Correlation of Vitamin 25(OH)D, Liver Enzymes, Potassium, and Oxidative Stress Markers with Lipid Profile and Atheromatic Index: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Analysis of Serum Lipoproteins, Vitamin D, Liver Enzymes and Electrolytes
2.3. Analysis of Oxidative Stress Parameters (ROS, TOS, TAS)
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Correlation between Atheromatic Index (TC/HDL) and Lipid Profile
3.2. Correlation between Vitamin D and Lipid Profile
3.3. Correlation of Liver Enzymes and LDH with Lipid Profile
3.4. Correlation between Electrolytes and Lipid Profile
3.5. Correlation between Oxidative Stress Parameters and Lipid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
CVDs | cardiovascular diseases |
γ-GT | gamma-glutamyl transferase |
HDL | high-density lipoprotein |
HRP | horseradish peroxidase |
H2DCFDA | 2′,7′-dichlorodihydrofluorescein diacetate |
H2O2 | hydrogen peroxide |
GPx | glutathione peroxidase |
K | potassium |
LDH | lactate dehydrogenase |
LDL | low-density lipoprotein |
Na | sodium |
Ox-LDL | oxidized low-density lipoprotein |
ROS | reactive oxygen species |
SD | standard deviation |
SGOT | serum glutamic oxaloacetic transaminase |
SGPT | serum glutamic pyruvic transaminase |
TAS | total antioxidative status |
TC | total cholesterol |
TG | triglycerides |
TMB | tetramethylbenzidine |
TOS | total oxidative status |
25(OH)D | 25-hydroxy vitamin D |
References
- Mosca, S.; Araújo, G.; Costa, V.; Correia, J.; Bandeira, A.; Martins, E.; Mansilha, H.; Tavares, M.; Coelho, M.P. Dyslipidemia Diagnosis and Treatment: Risk Stratification in Children and Adolescents. J. Nutr. Metab. 2022, 2022, 4782344. [Google Scholar] [CrossRef] [PubMed]
- Pappan, N.; Rehman, A. Dyslipidemia. Chronic Disease Follow-Ups for Adults in Primary Care; Nova Science Publishers: Hauppauge, NY, USA, 2022; pp. 243–256. [Google Scholar] [CrossRef]
- Cardiovascular Diseases (CVDs) n.d. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 8 December 2022).
- Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; et al. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis. 2020, 19, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, T.; Hajihosseini, M.; Moossavi, M.; Hemmati, M.; Ziaee, M. Cardiovascular Risk Factors and Atherogenic Indices in an Iranian Population: Birjand East of Iran. Clin. Med. Insights Cardiol. 2018, 12, 1179546818759286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.A.; Prabahar, K.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar] [CrossRef]
- Wang, J.C.; Gray, N.E.; Kuo, T.; Harris, C.A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2012, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Crook, D.; Seed, M. Endocrine control of plasma lipoprotein metabolism: Effects of gonadal steroids. Baillieres Clin. Endocrinol. Metab. 1990, 4, 851–875. [Google Scholar] [CrossRef]
- Weinberg, R.B. Lipoprotein Metabolism: Hormonal Regulation. Hosp. Pract. 2016, 22, 223–243. [Google Scholar] [CrossRef]
- Surdu, A.M.; Pînzariu, O.; Ciobanu, D.M.; Negru, A.G.; Căinap, S.S.; Lazea, C.; Iacob, D.; Săraci, G.; Tirinescu, D.; Borda, I.; et al. Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines 2021, 9, 172. [Google Scholar] [CrossRef]
- Musa, I.R.; Gasim, G.I.; Khan, S.; Ibrahim, I.A.; Abo-Alazm, H.; Adam, I. No Correlation between 25 (OH) Vitamin D Level And Hypothyroidism among Females. Open Access Maced. J. Med. Sci. 2017, 5, 126. [Google Scholar] [CrossRef] [Green Version]
- Pike, J.W.; Christakos, S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017, 46, 815. [Google Scholar] [CrossRef]
- Argacha, J.F.; Egrise, D.; Pochet, S.; Fontaine, D.; Lefort, A.; Libert, F.; Goldman, S.; van de Borne, P.; Berkenboom, G.; Moreno-Reyes, R. Vitamin D deficiency-induced hypertension is associated with vascular oxidative stress and altered heart gene expression. J. Cardiovasc. Pharmacol. 2011, 58, 65–71. [Google Scholar] [CrossRef]
- Glueck, C.J.; Jetty, V.; Rothschild, M.; Duhon, G.; Shah, P.; Prince, M.; Lee, K.; Goldenberg, M.; Kumar, A.; Goldenberg, N.; et al. Correlations between Serum 25-hydroxyvitamin D and Lipids, Lipoprotein Cholesterols, and Homocysteine. N. Am. J. Med. Sci. 2016, 8, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.R.; Jeong, S.J. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tong, C.H.; Rowland, C.M.; Radcliff, J.; Bare, L.A.; McPhaul, M.J.; Devlin, J.J. Correlation of changes in lipid levels with changes in vitamin D levels in a real-world setting. Sci. Rep. 2021, 11, 21536. [Google Scholar] [CrossRef]
- Liao, X.; Ma, Q.; Wu, T.; Shao, C.; Lin, Y.; Sun, Y.; Feng, S.; Wang, W.; Ye, J.; Zhong, B. Lipid-Lowering Responses to Dyslipidemia Determine the Efficacy on Liver Enzymes in Metabolic Dysfunction-Associated Fatty Liver Disease with Hepatic Injuries: A Prospective Cohort Study. Diabetes Metab. Syndr. Obes. 2022, 15, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, Z.; Hoseini, R.; Behpour, N. Alterations of liver enzymes and lipid profile in response to exhaustive eccentric exercise: Vitamin D supplementation trial in overweight females with non-alcoholic fatty liver disease. BMC Gastroenterol. 2022, 22, 372. [Google Scholar] [CrossRef] [PubMed]
- Bin Dahman, L.S.; Humam, M.A.; Barahim, O.H.; Barahman, O.M.; Balfas, M.A. Correlation between Liver Enzymes and Dyslipidemia in Yemeni Patients with Type Two Diabetes Mellitus. J. Diabetes Mellit. 2021, 11, 41–51. [Google Scholar] [CrossRef]
- Kathak, R.R.; Sumon, A.H.; Molla, N.H.; Hasan, M.; Miah, R.; Tuba, H.R.; Habib, A.; Ali, N. The correlation between elevated lipid profile and liver enzymes: A study on Bangladeshi adults. Sci. Rep. 2022, 12, 1711. [Google Scholar] [CrossRef]
- Lizama, P.M.; Ríos, D.L.; Cachinero, I.S.; Lopez-Egea, A.T.; Camps, A.; Belzares, O.; Pacheco, C.; Cerro, C.; Wehinger, S.; Fuentes, E.; et al. Correlation of kidney disease, potassium, and cardiovascular risk factor prevalence with coronary arteriosclerotic burden, by sex. J. Pers. Med. 2021, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Young, D.B.; Clower, B.R. Inverse relationship between potassium intake and coronary artery disease in the cholesterol-fed rabbit. Am. J. Hypertens. 1999, 12, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Bukiya, A.N.; Rosenhouse-Dantsker, A.; Bukiya, A.N.; Rosenhouse-Dantsker, A. Hypercholesterolemia Effect on Potassium Channels. Hypercholesterolemia 2015. [Google Scholar] [CrossRef]
- Csonka, C.; Sárközy, M.; Pipicz, M.; Dux, L.; Csont, T. Modulation of hypercholesterolemia-induced oxidative/nitrative stress in the heart. Oxid. Med. Cell. Longev. 2016, 2016, 3863726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkdogan, K.A.; Akpinar, O.; Karabacak, M.; Akpinar, H.; Turkdogan, F.T.; Karahan, O. Correlation between oxidative stress index and serum lipid levels in healthy young adults. J. Pak. Med. Assoc. 2014, 64, 379–381. [Google Scholar]
- Viktorinova, A.; Svitekova, K.; Stecova, A.; Krizko, M. Relationship between selected oxidative stress markers and lipid risk factors for cardiovascular disease in middle-aged adults and its possible clinical relevance. Clin. Biochem. 2016, 49, 868–872. [Google Scholar] [CrossRef]
- Barbosa, K.B.F.; Volp, A.C.P.; Hermsdorff, H.H.M.; Navarro-Blasco, I.; Zulet, M.Á.; Martínez, J.A.; Bressan, J. Relationship of oxidized low density lipoprotein with lipid profile and oxidative stress markers in healthy young adults: A translational study. Lipids Health Dis. 2011, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Chen, Y.; Shi, Y.; Li, M.; Hu, L.; Zhou, W.; Wang, T.; Zhu, L.; Huang, X.; Bao, H.; et al. Correlation between nontraditional lipid profiles and peripheral arterial disease in Chinese adults with hypertension. Lipids Health Dis. 2020, 19, 231. [Google Scholar] [CrossRef]
- Quispe, R.; Elshazly, M.B.; Zhao, D.; Toth, P.P.; Puri, R.; Virani, S.S.; Blumenthal, R.S.; Martin, S.S.; Jones, S.R.; Michos, E.D. TC/HDL-C Ratio Discordance with LDL-C and non-HDL-C and Incidence of Atherosclerotic Cardiovascular Disease in Primary Prevention: The ARIC Study. Eur. J. Prev. Cardiol. 2020, 27, 1597. [Google Scholar] [CrossRef]
- Lemieux, I.; Lamarche, B.; Couillard, C.; Pascot, A.; Cantin, B.; Bergeron, J.; Dagenais, G.R.; Després, J.-P. Total Cholesterol/HDL Cholesterol Ratio vs LDL Cholesterol/HDL Cholesterol Ratio as Indices of Ischemic Heart Disease Risk in Men: The Quebec Cardiovascular Study. Arch. Intern. Med. 2001, 161, 2685–2692. [Google Scholar] [CrossRef]
- Bennett, A.L.; Lavie, C.J. Vitamin D Metabolism and the Implications for Atherosclerosis. Adv. Exp. Med. Biol. 2017, 996, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Halsted, C.H. Nutrition and alcoholic liver disease. Semin. Liver Dis. 2004, 24, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2017, 8, 1. [Google Scholar] [CrossRef]
- Ghadir, M.R.; Riahin, A.A.; Havaspour, A.; Nooranipour, M.; Habibinejad, A.A. The relationship between lipid profile and severity of liver damage in cirrhotic patients. Hepat. Mon. 2010, 10, 285. [Google Scholar]
- Żarczyńska, K.; Sobiech, P.; Snarska, A.; Tobolski, D.; Pareek, C.S.; Bednarek, D. Applicability of the Protein-lipid Profile and Activity of Lactate Dehydrogenase Isoenzymes for Diagnosing Nutritional Muscular Dystrophy in Calves. J. Vet. Res. 2018, 62, 503–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liamis, G.; Rodenburg, E.M.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Electrolyte disorders in community subjects: Prevalence and risk factors. Am. J. Med. 2013, 126, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; McCallum, L.; Pietzner, M.; Zierer, J.; Aman, A.; Suhre, K.; Mohney, R.P.; Mangino, M.; Friedrich, N.; Spector, T.D.; et al. Metabolomic profiling identifies novel correlations with Electrolyte and Acid-Base Homeostatic patterns. Sci. Rep. 2019, 9, 15088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guastadisegni, C.; Donfrancesco, C.; Palmieri, L.; Grioni, S.; Krogh, V.; Vanuzzo, D.; Strazzullo, P.; Vannucchi, S.; Onder, G.; Giampaoli, S. Nutrients Intake in Individuals with Hypertension, Dyslipidemia, and Diabetes: An Italian Survey. Nutrients 2020, 12, 923. [Google Scholar] [CrossRef] [Green Version]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Li, Y.; Nguyen, X.M.T.; Song, R.J.; Ho, Y.L.; Hu, F.B.; Willett, W.C.; Wilson, P.W.F.; Cho, K.; Gaziano, J.M.; et al. Dietary Sodium and Potassium Intake and Risk of Non-Fatal Cardiovascular Diseases: The Million Veteran Program. Nutrients 2022, 14, 1121. [Google Scholar] [CrossRef]
- He, F.J.; Markandu, N.D.; Sagnella, G.A.; de Wardener, H.E.; MacGregor, G.A. Plasma Sodium. Hypertension 2005, 45, 98–102. [Google Scholar] [CrossRef]
- Hur, S.J.; Joo, S.T.; Lim, B.O.; Decker, E.A.; McClements, J.D. Impact of salt and lipid type on in vitro digestion of emulsified lipids. Food Chem. 2011, 126, 1559–1564. [Google Scholar] [CrossRef]
- Sugamura, K.; Keaney, J.F. Reactive Oxygen Species in Cardiovascular Disease. Free Radic. Biol. Med. 2011, 51, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafi, M. Oxidative stress in atherosclerosis development: The central role of LDL and oxidative burst. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef] [PubMed]
Markers | Reference Values | TC/HDL > 3.5 (n = 67) Group A | TC/HDL < 3.5 (n = 35) Group B | Total TC/HDL (n = 102) | p-Values |
---|---|---|---|---|---|
Mean (±SD) | Mean (±SD) | Mean (±SD) | |||
TC | <200 mg/dL | 228 (±36.7) | 163 (±40.4) | 205 (±48.9) | <0.0001 |
HDL | >45 mg/dL | 48 (±10.3) | 56 (±15.4) | 51 (±12.9) | <0.0001 |
LDL | <130 mg/dL | 150 (±36.4) | 87 (±32.1) | 128 (±46.2) | <0.0001 |
TG | <150 mg/dL | 164 (±78.0) | 105 (±43.8) | 144 (±73.7) | <0.0001 |
TC/HDL | <3.5 | 4.9 (±1.3) | 2.9 (±0.4) | 4.3 (±1.4) | <0.0001 |
25(OH)D | >30 ng/mL | 20 (±9.2) | 22 (±9.0) | 21 (±9.1) | <0.1 |
SGOT | 5–45 U/L | 21 (±10.3) | 19 (±6.4) | 20 (±9.2) | <0.1 |
SGPT | 0–55 U/L | 24 (±10.0) | 20 (±7.6) | 23 (±9.4) | <0.05 |
γ-GT | 9–36 U/L | 30 (±20.5) | 32 (±31.5) | 30 (±24.2) | <0.1 |
LDH | 125–220 U/L | 197 (±75.6) | 184 (±53.6) | 193 (±70.0) | <0.1 |
ALP | 40–150 U/L | 71 (±20.6) | 67 (±13.9) | 70 (±18.7) | <0.1 |
K | 3.5–5 mmol/L | 4.39 (±0.4) | 4.43 (±0.5) | 4.4 (±0.5) | <0.05 |
Na | 136–148 mmol/L | 141 (±3.2) | 142 (±2.2) | 141 (±2.9) | <0.1 |
ROS | 1.25 mM | 1.34 (±1.22) | 1.27 (±0.73) | 1.31 (±1.07) | <0.1 |
TOS | 180–310 μmol/L | 170 (±77) | 165 (±79) | 169 (±77) | <0.1 |
TAS | 280–320 μmol/L | 224 (±27) | 244 (±50) | 229 (±35) | <0.05 |
TOS/TAS | 0.5–1 | 0.8 (±0.3) | 0.7 (±0.4) | 0.8 (±0.3) | <0.1 |
Marker | TC/HDL | ||
---|---|---|---|
Lipid Profile | Group A (r) | Group B (r) | Total (r) |
TC | 0.514 | 0.169 | 0.663 |
HDL | −0.686 | −0.493 | −0.593 |
LDL | 0.578 | 0.337 | 0.731 |
TG | 0.486 | 0.456 | 0.584 |
Marker | 25(OH)D | ||
---|---|---|---|
Lipid Profile | Group A (r) | Group B (r) | Total (r) |
TC | −0.061 | 0.030 | −0.089 |
HDL | 0.489 | 0.175 | 0.327 |
LDL | 0.006 | 0.064 | −0.056 |
TG | −0.456 | −0.444 | −0.445 |
TC/HDL | −0.467 | −0.197 | −0.340 |
MARKER | |||||||
---|---|---|---|---|---|---|---|
SGOT (r) | SGPT (r) | γ-GT (r) | ALP (r) | LDH (r) | |||
Lipid Profile | Group A | TC | −0.173 | 0.053 | 0.009 | 0.042 | −0.276 |
HDL | 0.199 | 0.058 | −0.015 | −0.146 | 0.073 | ||
LDL | −0.165 | 0.021 | −0.0005 | 0.126 | −0.212 | ||
TG | −0.076 | 0.271 | 0.041 | −0.099 | −0.333 | ||
TC/HDL | −0.254 | 0.051 | 0.038 | 0.076 | −0.249 | ||
Group B | TC | 0.111 | −0.008 | 0.220 | 0.497 | 0.004 | |
HDL | 0.228 | −0.063 | 0.226 | 0.220 | −0.107 | ||
LDL | 0.008 | −0.053 | 0.069 | 0.487 | 0.159 | ||
TG | 0.063 | 0.259 | 0.363 | 0.187 | −0.467 | ||
TC/HDL | −0.123 | 0.164 | 0.052 | 0.435 | 0.198 | ||
Total | TC | −0.036 | 0.135 | 0.063 | 0.111 | −0.190 | |
HDL | 0.158 | −0.044 | 0.126 | −0.074 | 0.005 | ||
LDL | −0.050 | 0.117 | −0.005 | 0.155 | −0.114 | ||
TG | −0.027 | 0.311 | 0.102 | −0.065 | −0.321 | ||
TC/HDL | −0.117 | 0.170 | 0.004 | 0.141 | −0.128 |
Markers | K (r) | Na (r) | ||||
---|---|---|---|---|---|---|
Lipid Profile | Group A | Group B | Total | Group A | Group B | Total |
TC | 0.172 | 0.126 | 0.023 | 0.270 | −0.343 | −0.020 |
HDL | 0.307 | 0.155 | 0.254 | 0.141 | −0.162 | 0.056 |
LDL | 0.181 | 0.028 | −0.017 | 0.214 | −0.345 | −0.013 |
TG | −0.137 | 0.221 | −0.083 | 0.086 | −0.163 | −0.002 |
TC/HDL | −0.298 | −0.044 | −0.220 | 0.115 | −0.173 | −0.024 |
MARKER | ||||||
---|---|---|---|---|---|---|
ROS (r) | TOS (r) | TAS (r) | TOS/TAS (r) | |||
Lipid Profile | Group A | TC | −0.283 | −0.147 | −0.214 | −0.065 |
HDL | −0.000002 | −0.121 | −0.257 | −0.056 | ||
LDL | −0.237 | −0.064 | −0.302 | 0.038 | ||
TG | −0.114 | −0.121 | 0.344 | −0.203 | ||
TC/HDL | −0.191 | 0.063 | 0.150 | 0.039 | ||
Group B | TC | −0.185 | 0.111 | −0.417 | 0.241 | |
HDL | −0.239 | 0.245 | −0.311 | 0.351 | ||
LDL | −0.116 | 0.224 | −0.356 | 0.335 | ||
TG | −0.090 | −0.543 | −0.319 | −0.457 | ||
TC/HDL | 0.185 | −0.377 | −0.170 | −0.352 | ||
Total | TC | −0.174 | −0.027 | −0.375 | 0.078 | |
HDL | −0.075 | −0.007 | −0.233 | 0.067 | ||
LDL | −0.130 | 0.0007 | −0.403 | 0.117 | ||
TG | −0.091 | −0.120 | 0.045 | −0.157 | ||
TC/HDL | −0.094 | 0.043 | −0.083 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, S.; Kazeli, K.; Ventouris, H.; Amanatidou, D.; Gkinoudis, A.; Lymperaki, E. Correlation of Vitamin 25(OH)D, Liver Enzymes, Potassium, and Oxidative Stress Markers with Lipid Profile and Atheromatic Index: A Pilot Study. J. Xenobiot. 2023, 13, 193-204. https://doi.org/10.3390/jox13020015
Ioannidou S, Kazeli K, Ventouris H, Amanatidou D, Gkinoudis A, Lymperaki E. Correlation of Vitamin 25(OH)D, Liver Enzymes, Potassium, and Oxidative Stress Markers with Lipid Profile and Atheromatic Index: A Pilot Study. Journal of Xenobiotics. 2023; 13(2):193-204. https://doi.org/10.3390/jox13020015
Chicago/Turabian StyleIoannidou, Stavroula, Konstantina Kazeli, Hristos Ventouris, Dionysia Amanatidou, Argyrios Gkinoudis, and Evgenia Lymperaki. 2023. "Correlation of Vitamin 25(OH)D, Liver Enzymes, Potassium, and Oxidative Stress Markers with Lipid Profile and Atheromatic Index: A Pilot Study" Journal of Xenobiotics 13, no. 2: 193-204. https://doi.org/10.3390/jox13020015
APA StyleIoannidou, S., Kazeli, K., Ventouris, H., Amanatidou, D., Gkinoudis, A., & Lymperaki, E. (2023). Correlation of Vitamin 25(OH)D, Liver Enzymes, Potassium, and Oxidative Stress Markers with Lipid Profile and Atheromatic Index: A Pilot Study. Journal of Xenobiotics, 13(2), 193-204. https://doi.org/10.3390/jox13020015