Modelling Waterlogging Impacts on Crop Growth: A Review of Aeration Stress Definition in Crop Models and Sensitivity Analysis of APSIM
Abstract
:1. Introduction
2. Waterlogging and Crop growth in Crop Models
2.1. Aeration Stress
2.2. Waterlogging Duration
2.3. Root Growth and Transpiration
2.4. Leaf Growth
2.5. Phenology and Crop-Specific Factors
2.6. Nitrogen Cycling Processes Impacted by Waterlogging
2.7. Crop Recovery after Waterlogging (Phenotypic Plasticity)
2.8. Crop Yields
2.9. Soil Water Dynamics
2.10. Evaluation of Waterlogging—Crop Growth Algorithms in Models
3. Case Study: Sensitivity of Processes Impacted by Waterlogging Using the APSIM Model
3.1. Sensitivity Analysis of Waterlogging Parameters Using APSIM
3.2. Overview of APSIM and Approach Used to Model Waterlogging
3.3. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, M.T.; Evans, J.R.; Moore, A.D. Using a Mathematical Framework to Examine Physiological Changes in Winter Wheat after Livestock Grazing: 1. Model Derivation and Coefficient Calibration. Field Crops Res. 2012, 136, 116–126. [Google Scholar] [CrossRef]
- Harrison, M.; Evans, J.; Moore, A. Using a Mathematical Framework to Examine Physiological Changes in Winter Wheat after Livestock Grazing: 2. Model Validation and Effects of Grazing Management. Field Crops Res. 2012, 136, 127–137. [Google Scholar] [CrossRef]
- Chang-Fung-Martel, J.; Harrison, M.T.; Rawnsley, R.; Smith, A.P.; Meinke, H. The Impact of Extreme Climatic Events on Pasture-Based Dairy Systems: A Review. Crop Pasture Sci. 2017, 68, 1158–1169. [Google Scholar] [CrossRef]
- Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. Linking Modelling and Experimentation to Better Capture Crop Impacts of Agroclimatic Extremes—A Review. Field Crops Res. 2018, 221, 142–156. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Shabala, S.; Meinke, H.; Ahmed, I.; Zhang, Y.; Tian, X.; Zhou, M. The State of the Art in Modeling Waterlogging Impacts on Plants: What Do We Know and What Do We Need to Know. Earth Future 2020, 8, e2020EF001801. [Google Scholar] [CrossRef]
- Yan, H.; Harrison, M.T.; Liu, K.; Wang, B.; Feng, P.; Fahad, S.; Meinke, H.; Yang, R.; Liu, D.L.; Archontoulis, S.; et al. Crop Traits Enabling Yield Gains under More Freq.Uent Extreme Climatic Events. Sci. Total Environ. 2022, 808, 152170. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Smith, C.J. Modelling the Growth and Water Uptake Function of Plant Root Systems: A Review. Aust. J. Agric. Res. 2004, 55, 501–523. [Google Scholar] [CrossRef]
- Christie, K.M.; Smith, A.P.; Rawnsley, R.P.; Harrison, M.T.; Eckard, R.J. Simulated Seasonal Responses of Grazed Dairy Pastures to Nitrogen Fertilizer in SE Australia: N Loss and Recovery. Agric. Syst. 2020, 182, 102847. [Google Scholar] [CrossRef]
- Christie, K.M.; Smith, A.P.; Rawnsley, R.P.; Harrison, M.T.; Eckard, R.J. Simulated Seasonal Responses of Grazed Dairy Pastures to Nitrogen Fertilizer in SE Australia: Pasture Production. Agric. Syst. 2018, 166, 36–47. [Google Scholar] [CrossRef]
- Harrison, M.T.; Christie, K.M.; Rawnsley, R.P.; Eckard, R.J. Modelling Pasture Management and Livestock Genotype Interventions to Improve Whole-Farm Productivity and Reduce Greenhouse Gas Emissions Intensities. Anim. Prod. Sci. 2014, 54, 2018–2028. [Google Scholar] [CrossRef]
- Harrison, M.T.; Cullen, B.R.; Tomkins, N.W.; McSweeney, C.; Cohn, P.; Eckard, R.J. The Concordance between Greenhouse Gas Emissions, Livestock Production and Profitability of Extensive Beef Farming Systems. Anim. Prod. Sci. 2016, 56, 370–384. [Google Scholar] [CrossRef]
- Alcock, D.J.; Harrison, M.T.; Rawnsley, R.P.; Eckard, R.J. Can Animal Genetics and Flock Management Be Used to Reduce Greenhouse Gas Emissions but Also Maintain Productivity of Wool-Producing Enterprises? Agric. Syst. 2015, 132, 25–34. [Google Scholar] [CrossRef]
- Sándor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; et al. Ensemble Modelling of Carbon Fluxes in Grasslands and Croplands. Field Crops Res. 2020, 252, 107791. [Google Scholar] [CrossRef]
- Najeeb, U.; Bange, M.P.; Tan, D.K.Y.; Atwell, B.J. Consequences of Waterlogging in Cotton and Opportunities for Mitigation of Yield Losses. AoB Plants 2015, 7, plv080. [Google Scholar] [CrossRef] [PubMed]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of Waterlogging Tolerance in Wheat—A Review of Root and Shoot Physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef]
- Manik, S.M.N.; Pengilley, G.; Dean, G.; Field, B.; Shabala, S.; Zhou, M. Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity. Front. Plant Sci. 2019, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi-Mollabashi, E.; Huth, N.I.; Holzwoth, D.P.; Ordóñez, R.A.; Hatfield, J.L.; Huber, I.; Castellano, M.J.; Archontoulis, S. V Enhancing APSIM to Simulate Excessive Moisture Effects on Root Growth. Field Crops Res. 2019, 236, 58–67. [Google Scholar] [CrossRef]
- Pasley, H.R.; Huber, I.; Castellano, M.J.; Archontoulis, S.V. Modeling Flood-Induced Stress in Soybeans. Front. Plant Sci. 2020, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Harrison, M.T.; Archontoulis, S.V.; Huth, N.; Yang, R.; Liu, D.L.; Yan, H.; Meinke, H.; Huber, I.; Feng, P.; et al. Climate Change Shifts Forward Flowering and Reduces Crop Waterlogging Stress. Environ. Res. Lett. 2021, 16, 094017. [Google Scholar] [CrossRef]
- Manik, S.M.N.; Quamruzzaman, M.; Livermore, M.; Zhao, C.; Johnson, P.; Hunt, I.; Shabala, S.; Zhou, M. Impacts of Barley Root Cortical Aerenchyma on Growth, Physiology, Yield Components, and Grain Quality under Field Waterlogging Conditions. Field Crops Res. 2022, 279, 108461. [Google Scholar] [CrossRef]
- Harrison, M.T.; Jackson, T.; Cullen, B.R.; Rawnsley, R.P.; Ho, C.; Cummins, L.; Eckard, R.J. Increasing Ewe Genetic Fecundity Improves Whole-Farm Production and Reduces Greenhouse Gas Emissions Intensities: 1. Sheep Production and Emissions Intensities. Agric. Syst. 2014, 131, 23–33. [Google Scholar] [CrossRef]
- Cox, J.W.; McFarlane, D.J. The Causes of Waterlogging in Shallow Soils and Their Drainage in Southwestern Australia. J. Hydrol. 1995, 167, 175–194. [Google Scholar] [CrossRef]
- Elzenga, J.T.M.; van Veen, H. Waterlogging and Plant Nutrient Uptake. In Waterlogging Signalling and Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–35. [Google Scholar]
- Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant Waterlogging/Flooding Stress Responses: From Seed Germination to Maturation. Plant Physiol. Biochem. 2020, 148, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, P.J.; Biggs, J.S.; Collins, K.; Probert, M.E. Using the APSIM Model to Estimate Nitrous Oxide Emissions from Diverse Australian Sugarcane Production Systems. Agric. Ecosyst. Environ. 2010, 136, 343–350. [Google Scholar] [CrossRef]
- Harrison, M.T.; Kelman, W.M.; Moore, A.D.; Evans, J.R. Grazing Winter Wheat Relieves Plant Water Stress and Transiently Enhances Photosynthesis. Funct. Plant Biol. 2010, 37, 726–736. [Google Scholar] [CrossRef]
- Li, S.; Tompkins, A.M.; Lin, E.; Ju, H. Simulating the Impact of Flooding on Wheat Yield—Case Study in East China. Agric. For. Meteorol. 2016, 216, 221–231. [Google Scholar] [CrossRef]
- Grable, A.R.; Siemer, E.G. Effects of Bulk Density, Aggregate Size, and Soil Water Suction on Oxygen Diffusion, Redox Potentials, and Elongation of Corn Roots. Soil Sci. Soc. Am. J. 1968, 32, 180–186. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and Management Strategies for Crop Production in Waterlogged or Flooded Soils: A Review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Bierkens, M.F.P.; Samaniego, L.; Woods, R.A.; Uijlenhoet, R.; Bennett, K.E.; Pauwels, V.R.N.; Cai, X.; Wood, A.W.; Peters-Lidard, C.D. The Evolution of Process-Based Hydrologic Models: Historical Challenges and the Collective Quest for Physical Realism. Hydrol. Earth Syst. Sci. 2017, 21, 3427–3440. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P. Hydrologic Modeling: Progress and Future Directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, Y.; Bailey, R.T. Evaluating Crop-Soil-Water Dynamics in Waterlogged Areas Using a Coupled Groundwater-Agronomic Model. Environ. Model. Softw. 2021, 143, 105130. [Google Scholar] [CrossRef]
- Ibrahim, A.; Harrison, M.T.; Meinke, H.; Zhou, M. Examining the Yield Potential of Barley Near-Isogenic Lines Using a Genotype by Environment by Management Analysis. Eur. J. Agron. 2019, 105, 41–51. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Ibrahim, A.; Manik, S.M.N.; Johnson, P.; Tian, X.; Meinke, H.; Zhou, M. Genetic Factors Increasing Barley Grain Yields under Soil Waterlogging. Food Energy Secur. 2020, 9, e238. [Google Scholar] [CrossRef]
- Zhang, H.; Sonnewald, U. Differences and Commonalities of Plant Responses to Single and Combined Stresses. Plant J. 2017, 90, 839–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroes, J.G.; van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; van Walsum, P.E.V. SWAP Version 4; Wageningen University & Research: Wageningen, The Netherlands, 2017. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Asseng, S.; Keating, B.A.; Huth, N.; Eastham, J. Simulation of Perched Water Tables in Duplex Soils. In Proceedings of the MODSIM 97: International Congress on Modelling and Simulation, Hobert, Australia, 8–11 December 1997. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Chapter 1. AquaCrop—FAO Crop-Water Productivity Model to Simulate Yield Response to Water. In AquaCrop Version 6.0–6.1; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Skaggs, R.W. DRAINMOD Reference Report: Methods for Design and Evaluation of Drainage-Water Management Systems for Soils with High Water Tables; North Carolina State University: Raleigh, NC, USA, 1980. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. EPIC Crop Growth Model. Trans. Am. Soc. Agric. Eng. 1989, 32, 497–511. [Google Scholar] [CrossRef]
- De Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 Years of the WOFOST Cropping Systems Model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop-the FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop-The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.O.; Skaggs, R.W. Stress Day Index Models to Predict Corn and Soybean Yield Response to Water Table Management. In Proceedings of the 15th International Congress on Irrigation and Drainage, The Hague, The Netherlands, 4–11 September 1993. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Wilkens, P.; Porter, C.; Tsuji, G. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5; University of Hawaii: Honolulu, HI, USA, 2010. [Google Scholar]
- Sharpley, A.N.; Williams, J.R. EPIC—Erosion/Productivity Impact Calculator: 1. Model Documentation; Technical Bulletin 1768; U.S. Department of Agriculture, Agricultural Research Service (ARS): Washington, DC, USA, 1990.
- Bartholomeus, R.P.; Witte, J.P.M.; van Bodegom, P.M.; van Dam, J.C.; Aerts, R. Critical Soil Conditions for Oxygen Stress to Plant Roots: Substituting the Feddes-Function by a Process-Based Model. J. Hydrol. 2008, 360, 147–165. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield. Simulation Monographs; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- De Wit, A.J.W.; Boogaard, H.L.; Supit, I.; van den Berg, M. System Description of the WOFOST 7.2 Cropping Systems Model; Wageningen Environmental Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Harrison, M.T.; Cullen, B.R.; Armstrong, D. Management Options for Dairy Farms under Climate Change: Effects of Intensification, Adaptation and Simplification on Pastures, Milk Production and Profitability. Agric. Syst. 2017, 155, 19–32. [Google Scholar] [CrossRef]
- Leão, T.P.; da Silva, A.P.; Macedo, M.C.M.; Imhoff, S.; Euclides, V.P.B. Least Limiting Water Range: A Potential Indicator of Changes in near-Surface Soil Physical Quality after the Conversion of Brazilian Savanna into Pasture. Soil Tillage Res. 2006, 88, 279–285. [Google Scholar] [CrossRef]
- Meskini-Vishkaee, F.; Mohammadi, M.H.; Neyshabouri, M.R. Revisiting the Wet and Dry Ends of Soil Integral Water Capacity Using Soil and Plant Properties. Soil Res. 2018, 56, 331–345. [Google Scholar] [CrossRef]
- Khataar, M.; Mohhamadi, M.H.; Shabani, F. Soil Salinity and Matric Potential Interaction on Water Use, Water Use Efficiency and Yield Response Factor of Bean and Wheat. Sci. Rep. 2018, 8, 2679. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.H.; Asadzadeh, F.; Vanclooster, M. Refining and Unifying the Upper Limits of the Least Limiting Water Range Using Soil and Plant Properties. Plant Soil 2010, 334, 221–234. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Sewelam, N.; Oshima, Y.; Mitsuda, N.; Ohme-Takagi, M. A Step towards Understanding Plant Responses to Multiple Environmental Stresses: A Genome-Wide Study. Plant Cell Environ. 2014, 37, 2024–2035. [Google Scholar] [CrossRef]
- Nguyen, D.; Rieu, I.; Mariani, C.; van Dam, N.M. How Plants Handle Multiple Stresses: Hormonal Interactions Underlying Responses to Abiotic Stress and Insect Herbivory. Plant Mol. Biol. 2016, 91, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Grigorova, B.; Vaseva, I.; Demirevska, K.; Feller, U. Combined Drought and Heat Stress in Wheat: Changes in Some Heat Shock Proteins. Biol. Plant. 2011, 55, 105–111. [Google Scholar] [CrossRef]
- Prasch, C.M.; Sonnewald, U. Signaling Events in Plants: Stress Factors in Combination Change the Picture. Environ. Exp. Bot. 2015, 114, 4–14. [Google Scholar] [CrossRef]
- Yin, X.; Struik, P.C. C3 and C4 Photosynthesis Models: An Overview from the Perspective of Crop Modelling. NJAS-Wagen. J. Life Sci. 2009, 57, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of Soil Aeration on Root Morphology and Photosynthetic Characteristics of Potted Tomato Plants (Solanum Lycopersicum) at Different NaCl Salinity Levels. BMC Plant Biol. 2019, 19, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.; Arata, A.F.; Lázaro, L.; Stenglein, S.A.; Dinolfo, M.I. Effects of Waterlogging Stress on Plant-Pathogen Interaction between Fusarium Poae and Wheat/ Barley. Acta Sci. Agron. 2019, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhen, B.; Li, H.; Niu, Q.; Qiu, H.; Tian, G.; Lu, H.; Zhou, X. Effects of Combined High Temperature and Waterlogging Stress at Booting Stage on Root Anatomy of Rice (Oryza sativa L.). Water 2020, 12, 2524. [Google Scholar] [CrossRef]
- Marti, J.; Savin, R.; Slafer, G.A. Wheat Yield as Affected by Length of Exposure to Waterlogging During Stem Elongation. J. Agron. Crop Sci. 2015, 201, 473–486. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Li, X.; Fan, X.; Dong, S.; Liu, P.; Zhao, B. Effects of Waterlogging on the Yield and Growth of Summer Maize under Field Conditions. Can. J. Plant Sci. 2014, 94, 23–31. [Google Scholar] [CrossRef]
- Colmer, T.D.; Atwell, B.J.; Ismail, A.M.; Pedersen, O.; Shabala, S.; Sorrell, B.; Voesenek, L.A.C.J. Chapter 18: Waterlogging and Submergence. In Plants in Action. Available online: https://www.rseco.org/index.html (accessed on 30 June 2022).
- Dickin, E.; Wright, D. The Effects of Winter Waterlogging and Summer Drought on the Growth and Yield of Winter Wheat (Triticum aestivum L.). Eur. J. Agron. 2008, 28, 234–244. [Google Scholar] [CrossRef]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Striker, G.G. Waterlogging Differentially Affects Yield and Its Components in Wheat, Barley, Rapeseed and Field Pea Depending on the Timing of Occurrence. J. Agron. Crop Sci. 2020, 206, 363–375. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Z.; Zhang, W.; Meng, Z.; Chang, X.; Lv, M. Effect of Waterlogging Duration at Different Growth Stages on the Growth, Yield and Quality of Cotton. PLoS ONE 2017, 12, e0169029. [Google Scholar] [CrossRef] [Green Version]
- Zurweller, B.A.; Motavalli, P.P.; Nelson, K.A.; Dudenhoeffer, C.J. Short-Term Soil Nitrous Oxide Emissions as Affected by Enhanced Efficiency Nitrogen Fertilizers and Temporarily Waterlogged Conditions. J. Agric. Sci. 2015, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Rawnsley, R.P.; Smith, A.P.; Christie, K.M.; Harrison, M.T.; Eckard, R.J. Current and Future Direction of Nitrogen Fertiliser Use in Australian Grazing Systems. Crop Pasture Sci. 2019, 70, 1034–1043. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Setter, T.L.; Schortemeyer, M. Short-Term Waterlogging Has Long-Term Effects on the Growth and Physiology of Wheat. New Phytol. 2002, 153, 225–236. [Google Scholar] [CrossRef]
- Kaur, G.; Zurweller, B.A.; Nelson, K.A.; Motavalli, P.P.; Dudenhoeffer, C.J. Soil Waterlogging and Nitrogen Fertilizer Management Effects on Corn and Soybean Yields. Agron. J. 2017, 109, 97–106. [Google Scholar] [CrossRef]
- Ciancio, N.; Miralles, D.J.; Striker, G.G.; Abeledo, L.G. Plant Growth Rate after, and Not during, Waterlogging Better Correlates to Yield Responses in Wheat and Barley. J. Agron. Crop Sci. 2021, 207, 304–316. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Xu, S.; Dai, J.; Li, W.; Li, Z.; Zhang, D.; Cui, Z.; Li, C.; Dong, H. Nitric Oxide Reduces the Yield Loss of Waterlogged Cotton by Enhancing Post-Stress Compensatory Growth. Field Crop. Res. 2022, 283, 108524. [Google Scholar] [CrossRef]
- Yeung, E.; Bailey-Serres, J.; Sasidharan, R. After The Deluge: Plant Revival Post-Flooding. Trends Plant Sci. 2019, 24, 443–454. [Google Scholar] [CrossRef]
- Jayawardhane, J.; Cochrane, D.W.; Vyas, P.; Bykova, N.V.; Vanlerberghe, G.C.; Igamberdiev, A.U. Roles for Plant Mitochondrial Alternative Oxidase Under Normoxia, Hypoxia, and Reoxygenation Conditions. Front. Plant Sci. 2020, 11, 566. [Google Scholar] [CrossRef]
- León, J.; Castillo, M.C.; Gayubas, B. The Hypoxia–Reoxygenation Stress in Plants. J. Exp. Bot. 2021, 72, 5841–5856. [Google Scholar] [CrossRef]
- Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Slingo, J.M.; Grimes, D.I.F. Design and Optimisation of a Large-Area Process-Based Model for Annual Crops. Agric. Forest Meteorol. 2004, 124, 99–120. [Google Scholar] [CrossRef]
- Harrison, M.T.; Evans, J.R.; Dove, H.; Moore, A.D. Recovery Dynamics of Rainfed Winter Wheat after Livestock Grazing 2. Light Interception, Radiation-Use Efficiency and Dry-Matter Partitioning. Crop Pasture Sci. 2011, 62, 960–971. [Google Scholar] [CrossRef]
- Taylor, C.A.; Harrison, M.T.; Telfer, M.; Eckard, R. Modelled Greenhouse Gas Emissions from Beef Cattle Grazing Irrigated Leucaena in Northern Australia. Anim. Prod. Sci. 2016, 56, 594–604. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Whalley, W.R. Physical Effects of Soil Drying on Roots and Crop Growth. J. Exp. Bot. 2009, 60, 2845–2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logsdon, S. Should Upper Limit of Available Water Be Based on Field Capacity? Agrosyst. Geosci. Environ. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Zhan, H.; Qu, Z.; Huang, Q. Integration of SWAP and MODFLOW-2000 for Modeling Groundwater Dynamics in Shallow Water Table Areas. J. Hydrol. 2012, 412–413, 170–181. [Google Scholar] [CrossRef]
- Xiang, Z.; Bailey, R.T.; Nozari, S.; Husain, Z.; Kisekka, I.; Sharda, V.; Gowda, P. DSSAT-MODFLOW: A New Modeling Framework for Exploring Groundwater Conservation Strategies in Irrigated Areas. Agric. Water Manag. 2020, 232, 106033. [Google Scholar] [CrossRef]
- De Jong van Lier, Q. Field Capacity, a Valid Upper Limit of Crop Available Water? Agric. Water Manag. 2017, 193, 214–220. [Google Scholar] [CrossRef]
- De Lima, R.P.; Tormena, C.A.; Figueiredo, G.C.; da Silva, A.R.; Rolim, M.M. Least Limiting Water and Matric Potential Ranges of Agricultural Soils with Calculated Physical Restriction Thresholds. Agric. Water Manag. 2020, 240, 106299. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Huth, N.I.; Bristow, K.L.; Verburg, K. SWIM3: Model Use, Calibration, And Validation. Trans. ASABE 2012, 55, 1303–1313. [Google Scholar] [CrossRef]
- Paydar, Z.; Huth, N.; Snow, V. Modelling Irrigated Eucalyptus for Salinity Control on Shallow Watertables. Aust. J. Soil Res. 2005, 43, 587–597. [Google Scholar] [CrossRef]
- Robertson, F.; Suraweera, D.; McCaskill, M.; Christy, B.; Armstrong, R.; Zollinger, R.; Byron, J.; Partington, D.; Clark, S. Waterlogging Effects on Soils and Wheat Crops in the High Rainfall Zone of Victoria. In Proceedings of the 19th Australian Agronomy Conference, Wagga Wagga, Australia, 25–29 August 2019. [Google Scholar]
- Huck, M.G. Variation in Taproot Elongation Rate as Influenced by Composition of the Soil Air. Agron. J. 1970, 62, 815–818. [Google Scholar] [CrossRef]
- Boru, G.; Vantoai, T.; Alves, J.; Hua, D.; Knee, M. Responses of Soybean to Oxygen Deficiency and Elevated Root-Zone Carbon Dioxide Concentration. Ann. Bot. 2003, 91, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Colmer, T.D.; Pedersen, O.; Nakazono, M. Regulation of Root Traits for Internal Aeration and Tolerance to Soil Waterlogging-Flooding Stress. Plant Physiol. 2018, 176, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
Model | Aeration Stress Equations | Aeration Stress and Crop Growth | Processes and Variables Impacted | Source |
---|---|---|---|---|
APSIM Version 7.5, R3008 (Wheat) | θ—actual soil water content θsat—θ at saturation θdul—θ at the drained upper limit. | Aeration stress is used to derive an aeration stress factor (AeSF) which is based on crop sensitivity to aeration stress that varies by growth stage and a fitting parameter. AeSF reduces root depth if AeSF < 0.6, after 3 days. The rates of photosynthesis, leaf area development and tiller are reduced according to the proportion of the affected root system. The AeSF affecting leaf area growth is based on the plant growth stage. AeSF adjusts biomass growth by a stress factor calculated as the most limiting of temperature, nitrogen, phosphorus and aeration stress factors. | Root growth Leaf area Biomass Photosynthesis | [37,38], Available online: www.apsim.info (accessed on 24 May 2022) |
AquaCrop Version 6.1 | Ksaer varies linearly between 1 (at the anaerobiosis point, θair) and 0 (at soil saturation point θsat) | Waterlogging coefficient (Ksaer) is used to adjust transpiration (Tr). Other factors used together with Ksaer in the adjustment of Tr are temperature stress, canopy cover, reference grass evapotranspiration and a factor that integrates all the effects of characteristics that distinguish the crop transpiration from the grass reference surface and is adjusted for ageing and senescence effects. | Transpiration | [39,44,45] |
DRAINMOD Version 6.1 | Y—‘unstressed’ yield Yi—yield under stress xi is the water table depth on day i | A stress day index (SDI) is used to adjust yield and is calculated as a function of excess water in the top 30 cm soil and a crop susceptibility factor for excessive wet conditions (CSwi,). The overall relative yield is the product of all relative yields for each stress considered. | Yield | [40,46] |
DSSAT Version 4.5 | pormin—minimum pore space required for optimal growth | Excess water stress factor (swexf) is applied in the adjustment of the root length density which is used in the calculation of root water uptake. swexf also influences the N-fixation rate. | Root growth Root water uptake N-fixation | [47] |
EPIC Version 0810 | θ—the water content PO—porosity CAF—the critical aeration factor for crop j. | Aeration stress factor (AeSF) is used in the determination of the crop growth constraint (REG) which is the most limiting of five stresses (water, temperature, nitrogen, phosphorus and aeration stress). REG is used to adjust biomass and leaf area index. | Biomass Leaf area index (LAI) | [48] |
SWAP Version 4 | αrw = f(soil water pressure head, h) αrw takes a form similar to the aeration stress coefficient in AquaCrop and APSIM, where h2 (anaerobiosis point) < h1. | Approach 1: Reduction factor for wet conditions αrw is used in the calculation of root water uptake which is a function of the reduction factors for excessive conditions (‘wet’, ‘dry’, ‘saline’ and ‘cold’) and potential root water uptake. Using the Feddes function, αrw (=actual/potential water uptake) is scaled between two pressure heads, h2 and h1. (h2—at optimum water uptake and h1 at zero uptake). Root water uptake decreases linearly between h2 and h1 due to aeration stress. | Root water uptake | [36,49,50] |
Φgas-min—minimum gas filled porosity of the soil at which oxygen stress occurs based on plant physiological and soil physical processes. | Approach 2: Oxygen stress linked to Feddes function Φgas-min is determined by adjusting soil gas filled porosity until oxygen diffusion at the macro-scale equals that at the micro-scale. Root water uptake is a function of Φgas-min and is assumed to be proportional to growth respiration. | Root respiration/ water uptake | [49] | |
WOFOST Version 7.2 | (Rox): Rox = 1 − (Nd/4)*(1 − Roxmax) for Nd ≤ 4 Roxmax = (θmax − θ)/(θmax − θair) θair = (∅max − ∅c) θair—the critical soil moisture content for aeration ∅max—the soil porosity θ—the actual soil moisture content ∅c—the critical soil air content Nd—number of successive days with oxygen stress | The oxygen shortage reduction factor Rox is used in the calculation of actual transpiration rate and leaf senescence. The maximum reduction due to oxygen stress is reached after 4 successive days of waterlogging conditions. If there is oxygen deficit on the 5th successive day, the reduction remains the same as on the 4th day. | Transpiration Leaf senescence | [43,51] |
Biomass | Leaf Growth | N Fixation | Photosynthesis | Root Growth/Water Uptake | Transpiration | Yield | |
---|---|---|---|---|---|---|---|
APSIM | X | X | X | X | |||
AquaCrop | X | ||||||
DRAINMOD | X | ||||||
DSSAT | X | X | |||||
EPIC | X | X | |||||
SWAP | X | ||||||
WOFOST | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Githui, F.; Beverly, C.; Aiad, M.; McCaskill, M.; Liu, K.; Harrison, M.T. Modelling Waterlogging Impacts on Crop Growth: A Review of Aeration Stress Definition in Crop Models and Sensitivity Analysis of APSIM. Int. J. Plant Biol. 2022, 13, 180-200. https://doi.org/10.3390/ijpb13030017
Githui F, Beverly C, Aiad M, McCaskill M, Liu K, Harrison MT. Modelling Waterlogging Impacts on Crop Growth: A Review of Aeration Stress Definition in Crop Models and Sensitivity Analysis of APSIM. International Journal of Plant Biology. 2022; 13(3):180-200. https://doi.org/10.3390/ijpb13030017
Chicago/Turabian StyleGithui, Faith, Craig Beverly, Misbah Aiad, Malcolm McCaskill, Ke Liu, and Matthew Tom Harrison. 2022. "Modelling Waterlogging Impacts on Crop Growth: A Review of Aeration Stress Definition in Crop Models and Sensitivity Analysis of APSIM" International Journal of Plant Biology 13, no. 3: 180-200. https://doi.org/10.3390/ijpb13030017
APA StyleGithui, F., Beverly, C., Aiad, M., McCaskill, M., Liu, K., & Harrison, M. T. (2022). Modelling Waterlogging Impacts on Crop Growth: A Review of Aeration Stress Definition in Crop Models and Sensitivity Analysis of APSIM. International Journal of Plant Biology, 13(3), 180-200. https://doi.org/10.3390/ijpb13030017