Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals
Abstract
:1. Introduction
2. The Classical Rules and the Phytochemical Rule (PR)
3. Methodology
3.1. Data Source Platform: PubChem
- i.
- Search for the common compound name on the PubChem engine.
- ii.
- iii.
- To determine the total number of atoms (TNA) for each compound, we manually added the number of atoms in the molecular formula.
3.2. Data Source Platform: SwissADME
- i.
- Search for the common compound name on the PubChem engine.
- ii.
- Identify the Canonical SMILES in the category of Computed Descriptors.
- iii.
- Go to the SwissADME program and write the SMILES (from PubChem) in the space indicating “Enter a list of SMILES here” and click “Run.”
- iv.
3.3. Data Source Platform: ChemSpider
- i.
- Search for the common compound name on the ChemSpider engine.
- ii.
- Click on the “Properties” Table
- iii.
- Click on the “Predicted—ACD/Labs” sub-tab.
- iv.
4. Results and Discussion
4.1. Determination of Physicochemical Properties
4.2. Prediction of GI Absorption for Phytochemicals Using the Phytochemical Rule (PR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Wong, H. Predicting Oral Drug Absorption: Mini Review on Physiologically-Based Pharmacokinetic Models. Pharmaceutics 2017, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher, T. An Additive Definition of Molecular Complexity. J. Chem. Inf. Model. 2016, 56, 462–470. [Google Scholar] [CrossRef]
- Croy, B.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Kim, K.; Nam, H.; Lee, D. Discovering Health Benefits of Phytochemicals with Integrated Analysis of the Molecular Network, Chemical Properties and Ethnopharmacological Evidence. Nutrients 2018, 10, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, Y.; Cassé, C.; Ferrer-Acosta, Y.; Suárez-Arroyo, I.J.; Rodríguez-Zayas, J.; Torres, A.; Torres-Martínez, Z.; Pérez, D.; González, M.J.; Velázquez-Aponte, R.A.; et al. Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. Appl. Sci. 2021, 11, 8477. [Google Scholar] [CrossRef]
- Aucoin, M.; Cooley, K.; Saunders, P.R.; Carè, J.; Anheyer, D.; Medina, D.N.; Cardozo, V.; Remy, D.; Hannan, N.; Garber, A. The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv. Integr. Med. 2020, 7, 203–217. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Jafarzadeh, S.; Nemati, M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? J. Tradit. Chin. Med Sci. 2021, 8, 267–279. [Google Scholar] [CrossRef]
- Mishra, A.; Chaturvedi, P.; Datta, S.; Sinukumar, S.; Joshi, P.; Garg, A. Harmful effects of nicotine. Indian J. Med Paediatr. Oncol. 2015, 36, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Colón, L.A.; Dash, P.K.; Morales-Vías, F.A.; Lebrón-Dávila, M.; Ferchmin, P.A.; Redell, J.B.; Maldonado-Martínez, G.; Vélez-Torres, W.I. 4R-cembranoid confers neuroprotection against LPS-induced hippocampal inflammation in mice. J. Neuroinflammation 2021, 18, 95. [Google Scholar] [CrossRef]
- Pollastri, M.P. Overview on the Rule of Five. Curr. Protoc. Pharmacol. 2010, 49, 9.12.1–9.12.8. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Rutkowska, E.; Pajak, K.; Jóźwiak, K. Lipophilicity—Methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. 2013, 70, 3–18. [Google Scholar]
- Tinworth, C.P.; Young, R.J. Facts, Patterns, and Principles in Drug Discovery: Appraising the Rule of 5 with Measured Physicochemical Data. J. Med. Chem. 2020, 63, 10091–10108. [Google Scholar] [CrossRef]
- Winiwarter, S.; Ridderström, M.; Ungell, A.; Andersson, T.; Zamora, I. 5.22—Use of molecular descriptors for absorp-tion, distribution, metabolism, and excretion predictions. In Comprehensive Medicinal Chemistry II; Taylor, J., Triggle, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 5, pp. 531–554. [Google Scholar]
- Kermen, F.; Chakirian, A.; Sezille, C.; Joussain, P.; Le Goff, G.; Ziessel, A.; Chastrette, M.; Mandairon, N.; Didier, A.; Rouby, C.; et al. Molecular complexity determines the number of olfactory notes and the pleasantness of smells. Sci. Rep. 2011, 1, 206. [Google Scholar] [CrossRef] [Green Version]
- Stratton, C.F.; Newman, D.J.; Tan, D.S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 2015, 25, 4802–4807. [Google Scholar] [CrossRef] [Green Version]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.M.; Da Costa, P.A.; Ribon, A.O.; Purgato, G.A.; Gaspar, D.-M.; Diaz, G. Plant Extracts Display Synergism with Different Classes of Antibiotics. Acad Bras. Cienc. 2019, 91, e20180117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010, 5, 1595–1616. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Sobańska, A.W.; Robertson, J.; Brzezińska, E. Application of RP-18 TLC Retention Data to the Prediction of the Transdermal Absorption of Drugs. Pharmaceuticals 2021, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Ughachukwu, P.; Unekwe, P. Efflux pump-mediated resistance in chemotherapy. Ann. Med. Health Sci. Res. 2012, 2, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Lykkesfeldt, J.; Tveden-Nyborg, P. The Pharmacokinetics of Vitamin C. Nutrients 2019, 11, 2412. [Google Scholar] [CrossRef] [Green Version]
- Vanzo, A.; Cecotti, R.; Vrhovsek, U.; Torres, A.M.; Mattivi, F.; Passamonti, S. The Fate of trans-Caftaric Acid Administered into the Rat Stomach. J. Agric. Food Chem. 2007, 55, 1604–1611. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic Acid and Caffeic Acid Are Absorbed in Humans 1. J. Nutr. 2001, 131, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Jeena, K.; Liju, V.B.; Kuttan, R. A Preliminary 13-Week Oral Toxicity Study of Ginger Oil in Male and Female Wistar Rats. Int. J. Toxicol. 2011, 30, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Pathania, S.; Singh, P.K. Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical screening parameter in drug designing protocols? Expert Opin. Drug Metab. Toxicol. 2020, 17, 351–354. [Google Scholar] [CrossRef] [PubMed]
Name/ Category | Structure/Molecular Formula | MW (Da) | TNA/HBA/HBD/RB | A (cm3) | PSA (Å2) | Cm |
---|---|---|---|---|---|---|
Echinacea | ||||||
Cichoric acid | 474.4 | 52/12/6/11 | 114 | 208 | 740 | |
Phenolic acid | C22H18O12 | |||||
Caftaric acid | 312.2 | 34/9/5/7 | 70.6 | 162 | 458 | |
Phenolic acid | C13H12O9 | |||||
Quercetin-3-O-rutinoside | 610.5 | 73/16/10/6 | 141.4 | 269.4 | 1020 | |
Phenolic Flavonoid | C27H30O16 | |||||
Echinacoside | 786.7 | 101/20/12/14 | 180.8 | 324 | 1230 | |
Phenolic glycoside | C35H46O20 | |||||
Caffeic acid | 180.2 | 21/4/3/2 | 47.2 | 77.8 | 212 | |
Phenolic acid | C9H8O4 | |||||
Tobacco | ||||||
Anethole | 148.2 | 23/1/0/2 | 47.8 | 9.2 | 121 | |
Phenolic stilbene | C10H12O | |||||
Nicotine | 162.2 | 26/2/0/1 | 47.8 | 9.2 | 147 | |
Alkaloid | C10H14N2 | |||||
Menadione | 172.2 | 21/2/0/0 | 53.1 | 16.1 | 289 | |
Phenolic Flavonoid | C11H8O2 | |||||
Chlorogenic acid | 354.3 | 43/9/6/5 | 49.1 | 34.1 | 534 | |
Phenolic acid | C16H18O9 | |||||
Cembra-2,7,11-triene-4,6-diol | 306.5 | 56/2/2/1 | 83.5 | 164.8 | 431 | |
Cyclic terpene | C20H34O2 | |||||
Ginger | ||||||
6-Gingerol | 294.4 | 47/4/2/10 | 84.6 | 66.8 | 293 | |
Polyphenol | C17H26O4 | |||||
6-Shogaol | 276.4 | 44/3/1/9 | 82.9 | 46.5 | 299 | |
Polyphenol | C17H24O3 | |||||
6-Dehydro gingerdione | 290.4 | 43/4/2/8 | 84.8 | 66.8 | 373 | |
Polyphenol | C17H22O4 | |||||
Zingiberene | 204.4 | 39/0/0/4 | 70.68 | 0 | 274 | |
Sesquiterpene | C15H24 | |||||
α-Curcumene | 202.3 | 37/0/0/4 | 69.55 | 0 | 190 | |
Sesquiterpene | C15H22 | |||||
Control | ||||||
Ascorbic acid | 176.1 | 20/6/4/2 | 35.1 | 107.2 | 232 | |
Phenolic acid | C6H8O6 |
Name | LogP %/$/&/@ | LogD * |
---|---|---|
Echinacea | ||
Cichoric acid | 2.00/3.81/1.01/1.18 | −2.56 |
Caftaric acid | 0.10/1.14/−0.23/−0.53 | −4.39 |
Quercetin -3-O-rutinoside | −1.30/1.76/−1.12/−0.74 | −1.75 |
Echinacoside | −2.10/0.14/−2.08/−1.82 | −1.06 |
Caffeic acid | 1.20/1.42/0.93/0.89 | −1.74 |
Tobacco | ||
Anethole | 3.30/3.17/2.79/2.65 | 3.08 |
Nicotine | 1.20/0.72/1.50/ND | −0.37 |
Menadione | 2.2/2.38/1.98/0.67 | 2.02 |
Chlorogenic acid | −0.4/−0.36/−0.38/−0.7 | −3.91 |
Cembra-2,7,11-triene-4,6-diol | 4.00/6.26/3.93/ND | 5.34 |
Ginger | ||
6-Gingerol | 2.5/2.48/3.13/2.44 | 2.88 |
6-Shogaol | 3.70/3.85/3.76/3.78 | 4.15 |
6-Dehydro gingerdione | 4.20/3.05/3.45/ND | 3.17 |
Zingiberene | 5.20/6.60/4.47/ND | 5.63 |
α-Curcumene | 5.40/6.22/4.86/5.76 | 5.20 |
Control | ||
Ascorbic acid | −1.6/−2.41/−1.28/−1.85 | −4.99 |
Name | BBB Permeant | P-gp Substrate | GI Absorption |
---|---|---|---|
Echinacea | |||
Cichoric acid | No | Yes | Low |
Caftaric acid | No | No | Low |
Quercetin-3-O-rutinoside | No | Yes | Low |
Echinacoside | No | No | Low |
Caffeic acid | No | No | High |
Tobacco | |||
Anethole | Yes | No | High |
Nicotine | Yes | No | High |
Menadione | Yes | No | High |
Chlorogenic acid | No | No | Low |
Cembra-2,7,11-triene-4,6-diol | Yes | No | High |
Ginger | |||
6-Gingerol | Yes | No | High |
6-Shogaol | Yes | No | High |
6-Dehydro gingerdione | Yes | No | High |
Zingiberene | No | No | Low |
α-Curcumene | No | No | Low |
Control | |||
Ascorbic acid | No | No | High |
Name | L-Ro5 | GF | VR | MR | PR | Predicted GI Absorption # | ||
---|---|---|---|---|---|---|---|---|
Phytochemical | Plant | |||||||
Caffeic acid | ✔ | ✔ | ✔ | 1/MW < 200 | ✔ | High | Echinacea | |
Caftaric acid | ✔ | 1/LogP < −0.4 | 1/PSA > 140 | 1/PSA > 150 | ✔ | High | ||
Cichoric acid | 2/HBA > 10 HBD > 5 | ✔ | 2/RB > 10 PSA > 140 | 3/PSA > 150 HBA > 10 HBD > 5 | ✔ | Medium | ||
Quercetin-3-O-rutinoside | 3/MW > 500 HBA > 10 HBD > 5 | 4/MW > 480 LogP < −0.4 A > 130 TNA > 70 | 1/PSA > 140 | 4/MW > 600 PSA > 150 HBA > 10 HBD > 5 | 4/PSA > 250 HBA > 10 HBD > 5 Cm > 900 | Low | ||
Echinacoside | 3/MW > 500 HBA > 10 HBD > 5 | 4/MW > 480 LogP < −0.4 A > 130 TNA > 70 | 2/RB > 10 PSA > 140 | 5/MW > 600 LogP < −2 PSA > 150 HBA > 10 HBD > 5 | 6/PSA > 250 LogP < −2 TNA > 80 HBA > 10 HBD > 5 Cm > 900 | Low | ||
Nicotine | ✔ | ✔ | ✔ | 1/MW < 200 | ✔ | High | Tobacco | |
Menadione | ✔ | ✔ | ✔ | 1/MW < 200 | ✔ | High | ||
Cembra-2,7,11-triene-4,6-diol | ✔ | ✔ | ✔ | ✔ | ✔ | High | ||
Anethole | ✔ | 1/MW < 160 | ✔ | 2/MW < 200 NH < 2 | ✔ | High | ||
Chlorogenic acid | 1/HBD > 5 | 1/LogP < −0.4 | 1/PSA > 140 | 2/PSA > 150 HBD > 5 | ✔ | Medium | ||
6-Gingerol | ✔ | ✔ | ✔ | ✔ | ✔ | High | Ginger | |
6-Shogaol | ✔ | ✔ | ✔ | ✔ | ✔ | High | ||
6-Dehydrogingerdione | ✔ | ✔ | ✔ | ✔ | ✔ | High | ||
Zingiberene | ✔ | ✔ | ✔ | 1/NH < 2 | ✔ | High | ||
α-Curcumene | ✔ | ✔ | ✔ | 1/NH < 2 | ✔ | High | ||
Ascorbic acid | ✔ | 2/LogP < −0.4 A < 40 | ✔ | 1/MW < 200 | ✔ | High | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez, L.A.; Delgado, Y.; Ferrer-Acosta, Y.; Suárez-Arroyo, I.J.; Rodríguez, P.; Pérez, D. Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals. Int. J. Plant Biol. 2022, 13, 163-179. https://doi.org/10.3390/ijpb13020016
Vélez LA, Delgado Y, Ferrer-Acosta Y, Suárez-Arroyo IJ, Rodríguez P, Pérez D. Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals. International Journal of Plant Biology. 2022; 13(2):163-179. https://doi.org/10.3390/ijpb13020016
Chicago/Turabian StyleVélez, Luis A., Yamixa Delgado, Yancy Ferrer-Acosta, Ivette J. Suárez-Arroyo, Priscilla Rodríguez, and Daraishka Pérez. 2022. "Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals" International Journal of Plant Biology 13, no. 2: 163-179. https://doi.org/10.3390/ijpb13020016
APA StyleVélez, L. A., Delgado, Y., Ferrer-Acosta, Y., Suárez-Arroyo, I. J., Rodríguez, P., & Pérez, D. (2022). Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals. International Journal of Plant Biology, 13(2), 163-179. https://doi.org/10.3390/ijpb13020016