Surgeon Training in the Era of Computer-Enhanced Simulation Robotics and Emerging Technologies: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Curriculum Development—The Apprentice Model
4.2. Novel Training Modalities
4.2.1. Virtual Reality
4.2.2. Animal/Cadaver Models
4.2.3. Three-Dimensional Printing
4.2.4. Dual-Console Training
4.2.5. Augmented Reality
4.2.6. Telementoring
4.2.7. Surgical Videos
4.2.8. Efficacy of Novel Training Modalities Compared to Traditional Modalities
4.3. Technical Assessment and Tracked Metrics
4.4. Artificial Intelligence, Machine Learning and Big Data
4.5. Barriers to Implementing New Technologies and Future Horizons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zorn, K.C.; Gautam, G.; Shalhav, A.L.; Clayman, R.V.; Ahlering, T.E.; Albala, D.M.; Lee, D.I.; Sundaram, C.P.; Matin, S.F.; Castle, E.P.; et al. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: Recommendations of the society of urologic robotic surgeons. J. Urol. 2009, 182, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Da Vinci Residency/Fellowship Training. 2020. Available online: https://www.davincisurgerycommunity.com (accessed on 18 January 2022).
- Soomro, N.A.; Hashimoto, D.A.; Porteous, A.J.; Ridley, C.J.A.; Marsh, W.J.; Ditto, R.; Roy, S. Systematic review of learning curves in robot-assisted surgery. BJS Open 2020, 4, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Herron, D.M.; Marohn, M.; SAGES-MIRA Robotic Surgery Consensus Group. A consensus document on robotic surgery. Surg. Endosc. 2008, 22, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Mucksavage, P.; Sundaram, C.P.; McDougall, E.M. Best practices for robotic surgery training and credentialing. J. Urol. 2011, 185, 1191–1197. [Google Scholar] [CrossRef]
- Smith, R.; Patel, V.; Satava, R. Fundamentals of robotic surgery: A course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int. J. Med. Robot. Comput. Assist. Surg. 2014, 10, 379–384. [Google Scholar] [CrossRef]
- Satava, R.M.; Stefanidis, D.; Levy, J.S.; Smith, R.; Martin, J.R.; Monfared, S.; Timsina, L.R.; Darzi, A.W.; Moglia, A.; Brand, T.C. Proving the effectiveness of the Fundamentals of Robotic Surgery (FRS) skills curriculum: A single-blinded, multispecialty, multi-institutional randomised control trial. Ann. Surg. 2020, 272, 384–392. [Google Scholar] [CrossRef]
- Stegemann, A.P.; Ahmed, K.; Syed, J.R.; Rehman, S.; Ghani, K.; Autorino, R.; Sharif, M.; Rao, A.; Shi, Y.; Wilding, G.E. Fundamental skills of robotic surgery: A multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology 2013, 81, 767–774. [Google Scholar] [CrossRef]
- Siddiqui, N.Y.; Galloway, M.L.; Geller, E.J.; Green, I.C.; Hur, H.C.; Langston, K.; Pitter, M.C.; Tarr, M.E.; Martino, M.A. Validity and reliability of the robotic objective structured assessment of technical skills. Obstet. Gynecol. 2014, 123, 1193–1199. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, J.Y.; Pyun, J.H.; Cho, S.; Oh, M.M.; Kang, S.H.; Lee, J.G.; Kim, J.J.; Cheon, J.; Kang, S.G. Comparison of effective teaching methods to achieve skill acquisition using a robotic virtual reality simulator: Expert proctoring versus an educational video versus independent training. Medicine 2018, 97, e12569. [Google Scholar] [CrossRef]
- Volpe, A.; Ahmed, K.; Dasgupta, P.; Ficarra, V.; Novara, G.; Van Der Poel, H.; Mottrie, A. Pilot validation study of the European Association of Urology robotic training curriculum. Eur. Urol. 2015, 68, 292–299. [Google Scholar] [CrossRef]
- Petz, W.; Spinoglio, G.; Choi, G.S.; Parvaiz, A.; Santiago, C.; Marecik, S.; Giulianotti, P.C.; Bianchi, P.P. Structured training and competence assessment in colorectal robotic surgery. Results of a consensus experts round table. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 634–641. [Google Scholar] [CrossRef] [PubMed]
- MacCraith, E.; Forde, J.C.; Davis, N.F. Robotic simulation training for urological trainees: A comprehensive review on cost, merits and challenges. J. Robot. Surg. 2019, 13, 371–377. [Google Scholar] [CrossRef] [PubMed]
- RoSS II; Simulated Surgical Systems LLC: San Jose, CA, USA, 2020.
- Da Vinci SimNow. Da Vinci SimNow, 2021. SimNow|Da Vinci|Intuitive. Available online: https://www.intuitive.com/en-us/products-and-services/da-vinci/digital/simnow (accessed on 19 January 2022).
- Hung, A.J.; Zehnder, P.; Patil, M.B.; Cai, J.; Ng, C.K.; Aron, M.; Gill, I.S.; Desai, M.M. Face, content and construct validity of a novel robotic surgery simulator. J. Urol. 2011, 186, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.C.; Margules, A.C.; Kundavaram, C.R.; Narins, H.; Gomella, L.G.; Trabulsi, E.J.; Lallas, C.D. Face, content and construct validity of the da Vinci Skills Simulator. J. Urol. 2012, 79, 1068–1072. [Google Scholar] [CrossRef]
- Liss, M.A.; Abdelshehid, C.; Quach, S.; Lusch, A.; Graversen, J.; Landman, J.; McDougall, E.M. Validation, correlation and comparison of the da Vinci Trainer and the da Vinci surgical skills simulator using the Mimic softward for urologic robotic surgical education. J. Endourol. 2012, 26, 1629–1634. [Google Scholar] [CrossRef]
- Lendvay, T.S.; Casale, P.; Sweet, R.; Peters, C. Initial validation of a virtual-reality robotic simulator. J. Robot. Surg. 2008, 2, 145–149. [Google Scholar] [CrossRef]
- Kenney, P.A.; Wszolek, M.F.; Gould, J.J.; Libertino, J.A.; Moinzadeh, A. Face, content and construct validity of dV-trainer: A novel virtual reality simulator for robotic surgery. J. Urol. 2009, 73, 1288–1292. [Google Scholar] [CrossRef]
- Sethi, A.S.; Peine, W.J.; Mohammadi, Y.; Sundaram, C.P. Validation of a novel virtual reality simulator. J. Endourol. 2009, 23, 503–508. [Google Scholar] [CrossRef]
- Perrenot, C.; Perez, M.; Tran, N.; Jehl, J.P.; Felblinger, J.; Bresler, L.; Hubert, J. The virtual reality simulator dV-Trainer is a valid assessment tool for robotic surgical skills. J. Surg. Endosc. 2012, 26, 2587–2593. [Google Scholar] [CrossRef]
- Korets, R.; Mues, A.C.; Graversen, J.A.; Gupta, M.; Benson, M.C.; Cooper, K.L.; Landman, J.; Badani, K.K. Validating the use of teh mimic dV-trainer for robotic surgery skill acquistion among urology residents. J. Urol. 2011, 78, 1326–1330. [Google Scholar] [CrossRef]
- Lee, J.Y.; Mucksavage, P.; Kerbl, D.C.; Huynh, V.B.; Etafy, M.; McDougall, E.M. Validation study of a virtual reality robotic simulator—Role as an assessment tool? J. Urol. 2012, 187, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, H.W.R.; Persson, J.E.U.; Wolswijk, R.G.H. Validation of a novel virtual reality simulator for robotic surgery. Sci. World J. 2014, 2014, 507076. [Google Scholar] [CrossRef] [PubMed]
- Seixas-Mikelus, S.A.; Kesavadas, T.; Srimathveeravalli, G.; Chandrasekhar, R.; Wilding, G.E.; Guru, K.A. Face validation of a novel robotic surgical simulator. J. Urol. 2010, 76, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Chowriappa, A.J.; Shi, Y.; Raza, S.J.; Ahmed, K.; Stegemann, A.; Wilding, G.; Kaouk, J.; Peabody, J.O.; Menon, M.; Hassett, J.M. Development and validation of a composite scoring system for robot-assisted surgical training—The Robotic Skills Assessment Score. J. Surg. Res. 2013, 185, 561–569. [Google Scholar] [CrossRef]
- Seixas-Mikelus, S.A.; Stegemann, A.P.; Kesavadas, T.; Srimathveeravalli, G.; Sathyaseelan, G.; Chandrasekhar, R.; Wilding, G.E.; Peabody, J.O.; Guru, K.A. Content validation of a novel robotic surgical simulator. BJU Int. 2011, 107, 1130–1135. [Google Scholar] [CrossRef]
- Hung, A.J.; Patil, M.B.; Zehnder, P.; Cai, J.; Ng, C.K.; Aron, M.; Gill, I.S.; Desai, M.M. Concurrent and predictive validation of a novel robotic surgery simulator: A prospective randomized study. J. Urol. 2012, 187, 630–637. [Google Scholar] [CrossRef]
- Colaco, M.; Balica, A.; Su, D.; Barone, J. Initial experiences with RoSS surgical simulator in residency training: A validity and model analysis. J. Robot. Surg. 2012, 7, 71–75. [Google Scholar] [CrossRef]
- Finnegan, K.T.; Meraney, A.M.; Staff, I.; Shichman, S.J. da Vinci skills simulator construct validation study: Correlation of prior robotic experience with overall score and time score simulator performance. J. Urol. 2012, 80, 330–335. [Google Scholar] [CrossRef]
- Lerner, M.A.; Ayalew, M.; Peine, W.J.; Sundaram, C.P. Does training on a virtual reality robotic simulator improve performamnce on the da Vinci surgical system? J. Endourol. 2010, 24, 467–472. [Google Scholar] [CrossRef]
- Hertz, A.M.; George, E.I.; Vaccaro, C.M.; Brand, T.C. Head-to-head comparison of three virtual-reality robotic surgery simulators. JSLS J. Soc. Laparoendosc. Surg. 2018, 22, e2017.00081. [Google Scholar] [CrossRef]
- Tanaka, A.; Graddy, C.; Simpson, K.; Perez, M.; Truong, M.; Smith, R. Robotic surgery simulation validity and usability comparative analysis. Surg. Endosc. 2016, 30, 3720–3729. [Google Scholar] [CrossRef] [PubMed]
- Hoogenes, J.; Wong, N.; Al-Harbi, B.; Kim, K.S.; Vij, S.; Bolognone, E.; Quantz, M.; Guo, Y.; Shayegan, B.; Matsumoto, E.D. A randomized comparison of two robotic virtual reality simulators and evaluation of trainees’ skills transfer to a simulated robotic urethrovescical anastomosis task. Urology 2018, 111, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.; Köppinger, K.F.; Fan, C.; Kowalewski, K.F.; Schmidt, L.P.; Vey, J.; Proctor, T.; Probst, P.; Bintintan, V.V.; Müller-Stich, B.P. Virtual reality simulation in robot-assisted surgery: Meta-analysis of skill transfer and predictability of skill. BJS Open 2021, 5, zraa066. [Google Scholar] [CrossRef] [PubMed]
- Raison, N.; Harrison, P.; Abe, T.; Aydin, A.; Ahmed, K.; Dasgupta, P. Procedural virtual reality simulation training for robotic surgery: A randomised controlled trial. Surg. Endosc. 2021, 35, 6897–6902. [Google Scholar] [CrossRef]
- Costello, D.M.; Huntington, I.; Burke, G.; Farrugia, B.; O’Connor, A.J.; Costello, A.J.; Thomas, B.C.; Dundee, P.; Ghazi, A.; Corcoran, N. A review of simulation training and new 3D computer-generated synthetic organs for robotic surgery education. J. Robot. Surg. 2022, 16, 749–763. [Google Scholar] [CrossRef]
- James, H.K.; Chapman, A.W.; Pattison, G.T.R.; Griffin, D.R.; Fisher, J.D. Systematic review of the current status of cadaveric simulation for surgical training. J. Br. Surg. 2019, 106, 1726–1734. [Google Scholar] [CrossRef]
- Bellier, A.; Chanet, A.; Belingheri, P.; Chaffanjon, P. Techniques of cadaver perfusion for surgical training: A systematic review. Surg. Radiol. Anat. 2018, 40, 439–448. [Google Scholar] [CrossRef]
- Sharma, M.; Horgan, A. Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training. World J. Surg. 2012, 36, 1732–1737. [Google Scholar] [CrossRef]
- Leblanc, F.; Champagne, B.J.; Augestad, K.M.; Neary, P.C.; Senagore, A.J.; Ellis, C.N.; Delaney, C.P.; Group, C.S.T. A comparison of human cadaver and augmented reality simulator models for straight laparoscopic colorectal skill acquisition training. J. Am. Coll. Surg. 2010, 211, 250–255. [Google Scholar] [CrossRef]
- Bertolo, R.; Garisto, J.; Dagenais, J.; Sagalovich, D.; Kaouk, J.H. Single session of robotic human cadaver training: The immediate impact on urology residents in a teaching hospital. J. Laparoendosc. Adv. Surg. Tech. A 2018, 28, 1157–1162. [Google Scholar] [CrossRef]
- Shee, K.; Koo, K.; Wu, X.; Ghali, F.M.; Halter, R.J.; Hyams, E.S. A novel ex vivo trainer for robotic vesicourethral anastomosis. J. Robot. Surg. 2020, 14, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.A.; Timberlake, M.; Steinberg, R.L.; Kosemund, M.; Mueller, B.; Gahan, J.C. Design and validation of a low cost, high fidelity model for urethrovesical anastomosis in radical prostatectomy. J. Endourol. 2019, 33, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Monda, S.M.; Weese, J.R.; Anderson, B.G.; Vetter, J.M.; Venkatesh, R.; Du, K.; Andriole, G.L.; Figenshau, R.S. Development and validity of a silicone renal tumor model for robotic partial nephrectomy training. Urology 2018, 114, 114–120. [Google Scholar] [CrossRef] [PubMed]
- von Rundstedt, F.C.; Scovell, J.M.; Agrawal, S.; Zaneveld, J.; Link, R.E. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int. 2017, 119, 598–604. [Google Scholar] [CrossRef]
- Ghazi, A.; Melnyk, R.; Hung, A.J.; Collins, J.; Ertefaie, A.; Saba, P.; Gurung, P.; Frye, T.; Rashid, H.; Wu, G.; et al. Multi-institutional validation of a perfused robot-assisted partial nephrectomy procedural simulation platform utilizing clinically relevant objective metrics of simulators (CROMS). BJU Int. 2021, 127, 645–653. [Google Scholar] [CrossRef]
- Crawford, D.L.; Dwyer, A.M. Evolution and literature review of robotic general surgery resident training 2002–2018. Updates Surg. 2018, 70, 363–368. [Google Scholar] [CrossRef]
- Hanly, E.J.; Miller, B.E.; Kumar, R.; Hasser, C.J.; Coste-Maniere, E.; Talamini, M.A.; Aurora, A.A.; Schenkman, N.S.; Marohn, M.R. Mentoring console improves collaboration and teaching in surgical robotics. J. Laparoendosc. Adv. Surg. Tech. A 2006, 16, 445–451. [Google Scholar] [CrossRef]
- Breen, M.T. Expanded robotic training and education of residents and faculty surgeons using dual console robotic platforms utilizing aviation safety trans cockpit responsibility gradient comparisons. J. Minim. Invasive Gynecol. 2014, 21, S5. [Google Scholar] [CrossRef]
- Smith, A.L.; Scott, E.M.; Krivak, T.C.; Olawaiye, A.B.; Chu, T.; Richard, S.D. Dual-console robotic surgery: A new teaching paradigm. J. Robot. Surg. 2013, 7, 113–118. [Google Scholar] [CrossRef]
- Morgan, M.S.; Shakir, N.A.; Garcia-Gil, M.; Ozayar, A.; Gahan, J.C.; Friedlander, J.I.; Roehrborn, C.G.; Cadeddu, J.A. Single-versus dual-console robot assisted radical prostatectomy: Impact on intraoperative and postoperative outcomes in a teaching institution. World J. Urol. 2015, 33, 781–786. [Google Scholar] [CrossRef]
- Jarc, A.M.; Shah, S.H.; Adebar, T.; Hwang, E.; Aron, M.; Gill, I.S.; Hung, A.J. Beyond 2D telestration: An evaluation of novel proctoring tools for robot-assisted minimally invasive surgery. J. Robot. Surg. 2016, 10, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Jarc, A.M.; Stanley, A.A.; Clifford, T.; Gill, I.S.; Hung, A.J. Proctors exploit three-dimensional ghost tools during clinical-like training scenarios: A preliminary study. World J. Urol. 2017, 35, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Da Vinci Vision. Da Vinci Vision, 2021. Available online: https://www.intuitive.com/en-us/products-and-services/da-vinci/vision (accessed on 20 January 2022).
- ActivSight by Activ Surgical. Available online: https://www.activsurgical.com/ (accessed on 21 January 2022).
- Gandaglia, G.; Schatteman, P.; De Naeyer, G.; D’Hondt, F.; Mottrie, A. Novel technologies in urologic surgery: A rapidly changing scenario. Curr. Urol. Rep. 2016, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Adballah, M.; Espinel, Y.; Calvet, L.; Pereira, B.; Le Roy, B.; Bartoli, A.; Buc, E. Augmented reality in laparoscopic liver resection evaluated on an ex-vivo animal model with pseudo-tumours. Surg. Endosc. 2022, 36, 833–843. [Google Scholar] [CrossRef]
- Soler, L.; Nicolau, S.; Pessaux, P.; Mutter, D.; Marescaux, J. Real-time 3D image reconstrution guidance in liver resection surgery. Hepatobiliary Surg. Nutr. 2014, 3, 73–81. [Google Scholar]
- Le Roy, B.; Ozgur, E.; Koo, B.; Buc, E.; Bartoli, A. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment. J. Visc. Surg. 2019, 156, 261–262. [Google Scholar] [CrossRef]
- Bertrand, L.R.; Abdallah, M.; Espinel, Y.; Calvet, L.; Pereira, B.; Ozgur, E.; Pezet, D.; Buc, E.; Bartoli, A. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model. Surg. Endosc. 2020, 34, 5642–5648. [Google Scholar] [CrossRef]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Autorino, R.; Piana, A.; Bellin, A.; Piazzolla, P.; Massa, F.; Bollito, E.; Gned, D.; et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: A radiological and pathological study. BJU Int. 2019, 123, 834–845. [Google Scholar] [CrossRef]
- Hughes-Hallett, A.; Mayer, E.K.; Marcus, H.J.; Cundy, T.P.; Pratt, P.J.; Darzi, A.W.; Vale, J.A. Augmented reality partial nephrectomy: Examining the current status and future perspectives. Urology 2014, 83, 266–273. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial intelligence in surgery: Promises and perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Tokuyasu, T.; Iwashita, Y.; Matsunobu, Y.; Kamiyama, T.; Ishikake, M.; Sakaguchi, S.; Ebe, K.; Tada, K.; Endo, Y.; Etoh, T. Development of an artifiial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy. Surg. Endosc. 2021, 35, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Madani, A.; Namazi, B.; Altieri, M.S.; Hashimoto, D.A.; Rivera, A.M.; Pucher, P.H.; Navarrete-Welton, A.; Sankaranarayanan, G.; Brunt, L.M.; Okrainec, A.; et al. Artificial intelligency for intraoperative guidance: Using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann. Surg. 2022, 276, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Wara, U.U.; Shaikh, M.T.A.; Rahman, R.M.; Zaidi, Z.A.; Shaikh, M.T.A. Telesurgery and robotics: An improved and efficient era. Cureus 2021, 13, e14124. [Google Scholar] [CrossRef] [PubMed]
- Marescaux, J.; Leroy, J.; Rubino, F.; Smith, M.; Vix, M.; Simone, M.; Mutter, D. Transcontinental robot-assisted remote telesurgery: Feasibility and potential applications. Ann. Surg. 2002, 235, 487–492. [Google Scholar] [CrossRef]
- Perez, M.; Xu, S.; Chauhan, S.; Tanaka, A.; Simpson, K.; Abdul-Muhsin, H.; Smith, R. Impact of delay on telesurgical performance: Study on the robotic simulator dV-Trainer. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 581–587. [Google Scholar] [CrossRef]
- Xu, S.; Perez, M.; Yang, K.; Perrenot, C.; Felblinger, J.; Hubert, J. Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer simulator. Surg. Endosc. 2014, 28, 2569–2576. [Google Scholar] [CrossRef]
- Korte, C.; Sudhakaran Nair, S.; Nistor, V.; Low, T.P.; Doarn, C.R.; Schaffner, G. Determining the threshold of time-delay for teleoperation accuracy and efficeincy in relation to telesurgery. Telemed. J. e-Health 2014, 20, 1078–1086. [Google Scholar] [CrossRef]
- Sterbis, J.R.; Hanly, E.J.; Herman, B.C.; Marohn, M.R.; Broderick, T.J.; Shih, S.P.; Harnett, B.; Doarn, C.; Schenkman, N.S. Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology 2008, 71, 971–973. [Google Scholar] [CrossRef]
- Bilgic, E.; Turkdogan, S.; Watanabe, Y.; Madani, A.; Landry, T.; Lavigne, D.; Feldman, L.S.; Vassiliou, M.C. Effectiveness of telementoring in surgery compared with on-site mentoring: A systematic review. Surg. Innov. 2017, 24, 379–385. [Google Scholar] [CrossRef]
- Papalois, Z.A.; Aydın, A.; Khan, A.; Mazaris, E.; Rathnasamy Muthusamy, A.S.; Dor, F.J.; Dasgupta, P.; Ahmed, K. HoloMentor: A mixed reality surgical anatomy curriculum for robot-assisted radical prostatectomy. Eur. Surg. Res. 2022, 63, 40–45. [Google Scholar] [CrossRef]
- Artsen, A.M.; Burkett, L.S.; Duvvuri, U.; Bonidie, M. Surgeon satisfaction and outcomes of tele-proctoring for robotic gynecologic surgery. J. Robot. Surg. 2022, 16, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Orpheus, an Intuitive Company. Orpheus, an Intuitive Company, 2021. Available online: https://www.surgicalroboticstechnology.com/news/orpheus-medical-acquired-by-intuitive/ (accessed on 28 January 2022).
- Proximie. Proximie, 2021. Available online: https://www.proximie.com/ (accessed on 28 January 2022).
- Reacts. Reacts, 2021. Available online: https://kpmg.com/xx/en/our-insights/esg/reaction-magazine-39.html (accessed on 28 January 2022).
- Mota, P.; Carvalho, N.; Carvalho-Dias, E.; Costa, M.J.; Correia-Pinto, J.; Lima, E. Video-based surgical learning: Improving trainee education and preparation for surgery. J. Surg. Educ. 2018, 75, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Pape-Koehler, C.; Immenroth, M.; Sauerland, S.; Lefering, R.; Lindlohr, C.; Toaspern, J.; Heiss, M. Multimedia-based training on internet platforms improves surgical performance: A randomized controlled trial. Surg. Endosc. 2013, 27, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.; Eslamian, S.; Ying, H.; Nokleby, M.; Reisner, L.A. A robotic recording and playback platform for training surgeons and learning autonomous behaviours using the da Vinci surgical system. Robotics 2019, 8, 9. [Google Scholar] [CrossRef]
- Huynh, D.; Fadaee, N.; Gök, H.; Wright, A.; Towfigh, S. Thou shalt not trust online videos for inguinal hernia repair techniques. Surg. Endosc. 2021, 35, 5724–5728. [Google Scholar] [CrossRef]
- Daes, J.; Felix, E. Critical view of the myopectineal orifice. Ann. Surg. 2017, 266, e1–e2. [Google Scholar] [CrossRef]
- Celentano, V.; Smart, N.; McGrath, J.; Cahill, R.A.; Spinelli, A.; Challacombe, B.; Belyansky, I.; Hasegawa, H.; Munikrishnan, V.; Pellino, G. How to report educational videos in robotic surgery: An international multidisciplinary consensus statement. Updates Surg. 2021, 73, 815–821. [Google Scholar] [CrossRef]
- Touch Surgery Enterprise. Touch Surgery Enterprise, 2021. Available online: https://news.medtronic.com/Touch-Surgery-Enterprise-Media-Kit/ (accessed on 28 January 2022).
- Killoran, C.B.; de Costa, A. Can open cholecystectomy be taught by cadaveric simulation? ANZ J. Surg. 2024, 94, 1051–1055. [Google Scholar] [CrossRef]
- Campi, R.; Pecoraro, A.; Vignolini, G.; Spatafora, P.; Sebastianelli, A.; Sessa, F.; Li Marzi, V.; Territo, A.; Decaestecker, K.; Breda, A.; et al. The First Entirely 3D-Printed Training Model for Robot-assisted Kidney Transplantation: The RAKT Box. Eur. Urol. Open Sci. 2023, 53, 98–105. [Google Scholar] [CrossRef]
- Hays, S.B.; Kuchta, K.; Rojas, A.E.; Mehdi, S.A.; Schwarz, J.L.; Talamonti, M.S.; Hogg, M.E. Residency robotic biotissue curriculum: The next frontier in robotic surgical training. HPB 2025, 27, 688–695. [Google Scholar] [CrossRef]
- Stulberg, J.J.; Huang, R.; Kreutzer, L.; Ban, K.; Champagne, B.J.; Steele, S.R.; Johnson, J.K.; Holl, J.L.; Greenberg, C.C.; Bilimoria, K.Y. Association between surgeon technical skills and patient outcomes. JAMA Surg. 2020, 155, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Prebay, Z.J.; Peabody, J.O.; Miller, D.C.; Ghani, K.R. Video review for measuring and improving skill in urological surgery. Nat. Rev. Urol. 2019, 16, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.A.; Ghani, K.R.; Peabody, J.; Sarle, R.; Abaza, R.; Eun, D.; Hu, J.; Fumo, M.; Lane, B.; Montgomery, J.S.; et al. Development and validation of an objective scoring tool for robot-assisted radical prostatectomy: Prostatectomy Assessment and Competency Evaluation. J. Urol. 2017, 197, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Goh, A.C.; Goldfarb, D.W.; Sander, J.C.; Miles, B.J.; Dunkin, B.J. Global Evaluative Assessment of Robotic Skills: Validation of a clinical assessment tool to measure robotic surgical skills. J. Urol. 2012, 187, 247–252. [Google Scholar] [CrossRef]
- White, L.W.; Kowalewski, T.M.; Dockter, R.L.; Comstock, B.; Hannaford, B.; Lendvay, T.S. Crowd-sourced assessment of technical skill: A valid method for discriminating basic robotic surgical skills. J. Endourol. 2015, 29, 1295–1301. [Google Scholar] [CrossRef]
- Chen, C.; White, L.; Kowalewski, T.; Aggarwal, R.; Lintott, C.; Comstock, B.; Kuksenok, K.; Aragon, C.; Holst, D.; Lendvay, T. Crowd-Sourced Assessment of Technical Skills: A novel method to evaluate surgical performance. J. Surg. Res. 2014, 187, 65–71. [Google Scholar] [CrossRef]
- Polin, M.R.; Siddiqui, N.Y.; Comstock, B.A.; Hesham, H.; Brown, C.; Lendvay, T.S.; Martino, M.A. Crowdsourcing: A valid alternative to expert evaluation of robotic surgery skills. Am. J. Obs. Gynecol. 2016, 215, e641–e644. [Google Scholar] [CrossRef]
- Ghani, K.R.; Miller, D.C.; Linsell, S.; Brachulis, A.; Lane, B.; Sarle, R.; Dalela, D.; Menon, M.; Comstock, B.; Lendvay, T.S.; et al. Measuring to improve: Peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur. Urol. 2016, 69, 547–550. [Google Scholar] [CrossRef]
- Aghazadeh, M.A.; Mercado, M.A.; Pan, M.M.; Miles, B.J.; Goh, A.C. Performance of robotic simulated skills tasks is positively associated with clinical robotic surgical performance. BJU Int. 2016, 118, 475–481. [Google Scholar] [CrossRef]
- Chen, J.; Oh, P.J.; Cheng, N.; Shah, A.; Montez, J.; Jarc, A.; Guo, L.; Gill, I.S.; Hung, A.J. Use of autmoated performance metrics to measure surgeon performance during robotic vesicourethral anastomosis and methodical development of a training tutorial. J. Urol. 2018, 200, 895–902. [Google Scholar] [CrossRef]
- Hung, A.J.; Chen, J.; Ghodoussipour, S.; Oh, P.J.; Liu, Z.; Nguyen, J.; Purushotham, S.; Gill, I.S.; Liu, Y. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019, 124, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yu, H.W.; Kwon, H.; Kong, H.J.; Lee, K.E.; Kim, H.C. Evaluation of Surgical Skills during Robotic Surgery by Deep Learning-Based Multiple Surgical Instrument Tracking in Training and Actual Operations. J. Clin. Med. 2020, 9, 1964. [Google Scholar] [CrossRef] [PubMed]
- Pottle, J. Virtual reality and the transformation of medical education. Future Healthc. J. 2019, 6, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Mitsouras, D.; Liacouras, P.C.; Wake, N.; Rybicki, F.J. RadioGraphics Update: Medical 3D Printing for the Radiologist. Radiographics 2020, 40, E21–E23. [Google Scholar] [CrossRef]
Face | A subjective assessment of how well the simulator replicates the real world. |
Content | A subjective assessment of whether the simulation exercise is providing an accurate assessment of the intended content. |
Construct | An objective assessment of the ability of the simulator to differentiate a novice from an expert. |
Concurrent | An objective assessment of how well the simulator results correlate with current operative performance. |
Predictive | An objective assessment of how well simulator results can predict future operative performance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keelan, S.; Guirgis, M.; Julien, B.; Hewett, P.J.; Talbot, M. Surgeon Training in the Era of Computer-Enhanced Simulation Robotics and Emerging Technologies: A Narrative Review. Surg. Tech. Dev. 2025, 14, 21. https://doi.org/10.3390/std14030021
Keelan S, Guirgis M, Julien B, Hewett PJ, Talbot M. Surgeon Training in the Era of Computer-Enhanced Simulation Robotics and Emerging Technologies: A Narrative Review. Surgical Techniques Development. 2025; 14(3):21. https://doi.org/10.3390/std14030021
Chicago/Turabian StyleKeelan, Simon, Mina Guirgis, Benji Julien, Peter J. Hewett, and Michael Talbot. 2025. "Surgeon Training in the Era of Computer-Enhanced Simulation Robotics and Emerging Technologies: A Narrative Review" Surgical Techniques Development 14, no. 3: 21. https://doi.org/10.3390/std14030021
APA StyleKeelan, S., Guirgis, M., Julien, B., Hewett, P. J., & Talbot, M. (2025). Surgeon Training in the Era of Computer-Enhanced Simulation Robotics and Emerging Technologies: A Narrative Review. Surgical Techniques Development, 14(3), 21. https://doi.org/10.3390/std14030021