Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection
2.2. Soil Sample Preparation
2.3. Soil Sample Pretreatment
2.4. Characterization
2.5. Assessment of the Health Risk
2.5.1. MP Risk Indices
2.5.2. Average Estimated Daily Intake (EDI) of MPs
2.5.3. Cancer Risk Assessment of MP
2.6. Quality Control
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphology of the Particles
3.2. Detection of Types of MPs by FTIR
3.3. Relative Distribution of Different MPs in Non-Mulched Soils
3.4. Area-Based Distribution of MPs in Non-Mulched Agricultural Soils
3.5. Strata-Wise MP Distribution in Non-Mulched Agricultural Soil
3.6. Source Apportionment of the Detected MPs
3.7. Health Risk Assessment
3.7.1. MP Polymer Risk Indices (pRi)
3.7.2. Estimated Daily Intake (EDI) of MPs
3.7.3. MP Carcinogenic Risk (MPCR) Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; et al. The Minderoo-Monaco Commission on Plastics and Human Health. Minderoo-Monaco Comm. Plast. Hum. Health.Ann. Glob. Health 2023, 89, 23. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Gallagher, L.G.; Li, W.; Ray, R.M.; Romano, M.E.; Wernli, K.J.; Gao, D.L.; Thomas, D.B.; Checkoway, H. Occupational Exposures and Risk of Stomach and Esophageal Cancers: Update of a Cohort of Female Textile Workers in Shanghai, China. Am. J. Ind. Med. 2015, 275, 267–275. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Shafea, L.; Verla, A.W.; Verla, E.N.; Qingyue, W.; Chowdhury, T.; Paredes, M. Ecosystems: An Overview. Environ. Anal. Health Toxicol. 2020, 35, e2020004. [Google Scholar] [CrossRef]
- Vianello, A.; Jensen, R.L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 8670. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Bian, P.; Liu, Y.; Zhao, K.; Hu, Y.; Zhang, J.; Kang, L.; Shen, W. Ecotoxicology and Environmental Safety Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River. Ecotoxicol. Environ. Saf. 2022, 232, 113298. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Verla, E.N.; Enyoh, E.C. Effect of Macro- and Micro-Plastics in Soil on Quantitative Phytochemicals in Different Part of Juvenile Lime Tree (Citrus aurantium). Int. J. Environ. Res. 2020, 14, 705–726. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Wu, M.; Yang, C.; Du, C.; Liu, H. Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. Ecotoxicol. Environ. Saf. 2020, 202, 110910. [Google Scholar] [CrossRef]
- PlasticEurope. Plastics—The Fast Facts; PlasticEurope: Brussels, Belgium, 2023. [Google Scholar]
- Apeeurope. Plasticulture in Europe. 2021. Available online: https://apeeurope.eu/statistics/ (accessed on 11 March 2024).
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic Films for Agricultural Applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhou, X.; Ding, W.; Wang, X.; Zhao, M.; Li, H.; Zou, G.; Chen, Y. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat–maize rotation. Sci. Total Environ. 2023, 866, 161123. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Chen, X.; Jiang, X.; Li, J.; Yang, L.; Yin, X.; Zhang, X. Occurrence and distribution of microplastics in organic fertilizers in China. Sci. Total Environ. 2022, 844, 157061. [Google Scholar] [CrossRef]
- Cai, L.; Zhao, X.; Liu, Z.; Han, J. The abundance, characteristics and distribution of microplastics (MPs) in farmland soil—Based on research in China. Sci. Total Environ. 2023, 876, 162782. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, Y.; Bian, P.; Hu, Y.; Zhang, J.; Shen, W. Effects of irrigation on the fate of microplastics in typical agricultural soil and freshwater environments in the upper irrigation area of the Yellow River. J. Hazard. Mater. 2023, 447, 130766. [Google Scholar] [CrossRef]
- Zhou, Y.; He, G.; Jiang, X.; Yao, L.; Ouyang, L.; Liu, X.; Liu, W.; Liu, Y. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density. J. Hazard. Mater. 2021, 411, 125178. [Google Scholar] [CrossRef]
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, China. Environ. Pollut. 2020, 257, 113449. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014. Update 2015; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; 192p. [Google Scholar]
- Enyoh, C.E.; Verla, A.W.; Rakib, R.J. Application of Index Models for Assessing Freshwater Microplastics Pollution. World News Nat. Sci. 2021, 38, 37–48. [Google Scholar]
- Christian, E.E.; Wang, Q.; Andrew, W.V.; Tanzin, C. Index models for ecological and health risks assessment of environmental micro-and nano-sized plastics. AIMS Environ. Sci. 2022, 9, 51–65. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmos. Environ. 2010, 44, 3239–3245. [Google Scholar] [CrossRef]
- China Statistics Bureau. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2012; p. 62791819.
- USEPA. Use of BW3_4 as Default Method in Derivation of the Oral RfD; US Environmental Protection Agency: Washington, DC, USA, 2001.
- Van Den Berg, R. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis towards Proposals for Human Toxicology C-Standard Values; Report No.7252010; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1995. [Google Scholar]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2002; pp. 1–187.
- USEPA. Soil Screening Guidance: Technical Background Document; Office of Emergency and Remedial Response U.S. Environmental Protection Agency: Washington, DC, USA, 1996.
- Salamone, J.D. The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J. Neurosci. Methods 1996, 64, 137–149. [Google Scholar] [CrossRef]
- Li, W.; Wufuer, R.; Duo, J.; Wang, S.; Luo, Y.; Zhang, D.; Pan, X. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene fi lm mulching in an arid region. Sci. Total Environ. 2020, 749, 141420. [Google Scholar] [CrossRef]
- Braun, M.; Mail, M.; Heyse, R.; Amelung, W. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. Sci. Total Environ. 2021, 760, 143335. [Google Scholar] [CrossRef]
- van Den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Tian, J.; Niu, F.; Xing, Y.; Wu, Y.; Zhang, R.; Zheng, J.; Xu, L. Accumulation of microplastics in greenhouse soil after long-term plastic fi lm mulching in Beijing, China. Sci. Total Environ. J. 2022, 828, 154544. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, L.; Gong, L.; Li, G.; Xiu, W.; Yang, X.; Tan, B.; Zhao, J.; Zhang, G. Differences, links, and roles of microbial and stoichiometric factors in microplastic distribution: A case study of five typical rice cropping regions in China. Front. Microbiol. 2022, 13, 985239. [Google Scholar] [CrossRef]
- Hossain, N.; Rahman, M.; Afrin, S.; Akbor, A.; Siddique, A.B.; Malafaia, G. Identification and quantification of microplastics in agricultural farmland soil and textile sludge in Bangladesh. Sci. Total Environ. 2023, 858, 160118. [Google Scholar] [CrossRef]
- Tziourrou, P.; Kordella, S.; Ardali, Y.; Papatheodorou, G.; Karapanagioti, H. Microplastics formation based on degradation characteristics of beached plastic bags. Mar. Pollut. Bull. 2021, 169, 112470. [Google Scholar] [CrossRef]
- Singh, S.; Chakma, S.; Alawa, B.; Kalyanasundaram, M.; Diwan, V. Identification, characterization, and implications of microplastics in soil—A case study of Bhopal, central India. J. Hazard. Mater. Adv. 2023, 9, 100225. [Google Scholar] [CrossRef]
- Parvin, F.; Jannat, S.; Tareq, S.M. Abundance, characteristics and variation of microplastics in different freshwater fish species from Bangladesh. Sci. Total Environ. 2021, 784, 147137. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, S.; Wang, X.; Yang, X.; Zhang, C.; Qi, Y.; Guo, X. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China. Sci. Total Environ. 2020, 720, 137525. [Google Scholar] [CrossRef]
- Tajwar, M.; Shreya, S.S.; Gazi, Y.; Hasan, M.; Saha, S.K. Microplastic contamination in the sediments of the Saint Martin’s. Reg. Stud. Mar. Sci. 2022, 53, 102401. [Google Scholar] [CrossRef]
- Shih, C.Y.; Wang, Y.H.; Chen, Y.J.; Chen, H.A.; Lin, A.Y.C. Enhanced sorption of the UV filter 4- methylbenzylidene camphor on aged PET microplastics from both experimental and theoretical perspectives. R. Soc. Chem. 2021, 11, 32494–32504. [Google Scholar] [CrossRef]
- Ahmed, G.S.; Gilbert, M.; Mainprize, S.; Rogerson, M. FTIR analysis of silane grafted high density polyethylene. Plast. Rubber Compos. 2009, 38, 13–20. [Google Scholar] [CrossRef]
- Rathore, C.; Saha, M.; Gupta, P.; Kumar, M.; Naik, A.; de Boer, J. Standardization of micro-FTIR methods and applicability for the detection and identification of microplastics in environmental matrices. Sci. Total Environ. 2023, 888, 164157. [Google Scholar] [CrossRef]
- Pereira, A.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Msjid, M.; Majid, A.; Zahra, S.; Mojdeh, Z. Graft Copolymerization of Methacrylic Acid Monomers onto Polypropylene fibers. Chem. Ind. Chem. Eng. 2014, 20, 87–96. [Google Scholar] [CrossRef]
- Rana, M.; Haque, R.; Tasnim, S.S.; Rahman, M. The potential contribution of microplastic pollution by organic fertilizers in agricultural soils of Bangladesh: Quantification, characterization, and risk appraisals. Front. Environ. Sci. 2023, 11, 1205603. [Google Scholar] [CrossRef]
- Ye, X.; Wang, P.; Wu, Y.; Zhou, Y.; Sheng, Y.; Lao, K. Microplastic acts as a vector for contaminants: The release behavior of dibutyl phthalate from polyvinyl chloride pipe fragments in water phase. Environ. Sci. Pollut. Res. 2020, 5, 42082–42091. [Google Scholar] [CrossRef]
- Kabir, A.H.M.E.; Sekine, M.; Imai, T.; Yamamoto, K.; Kanno, A.; Higuchi, T. Assessing small-scale freshwater microplastics pollution, land-use, source-to-sink conduits, and pollution risks: Perspectives from Japanese rivers polluted with microplastics. Sci. Total Environ. 2021, 768, 144655. [Google Scholar] [CrossRef]
- Rabin, M.H.; Wang, Q.; Enyoh, C.E.; Kai, X.; Sheuty, T.F. Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh. Environments 2023, 10, 130. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime Accumulation of Microplastic in Children and Adults. Environ. Sci. Technol. 2021, 55, 5084–5096. [Google Scholar] [CrossRef]
Parameters | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 |
---|---|---|---|---|---|
Area | Rural area | Local market area | Industrial Area | Coastal area | Research Area |
Location | Thakurgaon | Joypurhat | Gazipur | Khulna | Barisal |
Geographic coordinate | 26.035505° N, 88.387421° E | 25.054924° N, 89.012137° E | 23.980278° N, 90.413611° E | 22.738450° N, 89.590920° E | 22.788271° N, 90.292958° E |
Geographic attributes | Characterized by agricultural dominance, situated away from urban centers. | Adjacent to local markets with diverse grocery shops. | Located within industrial hubs, primarily housing garment industries, where waste management challenges persist due to a lack of awareness among the workforces. City corporation with insufficient waste management program. | Agricultural fields situated in coastal area, sharing characteristics influenced by unique coastal geography. | Represented by the Regional Station of Bangladesh Agricultural Research Institute (BARI), serving as a research environment restricted to the public. |
Köppen–Geiger climate classification [27] | Equatorial monsoon (Am) | Equatorial monsoon (Am) | Equatorial monsoon (Am) | Equatorial monsoon (Am) | Equatorial monsoon (Am) |
Soil type [28] | Acrisols, Luvisols | Acrisols, Luvisols | Acrisols, Gleysols | Solonchaks, Acrisols, Luvisols | Acrisols, Gleysols, Luvisols |
Texture [28] | Clayey soil, Loamy | Clayey soil, Loamy | Loamy, Clayey soil | Clayey soil, Sandy to Loamy soil | Clayey soil, Loamy |
Hydrogen (%) | 0.17 | 0.24 | 0.23 | 0.55 | 0.45 |
Nitrogen (%) | 0.1 | 0.11 | 0.13 | 0.18 | 0.18 |
Carbon (%) | 0.83 | 1.16 | 1.45 | 1.73 | 2.52 |
CaCO3 (%) | 5.92 | 5.55 | 5.62 | 8.91 | 7.78 |
Organic carbon (%) | 0.12 | 0.49 | 0.78 | 0.66 | 1.59 |
Organic matter (%) | 0.21 | 0.85 | 1.34 | 1.14 | 2.73 |
pH | 6.1 | 5.7 | 6.5 | 8.5 | 7.5 |
Parameters | Definition | Value for Children | Value for Adults | References |
---|---|---|---|---|
Exposure Duration (ED) | Exposure duration is the period an individual is exposed to a particular environmental condition, critically influencing the potential health effects and risks associated with that exposure. It is expressed as year (y). | 6 | 30 | [31] |
Exposure Frequency (EF) | Exposure frequency is the number of times an individual is exposed to a particular environmental condition within a specific time. It is expressed as day/year (d/y). | 180 | 180 | |
Average Time (AT) (Cancer) | Average time refers to the average number of days an individual is exposed to an agent, used in risk assessments over a specified period. AT Cancer = Lifetime (LT) × 365 = 76 × 365 = 27,740 d (Both) AT Non-cancer = ED × 365 = 6 × 365 = 2190 d (Children) AT Non-cancer = ED × 365 = 30 × 365 = 10,950 d (Adult) | 27,740 | 27,740 | |
Average Time (AT) (Non- cancer) | 2190 | 10,950 | ||
Average Body Weight (BW) | Average body weight refers to the mean weight of an individual, measured in grams, and is often used in health-related studies to standardize dosages, exposures, and physiological assessments. | 16,200 | 61,800 | [32] |
Average Lifetime (LT) | Average lifetime refers to the average number of years an individual is expected to live, used in various fields such as risk assessment to estimate long-term effects. It is expressed as a year. | 76 | 76 | |
Particle Emission Factor (PEF) | The particle emission factor refers to the volume of air (in cubic meters) that contains one gram of emitted particles to quantify and model the release of particulate matter from various sources. | 1.36 × 106 | 1.36 × 106 | [33] |
Ingestion Rate (IngR) | The ingestion rate refers to the amount of a substance consumed per day, measured in grams, and is used in dietary and exposure assessments to estimate the daily intake of MPs. | 0.2 | 0.1 | |
Exposed Skin Area (SA) | Exposed skin area (SA) denotes the surface of the skin not shielded by clothing, crucial in evaluating risks from environmental factors and implementing appropriate safety measures. Its unit is cm2. | 2800 | 5700 | |
Skin Adherence Factor (SL) | Skin adherence factor is a measure used to quantify the extent to which a substance adheres to the skin after application, influencing its absorption and potential systemic effects. It is expressed as mg/(cm−2·d−1). | 0.2 | 0.07 | |
Inhalation Rate (InhR) | The inhalation rate refers to the volume of air an individual breathes in per day, measured in cubic meters, and is used in exposure assessments to estimate the intake of airborne MPs. | 7.6 | 20 | [34] |
MP (Items/g) | Microplastic quantity noted as MP during calculation. | This study |
Plastic Polymer | Pathways | Research Area | Industrial Area | Local Market Area | Coastal Area | Rural Area | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Child | Adults | Child | Adults | Child | Adults | Child | Adults | Child | Adults | ||
HDPE | Ingestion | 3.91 × 10−4 | 3.73 × 10−3 | 3.55 × 10−4 | 3.39 × 10−3 | 2.84 × 10−4 | 2.71 × 10−3 | 3.55 × 10−4 | 3.39 × 10−3 | 7.10 × 10−5 | 6.80 × 10−4 |
Inhalation | 4.00 × 10−11 | 1.40 × 10−10 | 3.80 × 10−11 | 1.30 × 10−10 | 3.00 × 10−11 | 1.04 × 10−10 | 3.80 × 10−11 | 1.30 × 10−10 | 8.00 × 10−12 | 2.60 × 10−11 | |
Dermal | 3.00 × 10−11 | 3.90 × 10−11 | 2.70 × 10−11 | 4.00 × 10−11 | 2.00 × 10−11 | 2.83 × 10−11 | 3.00 × 10−11 | 3.50 × 10−11 | 5.00 × 10−12 | 7.00 × 10−12 | |
LDPE | Ingestion | 4.26 × 10−4 | 4.06 × 10−3 | 7.46 × 10−4 | 7.11 × 10−3 | 3.91 × 10−4 | 3.73 × 10−3 | 6.39 × 10−4 | 6.10 × 10−3 | 4.26 × 10−4 | 4.06 × 10−3 |
Inhalation | 5.00 × 10−11 | 1.60 × 10−10 | 7.90 × 10−11 | 2.70 × 10−10 | 4.20 × 10−11 | 1.43 × 10−10 | 6.80 × 10−11 | 2.30 × 10−10 | 4.50 × 10−11 | 1.56 × 10−10 | |
Dermal | 3.20 × 10−11 | 4.20 × 10−11 | 5.70 × 10−11 | 7.00 × 10−11 | 3.00 × 10−11 | 3.89 × 10−11 | 5.00 × 10−11 | 6.40 × 10−11 | 3.20 × 10−11 | 4.20 × 10−11 | |
PET | Ingestion | 8.88 × 10−4 | 8.47 × 10−3 | 1.03 × 10−3 | 9.82 × 10−3 | 4.97 × 10−4 | 4.74 × 10−3 | 5.68 × 10−4 | 5.42 × 10−3 | 4.62 × 10−4 | 4.40 × 10−3 |
Inhalation | 9.00 × 10−11 | 3.30 × 10−10 | 1.10 × 10−10 | 3.80 × 10−10 | 5.30 × 10−11 | 1.83 × 10−10 | 6.00 × 10−11 | 2.10 × 10−10 | 4.90 × 10−11 | 1.70 × 10−10 | |
Dermal | 6.70 × 10−11 | 8.80 × 10−11 | 7.80 × 10−11 | 1.00 × 10−10 | 4.00 × 10−11 | 4.95 × 10−11 | 4.00 × 10−11 | 5.70 × 10−11 | 3.50 × 10−11 | 4.60 × 10−11 | |
PP | Ingestion | 2.49 × 10−4 | 2.37 × 10−3 | 2.49 × 10−4 | 2.37 × 10−3 | 1.78 × 10−4 | 1.69 × 10−3 | 7.46 × 10−4 | 7.11 × 10−3 | 5.68 × 10−4 | 5.42 × 10−3 |
Inhalation | 3.00 × 10−11 | 9.00 × 10−11 | 2.60 × 10−11 | 9.00 × 10−11 | 1.90 × 10−11 | 6.50 × 10−11 | 7.90 × 10−11 | 2.70 × 10−10 | 6.00 × 10−11 | 2.09 × 10−10 | |
Dermal | 1.90 × 10−11 | 2.50 × 10−11 | 1.90 × 10−11 | 2.00 × 10−11 | 1.00 × 10−11 | 1.77 × 10−11 | 6.00 × 10−11 | 7.40 × 10−11 | 4.30 × 10−11 | 5.70 × 10−11 | |
PVC | Ingestion | 0 | 0 | 0 | 0 | 0 | 0 | 6.77 × 10−4 | 6.80 × 10−4 | 0 | 0 |
Inhalation | 0 | 0 | 0 | 0 | 0 | 0 | 8.00 × 10−12 | 3.00 × 10−11 | 0 | 0 | |
Dermal | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 × 10−11 | 7.00 × 10−12 | 0 | 0 |
Plastic Polymer | Research Area | Industrial Area | Local Market Area | Coastal Area | Rural Area |
---|---|---|---|---|---|
HDPE | 2.61 × 10−10 | 2.37 × 10−10 | 1.9 × 10−10 | 2.37 × 10−10 | 4.75 × 10−11 |
LDPE | 2.85 × 10−10 | 4.97 × 10−10 | 2.61 × 10−10 | 4.27 × 10−10 | 2.85 × 10−10 |
PET | 5.94 × 10−10 | 6.86 × 10−10 | 3.32 × 10−10 | 3.8 × 10−10 | 3.09 × 10−10 |
PP | 3.91 × 10−11 | 3.9 × 10−11 | 2.79 × 10−11 | 1.17 × 10−10 | 8.94 × 10−11 |
PVC | 0 | 0 | 0 | 8.85 × 10−11 | 0 |
Total | 1.18 × 10−9 | 1.46 × 10−9 | 8.12 × 10−10 | 1.25 × 10−9 | 7.31 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharmin, S.; Wang, Q.; Islam, M.R.; Wang, W.; Enyoh, C.E. Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment. J. Xenobiot. 2024, 14, 812-826. https://doi.org/10.3390/jox14020046
Sharmin S, Wang Q, Islam MR, Wang W, Enyoh CE. Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment. Journal of Xenobiotics. 2024; 14(2):812-826. https://doi.org/10.3390/jox14020046
Chicago/Turabian StyleSharmin, Sumaya, Qingyue Wang, Md. Rezwanul Islam, Weiqian Wang, and Christian Ebere Enyoh. 2024. "Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment" Journal of Xenobiotics 14, no. 2: 812-826. https://doi.org/10.3390/jox14020046
APA StyleSharmin, S., Wang, Q., Islam, M. R., Wang, W., & Enyoh, C. E. (2024). Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment. Journal of Xenobiotics, 14(2), 812-826. https://doi.org/10.3390/jox14020046