński, T., Pazdro, K., Dragan-Górska, A., Weydmann, A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–16. [Google Scholar]
- Steen, R.J.C.A.; Leonards, P.E.G.; Brinkman, U.A.T. Ecological risk assessment of agrochemicals in European estuaries. Environ. Toxicol. Chem. 1999, 18, 1574–1581. [Google Scholar] [CrossRef]
- Ankley, G.; Brooks, B.; Huggett, D.; Sumpter, J. Repeating history: Pharmaceuticals in the environment. Environ. Sci. Technol. 2007, 41, 8211–8217. [Google Scholar] [CrossRef]
- Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2012, 1248, 104–121. [Google Scholar]
- Gros, M.; Petrović, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 2006, 70, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Goulart, F.d.A.B.; Reichert, G.; Felippe, T.C.; Mizukawa, A.; Antonelli, J.; Fernandes, C.S.; de Azevedo, J.C.R. Daily Variation of Lipid Regulators and Personal Care Products in a River Impacted by Domestic Effluents in Southern Brazil. Water 2021, 13, 1393. [Google Scholar] [CrossRef]
- Buerge, I.J.; Poiger, T.; Muller, M.D.; Buser, H.-R. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Ramos, S.; Jorge, S.; Gabriel Silva, J.; Delerue-Matos, C. Monitoring survey of caffeine in surface waters (Lis River) and wastewaters located at Leiria Town in Portugal. Environ. Sci. Pollut. Res. 2019, 26, 33440–33450. [Google Scholar] [CrossRef]
- Edwards, Q.A.; Kulikov, S.M.; Garner-O’Neale, L.D. Caffeine in surface and wastewaters in Barbados, West Indies. SpringerPlus 2015, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Peteffi, G.P.; Fleck, J.D.; Kael, I.M.; Girardi, V.; Bündchen, R.; Krajeski, D.M.; Demoliner, M.; Silva, F.P.; da Rosa, D.C.; Antunes, M.V.; et al. Caffeine levels as a predictor of Human mastadenovirus presence in surface waters-a case study in the Sinos River basin-Brazil. Environ. Sci. Pollut. Res. 2018, 25, 15774–15784. [Google Scholar] [CrossRef]
- Cumming, H.; Rücker, C. Octanol−Water Partition Coefficient Measurement by a Simple 1HNMR Method. ACS Omega 2017, 2, 6244–6249. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.-S.; Yang, J.-J.; Metcalfe, C.D. Carbamazepine and Its Metabolites in Wastewater and in Biosolids in a Municipal Wastewater Treatment Plant. Environ. Sci. Technol. 2005, 39, 7469–7475. [Google Scholar] [CrossRef] [PubMed]
- Pubchem National Institutes of Health (NIH). Nacional Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 2 December 2023).
- Kibuye, F.A.; Gall, H.E.; Elkin, K.R.; Ayers, B.; Veith, T.L.; Miller, M.; Jacob, S.; Hayden, K.R.; Watson, J.E.; Elliott, H.A. Fate of pharmaceuticals in a spray-irrigation system: From wastewater to groundwater. Sci. Total Environ. 2019, 654, 197–208. [Google Scholar] [CrossRef]
- Ferrando-Climent, L.; Collado, N.; Buttiglieri, G.; Gros, M.; Rodriguez-Roda, I.; Rodriguez-Mozaz, S.; Barceló, D. Comprehensive study of ibuprofen and itsmetabolites in activated sludge batch experiments and aquatic environment. Sci. Total Environ. 2012, 438, 404–413. [Google Scholar] [CrossRef]
- Winkler, M.; Lawrence, J.R.; Neu, T.R. Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res. 2001, 35, 3197–3205. [Google Scholar] [CrossRef] [PubMed]
- Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Lindholm-Lehto, P.C.; Ahkola, H.S.J.; Knuutinen, J.S.; Herve, S.H. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland. Environ. Sci. Pollut. Res. 2016, 23, 7985–7997. [Google Scholar] [CrossRef]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Joss, A.; Keller, E.; Alder, A.C.; Göbel, A.; McArdell, C.S.; Ternes, T.; Siegrist, H. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 2005, 39, 3139–3152. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543 Pt A, 547–569. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of pharmaceuticals in sewage treatment plants in Italy. Environ. Sci. Technol. 2006, 40, 357–363. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Kosma, C.I.; Kapsi, M.G.; Konstas, P.-S.G.; Trantopoulos, E.P.; Boti, V.I.; Konstantinou, I.K.; Albanis, T.A. Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environ. Res. 2020, 191, 1–14. [Google Scholar] [CrossRef]
- Drugs.com Salicylic acid Topical. 2009. Available online: https://www.drugs.com/mtm/salicylic-acid-topical.html (accessed on 2 April 2021).
- INCHEM. Acetylsalicylic Acid. Available online: http://www.inchem.org/documents/pims/pharm/aspirin.htm (accessed on 2 April 2021).
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging. Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M. Resistência a Antibióticos, Sustentabilidade Ambiental e Saúde. Indústria e Ambiente n.º 126, Janeiro/Fevereiro, Revista de Informação Técnica e Científica, 2021, 10–12. Available online: https://www.industriaeambiente.pt/noticias/resistencia-a-antibioticos-sustentabilidade-ambiental-e-saude/ (accessed on 2 January 2024). (In Portuguese).
- World Health Organization (WHO). Antibiotic Resistance. November 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 1 January 2024).
- Barczyk, Z.A.; Rucklidge, J.J.; Eggleston, M.; Mulder, R.T. Psychotropic Medication Prescription Rates and Trends for New Zealand Children and Adolescents 2008–2016. J. Child Adolesc. Psychopharmacol. 2020, 30, 87–96. [Google Scholar] [CrossRef]
- Göbel, A.; McArdell, C.S.; Joss, A.; Siegrist, H.; Giger, W. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Environ. Sci. Technol. 2007, 372, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Kagle, J.; Porter, A.W.; Murdoch, R.W.; Rivera-Cancel, G.; Hay, A.G. Biodegradation of pharmaceutical and personal care products. Adv. Appl. Microbiol. 2009, 67, 65–108. [Google Scholar]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ngasepam, J.; Dhangar, K.; Mahlknecht, J.; Manna, S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. Bioresour. Technol. 2022, 352, 127054. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Zhou, H.; Ying, T.; Wang, X.; Liu, J. Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China. Sci. Rep. 2016, 6, 34928. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Zhang, Q.; Bi, X.; Chu, H.; Liu, Z.; Luo, J.; Bai, S.; Mo, S.; Wang, H.; et al. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of Lipu River, China. Environ. Res. 2024, 252, 118908. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.; Yan, Z.; Luo, Y.; Feng, C.; Fu, Z.; Tang, Z.; Wu, F.; Giesy, J.P. Occurrence and multiple-level ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in two shallow lakes of China. Environ. Sci. Eur. 2020, 32, 69–79. [Google Scholar] [CrossRef]
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; Appleton, S.L.; Gill, T.K.; Taylor, A.W.; Wilson, D.H.; Hill, C.L. Cause for concern in the use of non-steroidal anti-inflammatory medications in the community -a population-based study. BMC Med. Genet. 2011, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- OECD. Pharmaceutical Residues in Freshwater: Hazards and Policy Responses, OECD Studies on Water, OECD Publishing, Paris, France. Available online: https://www.oecd-ilibrary.org/docserver/c936f42d-en.pdf?expires=1719768184&id=id&accname=guest&checksum=2992477661200B572889B74BB6E3E83F (accessed on 2 February 2024). [CrossRef]
- Khan, A.H.; Aziz, H.A.; Khan, N.A.; Dhingra, A.; Ahmed, S.; Naushad, M. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. Sci. Total Environ. 2021, 794, 148484. [Google Scholar] [CrossRef] [PubMed]
- INFARMED. Autoridade Nacional do Medicamento e Produtos de Saúde. Available online: https://www.infarmed.pt/ (accessed on 2 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paíga, P.; Correia-Sá, L.; Correia, M.; Figueiredo, S.; Vieira, J.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. J. Xenobiot. 2024, 14, 873-892. https://doi.org/10.3390/jox14030048
Paíga P, Correia-Sá L, Correia M, Figueiredo S, Vieira J, Jorge S, Silva JG, Delerue-Matos C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. Journal of Xenobiotics. 2024; 14(3):873-892. https://doi.org/10.3390/jox14030048
Chicago/Turabian StylePaíga, Paula, Luísa Correia-Sá, Manuela Correia, Sónia Figueiredo, Joana Vieira, Sandra Jorge, Jaime Gabriel Silva, and Cristina Delerue-Matos. 2024. "Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study" Journal of Xenobiotics 14, no. 3: 873-892. https://doi.org/10.3390/jox14030048
APA StylePaíga, P., Correia-Sá, L., Correia, M., Figueiredo, S., Vieira, J., Jorge, S., Silva, J. G., & Delerue-Matos, C. (2024). Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. Journal of Xenobiotics, 14(3), 873-892. https://doi.org/10.3390/jox14030048