Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Plant Material
2.3. Determination of the Humidity Level
2.4. Extraction of Essential Oils and Determination of Yields
2.5. Analysis and Identification of the Chemical Composition of EO
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yields of Essential Oils
Species | Codification | Site | EO (Yield %) | Geographical Coordinates and Altitude | Type of Soil | Bioclimatic Atmosphere |
---|---|---|---|---|---|---|
Artemisia herba alba Asso | AHAass-OA | Oulad aliyoussef | 0.9 ± 0.04 *** | 32°24′8.86″ N 3°58′25.98″ W 1507 m | Poor loamy and stony soil | Semi-arid |
Artemisia herba alba Asso | AHAass-SA | Serghina | 1.0 ± 0.04 *** | 33°26′40.955″ N 4°58′8.006″ W 1532 m | Limestone | Semi-arid, arid |
Artemisia herba alba Asso | AHAass-ENJ | Enjil | 1.1 ± 0.05 *** | 33°11′22.068″ N 4°32′0.065″ W 1552 m | Limestone | Semi-arid |
Artemisia herba alba Asso | AHAass-TI | Timahdit | 1.9 ± 0.09 *** | 33°19′36.686″ N 45°51′4.078″ W 1599 m | Limestone | Subhumid to humid |
Artemisia mesatlantica Maire | AMma-GU | Guigou | 2.2 ± 0.10 *** | 33°19′44.637″ N 4°54′31.54″ W 1731 m | Rocky soil on limestone | Subhumid to humid |
Artemisia mesatlantica | AM-TI | Timahdit | 0.8 ± 0.02 *** | 33°24′27.53″ N 4°52′13.49″ W 1498 m | Limestone | Subhumid to humid |
- -
- The value of the sagebrush EO yield increased with the altitude of the sampling site;
- -
- The soil profile was characterized by a dominance of limestone at the levels of AHAass-SA, AHAass-ENJ, AMma-GU, AHAass-TI and AM-TI, while the site of Oulad aliyoussef was of a poor silty and stony type;
- -
- The spontaneous species of sagebrush in humid and subhumid stages exceeded the spontaneous species in arid and semi-arid stages.
3.2. Chemical Composition of the Studied Sagebrush Essential Oils
- -
- Oxygenated monoterpenes (11.4 to 94.9%), of which the major compound is camphor (0.82 to 46.19%) followed by trans-thujone (0.4 to 46.2%). Then come 1,8-cineole (0.9 to 13.8%), and in a small percentage, cis-thujone (3.5 to 5.5%);
- -
- Hydrocarbon monoterpenes (0.7 to 20.8%), which are mainly represented by camphene as the major compound (0.3 to 4.5%);
- -
- Hydrocarbon sesquiterpenes (0.51 to 2.74%), the most important of which are present in AM-TI Artemisia with a percentage of 2.74%. However, we note the absence of the latter in the species AHAass-NJ, AMma-GU and AHAass-OA;
- -
- Oxygenated sesquiterpenes, which reach (87.4%) of the EO of AHAass-SA, represented by vetivenic acid (14.9%), davana ether (14.6%) and davanone (13.1%). We were the first to identify the two compounds vetivenic acid and davana ether within the sagebrush species. The latter is also present in the EOs of AHAvar-TI (47.6%), AHAass-OA (14.5%) and AM-TI (26.8%), and with lower percentages, in AHAass-NJ (1.2%) and AMma-GU (1.8%).
Components | A. herba alba Serghina | A. herba alba Oulad Ali Youssef | A. herba alba Enjil | A. herba alba Timahdit | A. mesatlantica Timahdit | A. mesatlantica Guigou |
---|---|---|---|---|---|---|
Alcohols (%) | 6.9 | 26.6 | 24.5 | 20.8 | 32.8 | 22.7 |
Aldehydes (%) | 0 | 2.3 | 3.2 | 0 | 0.1 | 1.0 |
Ketones (%) | 31.3 | 39.9 | 50.7 | 55.4 | 49.5 | 51.7 |
Esters (%) | 16.4 | 6.3 | 2.9 | 0.4 | 2.9 | 0.8 |
Oxides (%) | 4.1 | 5.1 | 13.8 | 12.9 | 13.2 | 5.7 |
Phenols (%) | 0 | 0 | 0 | 1.76 | 0 | 0 |
3.3. Analysis of the Similarity between Species by Ascending Hierarchical Analysis (HCA) and Principal Components (PCA)
3.4. Hierarchical Bottom-Up Analysis
- The first group (I) includes two oil samples: H1 and H3;
- The second group (II) also contains two samples: H2 and H6;
- The third group (III) comprises a single sample: H4;
- The fourth group (IV) also contains a single sample: H5.
- H3 has 98.31% similarity with H1;
- H6 has 85.25% similarity with H2;
- H6 has 17.32% similarity with H1 and H3.
3.5. Principal Component Analysis (PCA)
- The first group (I) was rich in camphor (compound 11) and 1,8-cineole (compound 8); this group contained two samples, one from Enjil: AHAass-ENJ (1552 m), and another from Guigou: AMma-GU (1731 m);
- The second group (II) contained two samples from the same region (Timahdit), AHAass-TI (1599 m) and AM-TI (1498 m), characterized by an abundance of trans-thujone (compound 16);
- The third group (III) comprised a single sample from Serghina: AHAass-SA (1532 m), characterized by particular abundances of vetivenic acid and davana ether;
- The fourth group (IV) also contained a single sample from Oulad aliyoussef, AHAass-OA (1507 m), characterized by particular abundances of camphor and trans-thujone.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyahya, A.; Negre, R.; Viano, J.; Lozano, Y.F.; Gaydou, E.M. Essential oils from Moroccan Artemisia negrei, A. mesatlantica and A. herba alba. Leb. Technol. 1990, 23, 528–530. [Google Scholar]
- Ibn-Tattou, M.; Fennane, M. Flore vasculaire du Maroc: Inventaire et chorologie. Trav. L’institut Sci. Série Bot. 2008, 39, 1–309. [Google Scholar]
- Paolini, J.; El Ouariachi, M.; Bouyanzer, A.H.; Hammouti, B.; Desjobert, J.M.; Costa, J.; Muselli, A. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco. Chem. Pap. 2010, 64, 550–556. [Google Scholar] [CrossRef]
- Mrabet, N.; Zrira, S.; Ismaïli-Alaoui, M.; Lahlou, H.; Benjilali, B. Plantes aromatiques et médicinales et leurs huiles essentielles. Dans Actes Congrès Int. PAM Actes Ed. Rabat 1997, 51, 111–114. [Google Scholar]
- Tilaoui, M.; Mouse, H.A.; Jaafari, A.; Aboufatima, R.; Chait, A.; Zyad, A. Chemical composition and antiproliferative activity of essential oil from aerial parts of a medicinal herb Artemisia herba-alba. Rev. Bras. Farmacogn. 2011, 21, 781–785. [Google Scholar] [CrossRef] [Green Version]
- El Ajjouri, M.; Satrani, B.; Ghanmi, M.; Aafi, A.; Farah, A.; Rahouti, M.; Amarti, F.; Aberchane, M. Activité antifongique des huiles essentielles de Thymus bleicherianus Pomel et Thymus capitatus (L.) Hoffm. & Link contre les champignons de pourriture du bois d’œuvre. Biotechnol. Agron. Soc. Environ. 2008, 12, 345–351. Available online: https://popups.uliege.be/1780-4507/index.php?id=2996&usg=__9Pii3kcge4cKzWIKx6w2daOYZas=&h=602&w=325&sz=120&hl=fr&lang=nl (accessed on 23 April 2021).
- USAID USAID E—Government Update: FY 2006 Final October 2006. Available online: https://www.usaid.gov/sites/default/files/USAID_E-Government_Update_FY2006.pdf (accessed on 12 March 2021).
- ou AFNOR, A.P.A. Normes des références pour les rapports scientifiques et le site WEB du Centre PsyCLE. Psychol. Française 2000, 45, 279–284. [Google Scholar]
- Kovats, E.S. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromatogr. 1965, 1, 229–247. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Hübschmann, H.-J. Handbook of GC-MS: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 3527334742. [Google Scholar]
- Rouani, M. Contribution à la Valorisation du Potentiel Aromatique et Médicinal des Plantes Marocaines: Genre Artemisia. Valorisation par Combinaison des Méthodes Phytochimiques, de Synthèse Organique et D’activité Biologique. 2015. Available online: https://thesesenafrique.imist.ma/handle/123456789/1788 (accessed on 10 April 2021).
- Ghanmi, M.; Satrani, B.; Aafi, A.; Isamili, M.R.; Houti, H.; El Monfalouti, H.; Benchakroun, K.H.; Aberchane, M.; Harki, L.; Boukir, A. Effet de la date de récolte sur le rendement, la composition chimique et la bioactivité des huiles essentielles de l’armoise blanche (Artemisia herba-alba) de la région de Guerçif (Maroc oriental). Phytothérapie 2010, 8, 295–301. [Google Scholar] [CrossRef]
- Btisam, O.; Mohamed, G.; Badr, S.; Lahsen, E.G.; Mariam, F.; Mounyr, B.; Elhassan, E.H.; Benaissa, K.; Eddine, B.Y.S. Effect of harvest date on yield, chemical composition and antimicrobial activity of Artemisia herba-alba essential oil. Int. J. Sci. Eng. Res. 2016, 7, 600–606. [Google Scholar]
- Hinane, D.; Oubaha, S.; Satrani, B.; Ghanmi, M.; Bourkhiss, B. Domestication of the endemic plant of Morocco and high added value: Artemisia herba alba. J. Mater. Environ. Sci. 2020, 11, 283–292. [Google Scholar]
- Bencheqroun, H.K.; Ghanmi, M.; Satrani, B.; Aafi, A.; Chaouch, A. Activité antimicrobienne des huiles essentielles d’Artemisia mesatlantica, plante endémique du Maroc Antimicrobial activity of the essential oil of an endemic plant in Morocco Artemisia mesatlantica. Bull. société R. Sci. Liège 2012, 81, 4–21. [Google Scholar]
- EREL, Ş.B.; Reznicek, G.; Şenol, S.G.; YAVAŞOĞLU, N.Ü.K.; Konyalioğlu, S.; Zeybek, A.U. Antimicrobial and antioxidant properties of Artemisia L. species from western Anatolia. Turkish J. Biol. 2012, 36, 75–84. [Google Scholar]
- Fellah, S.; Romdhane, M.; Abderraba, M. Extraction et étude des huiles essentielles de la Salvia officinalis. l cueillie dans deux régions différentes de la Tunisie. J.-Soc. Alger. Chim. 2006, 16, 193. [Google Scholar]
- Bendahou, M.; Muselli, A.; Grignon-Dubois, M.; Benyoucef, M.; Desjobert, J.-M.; Bernardini, A.-F.; Costa, J. Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydrodistillation. Food Chem. 2008, 106, 132–139. [Google Scholar] [CrossRef]
- Elazzouzi, H.; Khabbal, Y.; Bouachrine, M.; Zair, T.; Alaoui El Belghiti, M. Chemical composition and in vitro antibacterial activity of Artemisia ifranensis J. Didier essential oil Growing Wild in Middle Moroccan Atlas. J. Essent. Oil Res. 2018, 30, 142–151. [Google Scholar] [CrossRef]
- Benjilali, B.; Sarris, J.; Richard, H. Nouveaux Chemotypes D’artemisia Herba Alba. Sci. Aliment. 1982, 2, 515–527. [Google Scholar]
- Boutkhil, S.; El Idrissi, M.; Chakir, S.; Derraz, M.; Amechrouq, A.; Chbicheb, A.; El Badaoui, K. Antibacterial and antifungal activity of extracts and essential oils of Seriphidium herba-alba (Asso) Soják and their combination effects with the essential oils of Dysphania ambrosioides (L) Mosyakin & Clemants. Acta Bot. Gall. 2011, 158, 425–433. [Google Scholar]
- Salido, S.; Valenzuela, L.R.; Altarejos, J.; Nogueras, M.; Sánchez, A.; Cano, E. Composition and infraspecific variability of Artemisia herba-alba from southern Spain. Biochem. Syst. Ecol. 2004, 32, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Belhattab, R.; Amor, L.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C. Essential oil from Artemisia herba-alba Asso grown wild in Algeria: Variability assessment and comparison with an updated literature survey. Arab. J. Chem. 2014, 7, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.M.; Dias, H.J.; Medeiros, T.C.T.; Grundmann, C.O.; Groppo, M.; Heleno, V.C.G.; Martins, C.H.G.; Cunha, W.R.; Crotti, A.E.M.; Silva, E.O. Chemical composition and antimicrobial activity of the essential oil of Artemisia absinthium Asteraceae leaves. J. Essent. Oil Bear. Plants 2017, 20, 123–131. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Akbarzadeh, A.; Hashemi-Moghaddam, H.; Nafchi, A.M.; Mashayekhi, H.A.; Aryanpour, A. Chemical composition of the essential oils from the aerial parts of Artemisia sieberi by using conventional hydrodistillation and microwave assisted hydrodistillation: A comparative study. J. Essent. Oil Bear. Plants 2016, 19, 32–45. [Google Scholar] [CrossRef]
- Sandip, S.; Reena, P.; Santilata, S.; Sanghamitra, N.; Sujata, M. High radical scavenging activity of camphor rich Artemisia nilagirica essential oil growing in eastern plain areas of India. Res. J. Biotechnol. 2014, 9, 63–65. [Google Scholar]
- Boumhara, K.; Bentiss, F.; Tabyaoui, M.; Costa, J.; Desjobert, J.M.; Bellaouchou, A.; Guenbour, A.; Hammouti, B.; Al-Deyab, S.S. Use of Artemisia mesatlantica essential oil as green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Int. J. Electrochem. Sci. 2014, 9, 1187–1206. [Google Scholar]
- Mishra, T.; Srivastava, M.; Kumar, A.; Pal, M.; Tewari, S.K. Chemical composition and termiticidal activity of Artemisia nilagirica essential oil growing in Southern Hilly Regions of India. J. Essent. Oil Bear. Plants 2017, 20, 247–252. [Google Scholar] [CrossRef]
- Younsi, F.; Trimech, R.; Boulila, A.; Ezzine, O.; Dhahri, S.; Boussaid, M.; Messaoud, C. Essential oil and phenolic compounds of Artemisia herba-alba (Asso.): Composition, antioxidant, antiacetylcholinesterase, and antibacterial activities. Int. J. Food Prop. 2016, 19, 1425–1438. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Wang, W.; Zheng, Y.; Zhang, D.; Wang, J.; Guo, S.; Zhang, W.; Du, S.; Zhang, J. Bioactivities and chemical constituents of essential oil extracted from Artemisia anethoides against two stored product insects. J. Oleo Sci. 2017, 66, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Zulfiqar, A.; Khan, I.A.; Efferth, T.; Salgueiro, L. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J. Ethnopharmacol. 2016, 191, 161–168. [Google Scholar] [CrossRef]
- Bellili, S.; Jazi, S.; Hrira, M.Y.; Lamari, A.; Dhifi, W.; Diouani, M.F.; Araújo, M.E.; Cioni, P.L.; Flamini, G.; Cherif, A. Phytochemical identification of volatile fraction, essential oil and screening of antioxidant, antibacterial, allelopathic and insecticidal potential from Artemisia herba-alba leaves. Main Group Chem. 2017, 16, 95–109. [Google Scholar] [CrossRef]
- Hannour, K.; Boughdad, A.; Maataoui, A.; Bouchelta, A. Chemical composition and toxicity of Moroccan Rosmarinus officinalis (Lamiaceae) essential oils against the potato tuber moth, Phthorimaea operculella (Zeller, 1873) Zeller (Lepidoptera, Gelechiidae). J. Mater. Environ. Sci. 2017, 8, 758–769. [Google Scholar]
Component | KIa | KIb | Limestone/ Semi-Arid | Poor Loamy and Stony Soil/ Semi-Arid | Limestone/ Semi-Arid, Arid | Limestone/ Subhumid to Humid |
---|---|---|---|---|---|---|
Santolinatriene | 908 | 909 | 1.1 | − | − | − |
Tricyclene | 926 | 925 | 0.2 | − | − | − |
α-Thujene | 930 | 924 | − | 0.9 | − | − |
α-Pinene | 939 | 937 | 0.1 | − | − | − |
Camphene | 954 | 952 | 1.6 | 2.5 | − | − |
Sabinene | 975 | 974 | − | 4.3 | − | − |
β-Pinene | 979 | 979 | 0.5 | − | − | − |
1-Decene | 989 | 988 | − | − | 0.7 | − |
Yomogi alcohol | 999 | 999 | 3.8 | − | − | − |
α-Terpinene | 1017 | 1014 | − | 2.3 | − | − |
ρ-Cymene | 1024 | 1023 | − | 5.9 | − | − |
Allyltiglate | 1025 | 1022 | − | − | 0.43 | − |
o-Cymene | 1026 | 1027 | 0.9 | − | − | 0.6 |
1,8-Cineole | 1031 | 1024 | 13.8 | 1.0 | − | 1.4 |
Santolina alcohol | 1040 | 1038 | 7.3 | − | − | − |
Bergamal | 1056 | 1056 | 0.2 | − | − | − |
γ-Terpinene | 1059 | 1060 | − | 4.1 | − | 0.5 |
cis-Sabinene hydrate | 1070 | 1067 | − | 0.9 | − | − |
Artemisia alcohol | 1083 | 1083 | 1.4 | − | − | − |
Terpinolene | 1088 | 1089 | − | 0.8 | − | − |
cis-Thujone | 1102 | 1102 | 3.4 | − | − | 5.5 |
trans-Thujone | 1114 | 1110 | − | 8.9 | 0.4 | 33.8 |
neo-Isopulegol | 1120 | 1142 | − | 1.5 | − | − |
Chrysanthenone | 1127 | 1126 | − | 2.8 | − | − |
trans-p-Menth-2-en-1-al | 1136 | 1136 | 0.8 | − | − | − |
trans-Pinocarveol | 1139 | 1141 | 0.4 | − | − | 1.0 |
trans-ρ-Menth-2-en-1-ol | 1140 | 1120 | − | 1.1 | − | − |
trans-Verbenol | 1144 | 1145 | − | 0.9 | − | − |
Camphor | 1146 | 1143 | 46.2 | 18.4 | 0.8 | 2.0 |
Citronellal | 1153 | 1159 | 0.3 | − | − | − |
iso-Isopulegol | 1159 | 1149 | − | 1.6 | − | − |
Pinocarvone | 1164 | 1164 | 1.2 | − | − | − |
Chrysanthenol | 1164 | 1163 | 4.8 | − | − | − |
Borneol | 1169 | 1169 | 2.9 | 3.5 | − | − |
4-hexen-1-ol,5-methyl-2-(1-methylethenyl) Lavandulol | 1172 | 1171 | 0.2 | − | − | |
Artemisyl acetate | 1173 | 1173 | − | − | 1.2 | − |
Terpinen-4-ol | 1177 | 1177 | − | 8.6 | − | 1.7 |
Thuj-3-en-10-al | 1184 | 1181 | 1.3 | 1.2 | − | − |
α-Terpineol | 1188 | 1189 | 1.0 | − | − | 1.3 |
Myrtenol | 1195 | 1195 | 0.6 | 1.6 | − | − |
cis-Piperitol | 1196 | 1198 | 0.3 | − | − | − |
γ-Terpineol | 1199 | 1199 | 0.3 | − | − | − |
trans-Piperitol | 1208 | 1198 | 0.4 | − | − | − |
neoiso-Dihydrocarveol | 1228 | 1220 | − | − | − | 0.6 |
Cumin aldehyde | 1241 | 1242 | − | 1.1 | − | − |
trans-Piperitone epoxide | 1256 | 1254 | 0.4 | − | − | − |
cis-Chrysanthenylacetate | 1265 | 1266 | − | 3.3 | 0.6 | − |
Isobornylacetate | 1285 | 1290 | 0.8 | − | − | − |
Lavandulylacetate | 1290 | 1291 | 0.2 | 1.0 | − | 1.8 |
Myrtenylacetate | 1326 | 1325 | 2.1 | − | − | − |
ρ-Mentha-1,4-dien-7-ol | 1327 | 1332 | − | 2.5 | − | − |
Piperitenone | 1343 | 1343 | − | 2.3 | − | − |
α-Terpinylacetate | 1349 | 1349 | − | − | − | 0.4 |
Eugenol | 1359 | 1356 | − | 2.6 | 0.4 | − |
cis-threo-Davanafuran | 1415 | 1414 | − | − | 1.7 | − |
(E)-Caryophyllene | 1419 | 1433 | − | − | − | 0.8 |
Dictamnol | 1429 | 1428 | − | − | − | 3.5 |
Vestitenone | 1446 | 1443 | − | − | 4.9 | − |
exo-Arbozol | 1454 | 1452 | 0.3 | − | − | − |
dehydro-Sesquicineole | 1471 | 1460 | − | − | − | 0.6 |
Germacrene D | 1481 | 1488 | − | − | 0.5 | 0.8 |
Davana ether | 1491 | 1491 | − | 3.0 | 14.7 | − |
β-Himachalene | 1500 | 1499 | − | − | 0.4 | |
Laciniatafuranone F | 1532 | 1503 | − | − | 1.6 | − |
Artedouglasiaoxide A | 1535 | 1533 | − | − | 1.5 | − |
Furopelargone A | 1540 | 1540 | − | − | 3.3 | − |
Laciniatafuranone E | 1542 | 1514 | − | − | 9.8 | − |
Laciniatafuranone H | 1550 | 1532 | − | − | 0.4 | − |
Artedouglasia oxide D | 1560 | 1560 | − | − | 0.5 | − |
Davanone B | 1566 | 1565 | − | 2.0 | 10.1 | − |
α-Cedreneepoxide | 1575 | 1617 | − | 1.0 | − | − |
Spathulenol | 1578 | 1619 | 0.9 | 1.6 | 6.2 | − |
Artedouglasia oxide B | 1582 | 1580 | − | − | 0.6 | − |
Caryophyllene oxide | 1583 | 1582 | − | 1.2 | 1.0 | 1.3 |
Davanone | 1587 | 1586 | − | 3.6 | 13.6 | − |
Globulol | 1590 | 1590 | 0.3 | − | − | 1.8 |
Viridiflorol | 1592 | 1595 | − | − | 0.3 | − |
Rosifoliol | 1600 | 1599 | − | − | − | 2.4 |
Humulene epoxide II | 1608 | 1608 | − | − | 0.5 | − |
Davanol D1 (isomer 1) | 1615 | 1615 | − | − | 3.4 | − |
Junenol | 1619 | 1605 | − | − | − | 1.2 |
trans-Isolongifolanone | 1626 | 1627 | − | − | − | 0.7 |
α-epi-Cadinol | 1640 | 1640 | − | − | − | 0.7 |
α- epi-Muurolol | 1642 | 1642 | − | − | − | 6.4 |
α-Bisabololoxide B | 1658 | 1656 | − | − | − | 7.4 |
α-Bisabolol | 1685 | 1685 | − | − | − | 0.8 |
α-Germacra-4(15),5,10(14)-trien-1-ol | 1686 | 1686 | − | − | 0.3 | − |
Deodarone | 1698 | 1707 | − | − | − | 5.2 |
β-(Z)-Santalol | 1716 | 1713 | − | − | − | 0.6 |
α-Bisabololoxide A | 1749 | 1686 | − | − | − | 6.8 |
Eremophilone<8-hydroxy-dihydro-> | 1757 | 1774 | − | − | 4.3 | − |
Vetivenic acid | 1811 | 1860 | − | − | 14.9 | 7.8 |
Eremophilone<8-hydroxy-> | 1847 | 1865 | − | 2.0 | − | − |
Carissone | 1927 | 1926 | − | − | − | 0.5 |
Identification total (%) | 100 | 100 | 99.9 | 100 | ||
Oxygenated monoterpenes (%) | 94.9 | 64.7 | 11.4 | 49.4 | ||
Sesquiterpene hydrocarbons (%) | 0 | 0 | 0.5 | 1.9 | ||
Oxygenated sesquiterpenes (%) | 1.2 | 14.5 | 87.4 | 47.6 | ||
Monoterpene hydrocarbons (%) | 4.4 | 20.8 | 0.7 | 1.1 |
Component | KIa | KIb | Rocky Soil on Limestone/ Subhumid to Humid | Limestone/ Subhumid to Humid |
---|---|---|---|---|
Santolinatriene | 908 | 909 | 1.0 | − |
Tricyclene | 926 | 925 | 0.2 | − |
α-Thujene | 930 | 924 | 0.3 | − |
α-Pinene | 939 | 937 | − | 0.4 |
Camphene | 954 | 952 | 4.5 | 0.3 |
Sabinene | 975 | 974 | − | 4.5 |
Β-Pinene | 979 | 979 | 0.4 | 0.2 |
1-Decene | 989 | 988 | − | − |
Myrcene | 990 | 991 | − | 0.2 |
Yomogi alcohol | 999 | 999 | 3.5 | − |
α-Terpinene | 1017 | 1014 | − | 0.1 |
ρ-Cymene | 1024 | 1023 | − | 0.7 |
o-Cymene | 1026 | 1027 | 1.1 | − |
1,8-Cineole | 1031 | 1024 | 13.2 | 3.7 |
Santolina alcohol | 1040 | 1038 | 5.9 | − |
β -(E)-Ocimene | 1050 | 1050 | 0.3 | − |
Bergamal | 1056 | 1056 | 0.4 | − |
Artemisia ketone | 1062 | 1061 | 1.1 | − |
cis-Sabinene hydrate | 1070 | 1067 | − | 1.5 |
cis-Thujone | 1102 | 1102 | − | 4.7 |
trans-Thujone | 1114 | 1110 | 3.1 | 41.0 |
neo-Isopulegol | 1120 | 1142 | 0.5 | − |
Chrysanthenone | 1127 | 1126 | 1.1 | − |
allo-Ocimene | 1132 | 1131 | − | 0.2 |
trans-Pinocarveol | 1139 | 1141 | 0.4 | − |
trans-ρ-Menth-2-en-1-ol | 1140 | 1120 | 0.4 | − |
trans-Sabinol | 1142 | 1140 | − | 3.6 |
Camphor | 1146 | 1146 | 44.9 | 3.2 |
Pinocarvone | 1164 | 1164 | 1.1 | 0.2 |
Borneol | 1169 | 1169 | 2.9 | 1.0 |
4-hexen-1-ol,5-methyl-2-(1-methylethenyl) Lavandulol | 1172 | 1171 | 0.2 | − |
Terpinen-4-ol | 1177 | 1177 | 1.1 | 1.6 |
Thuj-3-en-10-al | 1184 | 1181 | − | 0.2 |
Prenylangelate | 1190 | 0.3 | − | |
Myrtenal | 1194 | 1193 | 0.6 | − |
Myrtenol | 1195 | 1195 | 0.3 | 0.3 |
γ-Terpineol | 1199 | 1199 | 0.3 | 1.0 |
trans-Piperitol | 1208 | 1198 | 0.4 | 0.4 |
endo-Fenchyl acetate | 1220 | 1220 | − | 0.8 |
Piperitone | 1252 | 1253 | 0.3 | 0.2 |
cis-Chrysanthenylacetate | 1265 | 1266 | 2.2 | − |
Isobornylacetate | 1285 | 1290 | 0.8 | − |
exo-Arbozol | 1454 | 1452 | 0.3 | − |
Sesquicineole<7-epi-1,2-dehydro-> | 1473 | 1460 | − | 1.3 |
Germacrene D | 1481 | 1488 | − | 2.7 |
Spathulenol | 1578 | 1619 | 1.1 | 1.6 |
Globulol | 1590 | 1590 | 0.3 | 1.6 |
Viridiflorol | 1592 | 1595 | 0.4 | |
Eremoligenol | 1631 | 1630 | − | 6.7 |
α-Cadinol | 1654 | 1653 | − | 3.2 |
Botrydiol | 1690 | 1689 | − | 3.3 |
Identification total (%) | 99.7 | 99.9 | ||
Oxygenated monoterpenes (%) | 90.4 | 63.6 | ||
Sesquiterpene hydrocarbons (%) | 0 | 2.7 | ||
Oxygenated sesquiterpenes (%) | 1.8 | 26.8 | ||
Monoterpene hydrocarbons (%) | 7.5 | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amine, S.; Bouhrim, M.; Mechchate, H.; Ailli, A.; Radi, M.; Sahpaz, S.; Amalich, S.; Mahjoubi, M.; Zair, T. Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire. Int. J. Plant Biol. 2022, 13, 55-70. https://doi.org/10.3390/ijpb13020007
Amine S, Bouhrim M, Mechchate H, Ailli A, Radi M, Sahpaz S, Amalich S, Mahjoubi M, Zair T. Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire. International Journal of Plant Biology. 2022; 13(2):55-70. https://doi.org/10.3390/ijpb13020007
Chicago/Turabian StyleAmine, Sanae, Mohamed Bouhrim, Hamza Mechchate, Atika Ailli, Mohamed Radi, Sevser Sahpaz, Smail Amalich, Malika Mahjoubi, and Touriya Zair. 2022. "Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire" International Journal of Plant Biology 13, no. 2: 55-70. https://doi.org/10.3390/ijpb13020007
APA StyleAmine, S., Bouhrim, M., Mechchate, H., Ailli, A., Radi, M., Sahpaz, S., Amalich, S., Mahjoubi, M., & Zair, T. (2022). Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire. International Journal of Plant Biology, 13(2), 55-70. https://doi.org/10.3390/ijpb13020007