Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds
2.2. Rhizobox Experiment
2.3. Regular Plant Measurements
2.4. Hypocotyl Diameter Measurements
2.5. Root Morphology Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Gonzales, G.F.; Gonzales, C.; Gonzales-Castañeda, C. Lepidium meyenii (Maca). A plant from the highlands of Peru-from tradition to science. Forsch. Komplement. 2009, 16, 373–380. [Google Scholar] [CrossRef] [PubMed]
- León, J. The “Maca” (Lepidium meyenii), a Little Known Food Plant of Peru. Econ. Bot. 1964, 18, 122–127. [Google Scholar] [CrossRef]
- Gonzales-Arimborgo, C.; Yupanqui, I.; Montero, E.; Alarcón-Yaquetto, D.E.; Zevallos-Concha, A.; Caballero, L.; Gasco, M.; Zhao, J.; Khan, I.A.; Gonzales, G.F. Acceptability, Safety, and Efficacy of Oral Administration of Extracts of Black or Red Maca (Lepidium meyenii) in Adult Human Subjects. A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals 2016, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Luna, A.C.; Salazar, S.; Aspajo, N.J.; Rubio, J.; Gasco, M.; Gonzales, G.F. Lepidium meyenii (Maca) increases litter size in normal adult female mice. Reprod. Boil. Endocrinol. 2005, RB&E 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Bai, N.; He, K.; Roller, M.; Lai, C.; Bai, L.; Pan, M. Flavonolignans and other constituents from Lepidium meyenii with activities in anti-inflammation and human cancer cell lines. J. Agric. Food Chem. 2015, 63, 2458–2463. [Google Scholar] [CrossRef]
- Gonzales-Castañeda, C.; Gonzales, G.F. Hypocotyls of Lepidium meyenii (maca), a plant of the Peruvian highlands, prevent ultraviolet A-, B-, and C-induced skin damage in rats. Photodermatol. Photoimmunol. Photomed. 2008, 24, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Quirós, C.F.; Cárdenas, R.A. Maca (Lepidium meyenii Walp.). In Andean Roots and Tubers: Ahipa, Arracacha, Maca and Yacón; Hermann, M., Heller, J., Eds.; International Plant Genetic Resources Institute; IPGRI—Promoting Conservation and Use of Underutilized and Neglected Crops: Rome, Italy, 1997; pp. 174–197. [Google Scholar]
- Quiros, C.F.; Epperson, A.; Hu, J.; Holle, M. Physiological Studies and Determination of Chromosome Number in Maca, Lepidium meyenii (Brassicaceae). Econ. Bot. 1996, 50, 216–223. [Google Scholar] [CrossRef]
- Melnikovova, I.; Havlik, J.; Fernandez Cusimamani, E.; Milella, L. Macamides and fatty acids content comparison in maca cultivated plant under field conditions and greenhouse. Boletín Latinoam. Y Caribe Plantas Med. Y Arom. 2012, 11, 420–427. [Google Scholar]
- Zúñiga, D.; Macalupú, J.; García Wong, M.; Porras, W.; Bautista, M.; Gutiérrez, K. Characterization of rhizospheric bacteria isolated from maca (Lepidium meyenii W.) in the highlands of Junin-Peru. Microorg. Ind. Environ. 2011, 21–25. [Google Scholar] [CrossRef]
- Onoda, Y.; Anten, N.P.R. Challenges to understand plant responses to wind. Plant Signal. Behav. 2011, 6, 1057–1059. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tian, Y.; Yan, L.; Zhang, G.; Wang, X.; Zeng, Y.; Zhang, J.; Ma, X.; Tan, Y.; Long, N.; et al. Genome of Plant Maca (Lepidium meyenii) Illuminates Genomic Basis for High-Altitude Adaptation in the Central Andes. Mol. Plant 2016, 9, 1066–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meissner, H.O.; Mscisz, A.; Kedzia, B.; Pisulewski, P.L.; Piatkowska, E. Peruvian Maca: Two Scientific Names Lepidium Meyenii Walpers and Lepidium Peruvianum Chacon—Are They Phytochemically-Synonymous? Int. J. Biomed. Sci. 2015, 11, 1–15. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392557/ (accessed on 7 April 2022).
- Li, G.I.; Ammermann, U.; Quirós, C.F. Glucosinolate contents in maca (Lepidium peruvianum Chacón) seeds, sprouts, mature plants and several derived commercial products. Econ. Bot. 2001, 55, 255–262. [Google Scholar] [CrossRef]
- Marín-Bravo, M. Histología de la Maca, Lepidium meyenii Walpers (Brassicaceae). Histology of Maca, Lepidium meyenii Walpers (Brassicaceae). Rev. Peru. Biol. 2003, 10, 101–108. [Google Scholar]
- Zheng, Y.; Luo, L.; Gao, Z.; Liu, Y.; Chen, Q.; Kong, X.; Yang, Y. Grafting induces flowering time and tuber formation changes in Brassica species involving FT signalling. Plant biology 2019, 21, 1031–1038. [Google Scholar] [CrossRef]
- Vreugdenhil, D.; Bouwmeester, H.J. Effects of ethylene on tuberization in radish (Raphanus sativus). Plant Growth Regul. 1989, 8, 21–30. [Google Scholar] [CrossRef]
- Craker, L.E.; Seibert, M.; Clifford, J.T. Growth and Development of Radish (Raphanus sativus, L.) Under Selected Light Environments. Ann. Bot. 1983, 15, 59–64. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Hortic. Environ. Biotechnol. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Guo, R.; Li, W.; Wang, X.; Chen, B.; Huang, Z.; Liu, T.; Chen, X.; Xu, X.; Lai, Z. Effect of photoperiod on the formation of cherry radish root. Sci. Hortic. 2019, 244, 193–199. [Google Scholar] [CrossRef]
- Rea, J. Raices andinas. In Cultivos marginados otra perspectica de 1492; Hernández Bermejo, J.E., León, J., Eds.; Colección FAO/Producción y Protección Vegetal, 26; FAO: Roma, Italy, 1992; pp. 163–177. Available online: https://www.fao.org/3/t0646s/t0646s.pdf (accessed on 4 May 2022).
- Tello, J.; Hermann, M.; Calderon, A. La Maca (Lepidium meyenii Walp): Cultivo Alimenticio Potencial para las Zonas Altoandinas. Bol. Lima 1992, 81, 59–66. [Google Scholar]
- Marthe, F.; Schütze, W.; Krüger, H.; Scholze, P.; Krämer, R.; Ryschka, U. Maca (Lepidium meyenii)—cultivation, resistance and composition of secondary metabolites under European conditions. In Rudolf Mansfeld and Plant Genetic Resources, Proceedings of the a Symposium Dedicated to the 100th Birthday of Rudolf Mansfeld, Gatersleben, Germany, 8–9 October 2001; Knüpffer, H., Ochsmann, J., Eds.; Zentralstelle für Agrardokumentation und—Information: Bonn, Germany, 2001; pp. 290–293. [Google Scholar]
- Feng, Y.; He, Z.; Xu, L.-F.; Zhang, Z.-H.; Shi, L.; Chen, X.-M. Nutritive elements analysis and evaluation of Maca (Lepidium meyenii) cultivated in Yunnan. For. Res. 2009, 22, 696–700. [Google Scholar]
- Zhang, J.; Wang, H.-M.; Zhao, Y.L.; Zuo, Z.-T.; Wang, Y.-Z.; Jin, H. Comparison of Mineral Element Content in a Functional Food Maca (Lepidium meyenii Walp.) from Asia and South America. J. Anal. Methods Chem. 2015, 2015, 530541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE 2015, 10, e0135182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meissner, H.O.; Xu, L.; Wan, W.; Yi, F. Glucosinolates profiles in Maca phenotypes cultivated in Peru and China (Lepidium peruvianum syn. L. meyenii). Phytochem. Lett. 2019, 31, 208–216. [Google Scholar] [CrossRef]
- Neumann, G. Root exudates and organic composition of plant roots. In Handbook of Methods Used in Rhizosphere Research; Luster, J., Finlay, R., Brunner, I., Eds.; Swiss Federal Research Institute WSL: Birmensdorf, Switzerland, 2006; pp. 52–62. [Google Scholar]
- Piepho, H.-P. An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Zak, D.R.; Loya, W.M.; Karberg, N.J.; King, J.S.; Burton, A.J. The Contribution of Root—Rhizosphere Interactions to Biogeochemical Cycles in a Changing World. In The Rhizosphere. An Ecological Perspective; Cardon, Z.G., Whitbeck, J.L., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2007; pp. 155–178. [Google Scholar]
- Milford, G.F.J.; Lenton, J.R. Effect of photoperiod on growth of sugar beet. Ann. Bot. 1976, 40, 1309–1315. [Google Scholar] [CrossRef]
- Hurd, R.G. Long-day effects on growth and flower initiation of tomato plants in low light. Ann. Appl. Biol. 1973, 73, 221–228. [Google Scholar] [CrossRef]
- Adams, S.R.; Langton, F.A. Photoperiod and plant growth. A review. J. Hortic. Sci. Biotechnol. 2005, 80, 2–10. [Google Scholar] [CrossRef]
- Hermann, M.; Bernet, T. The transition of maca from neglect to market prominence: Lessons for improving use strategies and market chains of minor crops. In Agricultural Biodiversity and Livelihoods Discussion Papers; Bioversity International: Rome, Italy, 2009. [Google Scholar]
- Soffe, R.; Lenton, J.R.; Milford, G.F.J. Effects of photoperiod on some vegetable species. Ann Appl. Biol. 1977, 85, 411–415. [Google Scholar] [CrossRef]
- Sirtautas, R.; Samuolienė, G.; Brazaitytė, A.; Duchovskis, P. Temperature and photoperiod effects on photosynthetic indices of radish (Raphanus sativus L.). Žemdirbystė (Agric.) 2011, 98, 57–62. [Google Scholar]
- Nieuwhof, M. The effect of temperature on growth and development of cultivars of radish under winter conditions. Sci. Hortic. 1976, 5, 111–118. [Google Scholar] [CrossRef]
Treatment | 53 DAS | 60 DAS | 67 DAS | 81 DAS | 88 DAS |
---|---|---|---|---|---|
Average number of leaves per plant, leaves plant −1 | |||||
Long-day | 3.9 ± 0.3 a | 4.8 ± 0.3 a | 5.1 ± 0.3 a | 6.2 ± 0.4 a | 5.3 ± 0.4 ns |
Short-day | 2.7 ± 0.3 b | 3.4 ± 0.3 b | 3.5 ± 0.3 b | 4.7 ± 0.4 b | 4.2 ± 0.4 ns |
Average leaf length, cm plant −1 | |||||
Long-day | 5.78 ± 0.42 ns | 7.62 ± 0.39 a | 8.01 ± 0.38 a | 10.03 ± 0.46 a | 10.58 ± 0.45 a |
Short-day | 5.17 ± 0.42 ns | 6.22 ± 0.39 b | 6.42 ± 0.39 b | 7.64 ± 0.46 b | 7.96 ± 0.45 b |
Treatment | Leaf Fresh Weight, mg Plant −1 | Leaf Dry Weight, mg Plant −1 | Root Fresh Weight, mg Plant −1 | Root Dry Weight, mg Plant −1 |
---|---|---|---|---|
Long-day | 1196.64 ± 102.28 a | 133.00 ± 31.15 ns | 74.13 ± 7.12 a | 13.78 ± 3.01 a |
Short-day | 289.86 ± 102.28 b | 38.67 ± 31.15 ns | 15.89 ± 7.12 b | 1.85 ± 3.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaytseva, O.; Terrel Gutierrez, M.; Graeff-Hönninger, S. Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings. Int. J. Plant Biol. 2022, 13, 71-81. https://doi.org/10.3390/ijpb13020008
Zaytseva O, Terrel Gutierrez M, Graeff-Hönninger S. Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings. International Journal of Plant Biology. 2022; 13(2):71-81. https://doi.org/10.3390/ijpb13020008
Chicago/Turabian StyleZaytseva, Olga, Meylin Terrel Gutierrez, and Simone Graeff-Hönninger. 2022. "Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings" International Journal of Plant Biology 13, no. 2: 71-81. https://doi.org/10.3390/ijpb13020008
APA StyleZaytseva, O., Terrel Gutierrez, M., & Graeff-Hönninger, S. (2022). Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings. International Journal of Plant Biology, 13(2), 71-81. https://doi.org/10.3390/ijpb13020008