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Abstract: The discovery of bioactive compounds for non-invasive therapy has been the goal of
research groups focused on pharmacotherapy. Phytonutrients have always been attractive for
researchers because they are a significant source of bioactive phytochemicals. Still, it is challenging to
determine which components show high biomedical activity and bioavailability after administration.
However, based on the chemical structure of these phytochemicals, their physicochemical properties
can be calculated to predict the probability of gastrointestinal (GI) absorption after oral administration.
Indeed, different researchers have proposed several rules (e.g., Lipinski’s, Veber’s, Ghose’s, and
Muegge’s rules) to attain these predictions, but only for synthetic compounds. Most phytochemicals
do not fully comply with these rules even though they show high bioactivity and high GI absorption
experimentally. Here, we propose a detailed methodology using scientifically validated web-based
platforms to determine the physicochemical properties of five phytochemicals found in ginger,
echinacea, and tobacco. Furthermore, we analyzed the calculated data and established a protocol
based on the integration of these classical rules, plus other extended parameters, that we called the
Phytochemical Rule, to obtain a more reliable prediction of the GI absorption of natural compounds.
This methodology can help evaluate bioactive phytochemicals as potential drug candidates and
predict their oral bioavailability in patients.

Keywords: physicochemical properties; gastrointestinal absorption; Lipinski’s rules; Veber’s rules;
Ghose’s rules; Muegge’s rules; phytochemicals

1. Introduction

The physicochemical properties of a drug candidate can be used to understand and
predict its physiological absorption and, therefore, determine the chances of having a
biological effect after oral consumption [1]. These properties can be theoretically calculated
to improve and facilitate the drug design process. Also, they can help us create guidelines
to understand the behavior of our drug candidates in a biological environment such
as the gastrointestinal (GI) tract. We can identify potential orally absorbable and non-
absorbable bioactive compounds using these guidelines. Several researchers have created
different pharmacokinetic rules to aid in predicting whether a compound is likely to
be absorbed and is readily permeable to the GI tract. Among these classical rules is
Lipinski’s rule of five (L-Ro5), Ghose filter (GF), Veber’s rule (VR), and Muegge’s rule
(MR). These rules are mainly focused on lipophilicity, electronic distribution, hydrogen
bonding, molecule size, and structural flexibility. Since their creation, up to the present,
these rules have helped predict the absorption of molecules in the GI tract and define
compound drug-likeness. A typical drug-like synthetic compound is a molecule that falls
into the proposed ranges of these rules. Pharmaceutical companies have made wide use of
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these theoretical rules to create groups of active molecules with favorable physicochemical
properties to develop novel drugs [2]. Based on these rules, a large number of active
synthetic and natural compounds are rejected because they fall out of the established ranges.
However, these rules (the selected physicochemical properties and molecular ranges of the
compounds) were established to evaluate only synthetic compounds. Nevertheless, there
is little knowledge regarding rules specific to predicting the GI absorption of compounds
derived from plants. In this area, we found studies that incorporate the additional property
of molecular complexity (Cm) [3] and the extension of specific ranges to the previously
proposed classical rules [4].

Plants rich in phytochemicals have been used for centuries in traditional medicine.
Because of their well-known bioactivity, there is continuous study within evidence-based
medicine of the chemical compositions and biological activity of plants and their phyto-
chemicals (as isolated bioactive compounds) [5]. Phytochemicals are divided into several
categories based on their structural features i.e., phenolics, terpenoids, alkaloids, and
organosulfur compounds [6]. This review article systematically analyzes five phytochemi-
cals found within three plants: echinacea, ginger, and tobacco. We selected phytochemicals
from echinacea and ginger due to the recent increase in their consumption to strengthen the
immune system as we face the COVID-19 pandemic [7,8]. On the other hand, we selected
tobacco phytochemicals due to the well-known functions of its bioactive phytochemicals,
such as nicotine [9] and cembranoids [10], which can have very different biological ac-
tivities, yet are found within the same plant. In addition, we included in our analyses a
well-known natural compound as theoretical control (ascorbic acid (vitamin C)) to compare
and validate our methodology and GI absorption predictions for natural products.

Our previous review article [6], explained the biomedical effect of phytochemicals in
several plants. From this article, we understood that the ranges for these theoretical rules
did not consider phytochemicals, which could exclude their study in drug discovery. The
objective of this systematic review is to clearly explain our methodology using the scientifi-
cally validated web-based platforms PubChem, SwissADME, and ChemSpider-ACD/Labs.
To validate the calculations from these platforms, we include published experimental val-
ues for the lipophilicity (LogP) of each phytochemical. We propose inclusion of the Cm
property and increasing the ranges of the classical rules to develop the best approximation
of GI absorption prediction for natural products. Thus, this study combines the knowledge
of several established properties and ranges [3,4], to make a final prediction, which we
named the Phytochemical Rule (PR) to study natural compounds in drug discovery.

It is important to mention that obtaining these calculations is free of charge, and the
theoretical and experimental information was acquired from trusted scientific platforms
(PubMed, SwissADME, ChemSpider). The presented data and methodology can be in-
strumental in evaluating bioactive natural compounds as potential drug candidates and
predicting their bioavailability in patients. As important as these data are, obtaining them
is relatively fast and can be readily done at the initial stages of drug discovery assessment.

2. The Classical Rules and the Phytochemical Rule (PR)

L-Ro5 is the main set of rules created to predict the drug-likeness of small synthetic
compounds. This rule states that poor absorption and permeation are more likely when the
molecular weight (MW) is over 500 Da, lipophilicity (LogP) and hydrogen-bond donors
(HBD) are more than five, and there are more than ten hydrogen-bond acceptors (HBA) [11].
The authors concluded that the selected ranges for these properties were delimited based
on synthetic compounds, but they never claim that these properties can only be used for
synthetic compounds. Later, Lipinski understood that the range limits in his rules must be
different to evaluate natural compounds [12]. After his conclusion, several research groups
have worked to include other properties and adjust the ranges to study small natural
compounds. The Ghose filter (GF) attempts to improve prediction by stating that high
absorption is likely with the following criteria: MW of 160 to 480 Da, a LogP of −0.4 to
5.6, a molar refractivity (A, cm3) of 40 to 130, and a total number of atoms (TNA) of 20 to
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70 [13]. Veber’s rule (VR) further increases the criteria for bioavailability with less than ten
rotatable bonds (RB) and a polar surface area (PSA, Å2 ) no greater than 140 [14]. Muegge’s
rule extends the ranges of several properties and included other parameters to differentiate
between drug-like and nondrug-like compounds by stricter rules. These are: MW 200–600,
LogP from −2 to 5, PSA ≤ 150, number of rings (NR) ≤ 7, number of carbons (NC) > 4,
number of heteroatoms (NH) > 1, RB ≤ 15, HBD ≤ 5, HBA ≤ 10 [15].

Lipophilicity (LogP) is one of the most important properties of all these rules, defined
as the partition coefficient ratio of a compound between the hydrophobic and hydrophilic
phases [16]. Other researchers have proposed that the lipophilicity of the ionizable groups
at pH 7.4, called LogD, is much more critical for physiological absorption [17]. However,
recent literature has shown that the determination of LogD is not easy because the cal-
culated pKa and hence, LogD values are, in some cases, very different from those found
experimentally [18]. Consequently, we have included LogD values, but they will not be
used for predictions.

The other properties in these rules mainly focus on the molecules’ interactions with
themselves, the solvent, and additional molecules around. On the other hand, the molecular
complexity (Cm) is another property considered important to predict GI absorption that is
a rough estimate of how complicated the structure is, seen from the point of view of both
the elements contained and the displayed structural features, including symmetry [19].
In general, larger compounds display greater complexity than smaller ones, but large
symmetrical compounds and large compounds with low diversity of atoms are considered
less complex. A recent study has investigated whether Cm can be a useful property in
medicinal chemistry by calculating Cm values for approved drugs of different major classes
of synthetic and natural antibiotics. The results demonstrate that a Cm of 100–900 had
favorable outcomes for absorption and permeation for synthetic and natural compounds [3].

Interestingly, other researchers, in studying hundreds of clinical orally administered
drugs, concluded that a larger LogP, MW, PSA, and HBA could be allowed, especially in
natural products. Stratton et al. showed that some structural features and properties in syn-
thetic products could be successfully extrapolated into natural products but display greater
chemical diversity and flexibility [20]. Croy et al., argued that to be an orally-bioavailable
compound (synthetic or natural), these properties need to be balanced depending on its
chemical features [4]. Thus, they studied these classical rules (L-Ro5, GF, VR, MR) in
natural compounds, and, after their analysis, proposed to increase the ranges of these
properties to effectively apply them to natural compounds. The ranges from this study
are: MW ≤ 800 Da, TNA ≤ 80, −2 ≤ LogP ≤ 7, HB ≤ 6, HBA ≤ 15, PSA ≤ 250 Å2, and
RB ≤ 20.

Based on these studies that used natural compounds, we developed the Phytochemical
Rule (PR) that includes the Cm property and the extension of the ranges for LogP, MW, PSA,
and HBA to predict the drug-likeness by GI absorption of phytochemicals. It is also impor-
tant to mention that the predictions of all these rules are established on molecules passively
transported into the cells. Thus, L-Ro5, GF, VR, MR, Cm, and ER do not consider actively
transported substrates by biological transporters (e.g., endocytosis) [21]. Furthermore, we
evaluated the phytochemicals from these plants as isolated compounds because the GI
absorption of phytonutrient extracts needs the evaluation of additional effects. For example,
the synergistic effect between the different metabolites in the extract that influences the
phytochemicals’ absorption [22], and the formation of emulsions/suspensions in aqueous
plant extracts also affects the absorption after oral administration [23].

For this work, we obtained the values for the molecular formula, the molecular
structure, MW (Da), TNA, HBA, HBD, RB, LogP, LogD, Cm, PSA, and A for the theoreti-
cal predictions, using the web-based platforms PubChem, ChemSpider/ACD Labs, and
SwissADME.
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3. Methodology
3.1. Data Source Platform: PubChem

The primary data source was obtained from PubChem (https://pubchem.ncbi.nlm.
nih.gov; accessed on 10 February 2022). First, the name of each phytochemical was typed
into the database’s search engine. Then, the program calculated and provided the values of
different physicochemical properties of the searched compound (Figure 1).

i. Search for the common compound name on the PubChem engine.
ii. This engine will provide the structure, molecular formula, molecular weight, LogP,

HBD, HBA, RB, PSA, A and Cm of the chosen compound. We included these parame-
ters in Tables 1 and 2 for each phytochemical.

iii. To determine the total number of atoms (TNA) for each compound, we manually
added the number of atoms in the molecular formula.
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Table 1. Structural and physicochemical properties of the main phytochemicals in echinacea, tobacco,
and ginger.

Name/
Category Structure/Molecular Formula MW (Da) TNA/HBA/HBD/RB A (cm3) PSA (Å2) Cm

Echinacea

Cichoric acid
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Table 1. Cont.

Name/
Category Structure/Molecular Formula MW (Da) TNA/HBA/HBD/RB A (cm3) PSA (Å2) Cm
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Table 1. Cont.

Name/
Category Structure/Molecular Formula MW (Da) TNA/HBA/HBD/RB A (cm3) PSA (Å2) Cm
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Table 1. Cont.

Name/
Category Structure/Molecular Formula MW (Da) TNA/HBA/HBD/RB A (cm3) PSA (Å2) Cm
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6-Gingerol
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Table 1. Cont.

Name/
Category Structure/Molecular Formula MW (Da) TNA/HBA/HBD/RB A (cm3) PSA (Å2) Cm
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Table 2. Cont.

Name LogP %/$/&/@ LogD *

Ginger

6-Gingerol 2.5/2.48/3.13/2.44 2.88

6-Shogaol 3.70/3.85/3.76/3.78 4.15

6-Dehydro
gingerdione 4.20/3.05/3.45/ND 3.17

Zingiberene 5.20/6.60/4.47/ND 5.63

α-Curcumene 5.40/6.22/4.86/5.76 5.20

Control

Ascorbic acid −1.6/−2.41/−1.28/−1.85 −4.99
LogP: lipophilicity; LogD: lipophilicity considering ionizable groups at pH 7.4; Cm: molecular complexity;
ND: not determined. %/$/&/@ determined using PubChem/ChemSpider-ACDLabs/Consensus LogP from
SwissADME/Experimental LogP from ChemSpider. * determined using ChemSpider.

3.2. Data Source Platform: SwissADME

Our second data source was SwissADME (http://www.swissadme.ch/index.php/;
accessed on 13 February 2022). This database requires the input of the Simplified Molec-
ular Input Line System (SMILES) of the compound of interest, which is a chemical nota-
tion that allows a user to represent a chemical structure in a way that the computer can
use. This notation allows the computation of physicochemical descriptors and predicts
small-molecule pharmacokinetics and drug-likeliness to support drug discovery [24]. The
program provides the results of several physicochemical properties and pharmacokinetics
of the searched compound (Figure 2).

i. Search for the common compound name on the PubChem engine.
ii. Identify the Canonical SMILES in the category of Computed Descriptors.
iii. Go to the SwissADME program and write the SMILES (from PubChem) in the space

indicating “Enter a list of SMILES here” and click “Run.”
iv. This program will provide the user with the compound’s RB, HBD, HBA, A, PSA, Con-

sensus LogP, GI absorption, blood-brain barrier (BBB) permeability, and P-glycoprotein
(P-gp) substrate. The values of these parameters are shown in Tables 1–3.

Table 3. Pharmacokinetics of the main bioactive compounds of the selected plants from the Swis-
sADME database.

Name BBB Permeant P-gp Substrate GI Absorption

Echinacea

Cichoric acid No Yes Low

Caftaric acid No No Low

Quercetin-3-O-rutinoside No Yes Low

Echinacoside No No Low

Caffeic acid No No High

Tobacco

Anethole Yes No High

Nicotine Yes No High

Menadione Yes No High

Chlorogenic acid No No Low

http://www.swissadme.ch/index.php/
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Table 3. Cont.

Name BBB Permeant P-gp Substrate GI Absorption

Cembra-2,7,11-triene-4,6-diol Yes No High

Ginger

6-Gingerol Yes No High

6-Shogaol Yes No High

6-Dehydro
gingerdione Yes No High

Zingiberene No No Low

α-Curcumene No No Low

Control

Ascorbic acid No No High
BBB permeant: blood-brain barrier permeant; Pgp substrate: P-glycoprotein substrate; GI absorption: gastroin-
testinal absorption predicted by the program for synthetic compounds using the BOILED-Egg algorithm model.
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Figure 2. SwissADME results on ascorbic acid properties. We selected RB, HBD, HBA, A, PSA,
Consensus LogP, GI absorption, BBB permeant, and P-gp substrate from these values included in
Tables 1–3. They can be calculated following the instructions above using the data source Swis-
sADME (http://www.swissadme.ch/index.php/; Swiss Institute of Bioinformatics; accessed on 13
February 2022).
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3.3. Data Source Platform: ChemSpider

Another data source used to obtain phytochemical’s parameters was ChemSpider
(http://www.chemspider.com; accessed on 15 February 2022). First, the name of each
phytochemical was typed into the search engine of the database. Then, the program
provides results for the values of different physicochemical properties (Figure 3).

i. Search for the common compound name on the ChemSpider engine.
ii. Click on the “Properties” Table
iii. Click on the “Predicted—ACD/Labs” sub-tab.
iv. Look for the parameters ACD/LogP, ACD/LogD(pH 7.4), HBA, HBD, RB, PSA. We

included these parameters in Tables 1 and 2 for each phytochemical.
Int. J. Plant Biol. 2022, 13, FOR PEER REVIEW 12 
 

 

 
Figure 3. ChemSpider results on ascorbic acid properties. From these values, we selected the LogP 
(ACD/LogP) and ACD/LogD7.4, RB, HBD, HBA, A, PSA included in Tables 1 and 2. These values 
were found following the instructions mentioned above in ChemSpider’s data source 
(http://www.chemspider.com; Royal Society of Chemistry; accessed on 15 February 2022). 

4. Results and Discussion 
4.1. Determination of Physicochemical Properties 

We calculated and analyzed the physicochemical properties of each phytochemical 
as an isolated compound. Tables 1–3 summarize the most important parameters that com-
pose the physicochemical properties of these natural compounds. It is important to men-
tion that most of these calculations from the different platforms may have only minor 
variations (<±0.5) for the same property. For this reason, in Table 1 we grouped the prop-
erties with equal or similar values across the platforms. These properties are mostly fo-
cused on the structural features (common compound name, phytochemical category, 
structure, molecular formula, MW, TNA, HBA, HBD, RB, PSA, Cm) for the selected 
plants’ top five bioactive compounds. Of these 15 phytochemicals, 11 are phenolics (big-
gest phytochemical category), 3 are terpenoids, 1 is an alkaloid, and MW is ~140–790 Da. 
In contrast, we found major differences (~±1) in some of the calculated LogP from Pub-
Chem, ChemSpider, and SwissADME, primarily due to differences in the algorithms 
used. Considering these variabilities, Table 2 includes all the lipophilic properties (LogP’s 
and LogD’s) from the three platforms and the available experimental LogP for the selected 
phytochemicals from ginger, tobacco, and echinacea. As we mentioned before, LogD val-
ues were added as supplementary information but were not used for further predictions. 
The experimental LogP was not available for menadione, cembra-2,7,11-triene-4,6-diol, 
zingiberene, and 6-dehydrogingerdione. From the LogP comparison, Consensus LogP 
(SwissADME) showed more similarities (~<1) among the phytochemicals with the exper-
imental LogP. Of all the phytochemicals, nicotine showed the most variability in the ex-
perimental LogP within the platforms. The most significant limitation for the theoretical 

Figure 3. ChemSpider results on ascorbic acid properties. From these values, we selected the
LogP (ACD/LogP) and ACD/LogD7.4, RB, HBD, HBA, A, PSA included in Tables 1 and 2. These
values were found following the instructions mentioned above in ChemSpider’s data source (http:
//www.chemspider.com; Royal Society of Chemistry; accessed on 15 February 2022).

4. Results and Discussion
4.1. Determination of Physicochemical Properties

We calculated and analyzed the physicochemical properties of each phytochemical as
an isolated compound. Tables 1–3 summarize the most important parameters that compose
the physicochemical properties of these natural compounds. It is important to mention that
most of these calculations from the different platforms may have only minor variations
(<±0.5) for the same property. For this reason, in Table 1 we grouped the properties
with equal or similar values across the platforms. These properties are mostly focused
on the structural features (common compound name, phytochemical category, structure,
molecular formula, MW, TNA, HBA, HBD, RB, PSA, Cm) for the selected plants’ top five
bioactive compounds. Of these 15 phytochemicals, 11 are phenolics (biggest phytochemical
category), 3 are terpenoids, 1 is an alkaloid, and MW is ~140–790 Da. In contrast, we

http://www.chemspider.com
http://www.chemspider.com
http://www.chemspider.com
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found major differences (~±1) in some of the calculated LogP from PubChem, ChemSpider,
and SwissADME, primarily due to differences in the algorithms used. Considering these
variabilities, Table 2 includes all the lipophilic properties (LogP’s and LogD’s) from the
three platforms and the available experimental LogP for the selected phytochemicals from
ginger, tobacco, and echinacea. As we mentioned before, LogD values were added as
supplementary information but were not used for further predictions. The experimental
LogP was not available for menadione, cembra-2,7,11-triene-4,6-diol, zingiberene, and 6-
dehydrogingerdione. From the LogP comparison, Consensus LogP (SwissADME) showed
more similarities (~<1) among the phytochemicals with the experimental LogP. Of all the
phytochemicals, nicotine showed the most variability in the experimental LogP within the
platforms. The most significant limitation for the theoretical calculation of LogP is when the
molecule structure has a combined low MW, high polarity, and high acidic properties [25]
From these tables, we also want to show that different phytochemicals from the plant
and/or from the same phytochemical category can exhibit very diverse physicochemical
properties.

In addition to the properties in the classical rules (L-Ro5, GF, VR, MR), in Table 3, we
included the theoretical calculations for blood-brain barrier (BBB) permeation, targeting the
P-glycoprotein (P-gp), and GI absorption determined by SwissADME. The P-gp transporter
is expressed in the intestinal epithelium and cancer cells, decreasing cellular uptake of
its substrates [26]. This property is also important to study cancer because P-gp is the
key efflux pump of chemotherapeutic drugs and the inductor of chemoresistance [27].
Furthermore, the permeability of a drug to the BBB is significant for laboratories working
on brain therapies because brain-targeted drugs must have the capacity to cross this barrier
to target neurological disorders of the central nervous system. Interestingly, SwissADME
predicts that ascorbic acid is highly absorbable even when it shows violations of the
classical rules. This program mainly adjusts the GI absorption using the BOILED-Egg
algorithm model [28]. This model makes predictions by constructing two ellipses using the
coordinates of only two properties: PSA (0–142.1 Å2) and LogP (−2.3–6.8).

4.2. Prediction of GI Absorption for Phytochemicals Using the Phytochemical Rule (PR)

Considering the values of the physicochemical properties determined and summarized
in previous tables, we identified in Table 4 any violation of the classical rules, L-Ro5, VR,
GF, and MR. Because these rules mainly apply to the study of synthetic compounds, we
included in Table 4 the proposed PR that includes the Cm and the extension of the ranges
in the classical rules. SwissADME also predicts the probability of being absorbed through
the GI, as we showed in Table 3. However, this program was also developed for synthetic
compounds. In Table 4, we used the following ranges for these rules:

a. L-Ro5: HBD ≤ 5, HBA ≤ 10, MW ≤ 500, logP ≤ 5 [11];
b. GF: −0.4 ≤ logP ≤ 5.6, A (40–130), MW (160–480), TNA (20–70) [13];
c. VR: RB ≤ 10, PSA ≤ 140 [14];
d. MR: MW (200–600), −2 ≤ logP ≤ 5, PSA ≤ 150, NR ≤ 7, NC> 4, NH > 1, RB ≤ 15,

HBD ≤ 5, HBA ≤ 10 [15];
e. PR: MW ≤ 800 Da, TNA ≤ 80, −2 ≤ LogP ≤ 7, HBD ≤ 6, HBA ≤ 15, PSA ≤ 250 Å2,

RB ≤ 20 [4], and 100 ≤ Cm ≤ 900 [3].

Violations of these rules affect GI absorption. The GI predictions for phytochemicals
were manually determined by the combination of all the rules above as follows: High: The
compound fully complies with all the rules or has up to 3 violations in the L-Ro5, GF, VR,
or MR, covered by the PR.; Medium: The compound fully complies with the PR but has
>3 violations to any of the other rules. Low: The compound does not comply with the PR,
and, therefore, neither with the other rules.
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Table 4. Combination of the classical rules and the PR to predict the drug-likeness and GI absorption of phytochemicals.

Name L-Ro5 GF VR MR PR
Predicted GI Absorption #

Phytochemical Plant

Caffeic acid 4 4 4 1/MW < 200 4 High

Echinacea
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6-Shogaol 4 4 4 4 4 High

6-Dehydrogingerdione 4 4 4 4 4 High

Zingiberene 4 4 4 1/NH < 2 4 High

α-Curcumene 4 4 4 1/NH < 2 4 High

Ascorbic acid 4 2/LogP < −0.4
A < 40 4 1/MW < 200 4 High

L-Ro5: Lipinski’s rule of five; GF: Ghose filter; VR: Veber’s rule; MR: Muegge’s rule; ER: extended rules; Cm: molecular complexity; LogP: Consensus LogP (lipophilicity); A: molar
refractivity; HBD: hydrogen bond donors, HBA: hydrogen bond acceptors; RB: rotatable bonds; PSA: polar surface area; TNA: total number of atoms; NR: number of rings; NH: number
of heteroatoms; NC: number of carbons; GI: gastrointestinal. 4: complies with all the rules. L-Ro5: HBD ≤ 5, HBA ≤ 10, MW ≤ 500, logP ≤ 5; GF: logP (−0.4–5.6), A (40–130), MW
(160–480), TNA (20–70); VR: RB ≤ 10, PSA ≤ 140; MR: MW (200–600), logP (−2–5), PSA ≤ 150, NR ≤ 7, NC > 4, NH > 1, RB ≤ 15, HBD ≤ 5, HBA ≤ 10; PR: MW ≤ 800 Da, TNA ≤ 80,
LogP (−2–7), Cm (100–900), HBD ≤ 6, HBA ≤ 15, PSA ≤ 250 Å2, and RB ≤ 20. # The GI predictions of phytochemicals were manually determined as follows: High: ≤3 violations
covered by the PR; Medium: >3 violations covered by the PR; Low: any violation to the PR.
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We want to clarify that the graphs shown in the right panel of Table 4 summarize the
GI results for each plant (in %) based on the PR of the 5 analyzed isolated phytochemicals
from the same plant (e.g., if all 5 phytochemicals of the specific plant have high GI, then
100% are “high”). These graphs do not consider the synergism for the GI absorption of
the whole phytonutrient (e.g., any whole plant preparation for consumption as a solid or
liquid extract). On the other hand, phytochemicals with predicted low absorption could
still be interesting to study in phytonutrient extracts where the synergistic effect could
increase their GI absorption. In addition, we must always take into account that these rules
do not consider the active transport of molecules [21]. We consider these as the limitations
of our study.

From echinacea phytochemicals, we predict that only caffeic acid and caftaric acid will
have a high GI absorption with 1 and 3 violations, respectively, and comply with the PR.
Cichoric acid is predicted to have a medium GI absorption because it shows 7 violations,
but it complies with the PR. In contrast, quercetin-3-O-rutinoside and echinacoside are
predicted to have a low GI absorption because they show 16 and 20 violations, respectively,
and show no compliance with the PR. Based on the five analyzed phytochemicals, echinacea
is predicted to show partially (high 40%/medium 40%) GI absorption.

Tobacco has four out of five phytochemicals predicted to have high GI absorption.
These are the following: nicotine and menadione, which have 1 violation; anethole which
has three violations; and cembra-2,7,11-triene-4,6-diol with no violations. Chlorogenic
acid is predicted to have a medium absorption because it shows five violations but still
complies with the PR. As a result, according to these five analyzed phytochemicals, tobacco
is predicted to show mostly high (80%) GI absorption.

In our prediction of ginger’s phytochemicals, all of them (6-gingerol, 6-shogaol,
6-dehydrogingerdione, zingiberene, and α-curcumene) are predicted to have high GI
absorption. Only zingiberene, and α-curcumene showed 1 violation. According to these
five analyzed phytochemicals, ginger is predicted to show a high GI absorption. Moreover,
ascorbic acid, the well-known vitamin C, was analyzed as a theoretical control. Although
vitamin C is an established orally absorbed compound [29], it shows three violations of
2 classical rules, two from GF and one from MR, further supporting our analysis that
natural compounds may have wider ranges than those proposed in the classical rules.
Based on these findings for vitamin C, we expanded the limit to 3 violations to the classical
rules for high absorption while complying to the PR.

Comparing the GI predictions in these 16 phytochemicals, caftaric acid, zingiberene
and α-curcumene are the compounds that show the greatest differences from our predic-
tions (high) vs. the SwissADME (low). For cichoric acid and chlorogenic acid, we predicted
medium absorption while SwisADME, low. In an in vivo study using rats, researchers
found that the caftaric acid was rapidly absorbed from the stomach to the plasma, and
excreted as fertaric acid by the kidneys [30]. We also found in a study with humans that
~ 33% of orally administered chlorogenic acid was absorbed through the GI and found
in the blood circulation [31]. Furthermore, in a study administering ginger oil by oral
gavage in rats, zingiberene (the component at the highest concentration) was absorbed
and detected in serum [32]. For α-curcumene and cichoric acid, we did not find any recent
experimental GI study. On the other hand, it is known that some synthetic drugs for oral
administration also fall out of the ranges of these classical rules. For example, Selpercatinib,
a recently FDA-approved oral drug for lung cancer, has three violations to the classical rules
(1 violation of L-Ro5 and 2 violations of GF) [33]. These results support our methodology
for GI predictions by combining the classical rules with our theoretical calculations using
the PR to evaluate natural compounds as potential drug candidates.

5. Conclusions

This study proposes a detailed methodology using scientifically validated web-based
platforms to determine the physicochemical properties of five phytochemicals found in
ginger, echinacea, and tobacco. Furthermore, we developed a filter called the Phytochemical
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Rule (PR) based on integrating the classical rules with other extended parameters to obtain
a more reliable prediction of the GI absorption of natural compounds. This methodology
can help evaluate bioactive phytochemicals as potential drug candidates. For an initial
analysis of oral bioavailability and drug-likeness of phytochemicals, the PR proved to be
excellent in predicting their drug-relevant properties. Nevertheless, further in vivo and
clinical studies should be conducted to confirm the predicted GI absorption.
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25. Sobańska, A.W.; Robertson, J.; Brzezińska, E. Application of RP-18 TLC Retention Data to the Prediction of the Transdermal
Absorption of Drugs. Pharmaceuticals 2021, 14, 147. [CrossRef] [PubMed]

26. Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411.
[CrossRef]

27. Ughachukwu, P.; Unekwe, P. Efflux pump-mediated resistance in chemotherapy. Ann. Med. Health Sci. Res. 2012, 2, 191–198.
[CrossRef]

28. Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMed-
Chem 2016, 11, 1117–1121. [CrossRef]

29. Lykkesfeldt, J.; Tveden-Nyborg, P. The Pharmacokinetics of Vitamin C. Nutrients 2019, 11, 2412. [CrossRef]
30. Vanzo, A.; Cecotti, R.; Vrhovsek, U.; Torres, A.M.; Mattivi, F.; Passamonti, S. The Fate of trans-Caftaric Acid Administered into the

Rat Stomach. J. Agric. Food Chem. 2007, 55, 1604–1611. [CrossRef]
31. Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic Acid and Caffeic Acid Are Absorbed in Humans 1. J. Nutr. 2001, 131,

66–71. [CrossRef]
32. Jeena, K.; Liju, V.B.; Kuttan, R. A Preliminary 13-Week Oral Toxicity Study of Ginger Oil in Male and Female Wistar Rats. Int. J.

Toxicol. 2011, 30, 662–670. [CrossRef] [PubMed]
33. Pathania, S.; Singh, P.K. Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical

screening parameter in drug designing protocols? Expert Opin. Drug Metab. Toxicol. 2020, 17, 351–354. [CrossRef] [PubMed]

http://doi.org/10.1021/cc9800071
http://www.ncbi.nlm.nih.gov/pubmed/10746014
http://doi.org/10.1021/jm020017n
http://doi.org/10.1021/jm015507e
http://doi.org/10.1021/acs.jmedchem.9b01596
http://doi.org/10.1038/srep01132
http://doi.org/10.1016/j.bmcl.2015.07.014
http://doi.org/10.1038/nchem.1243
http://doi.org/10.1590/0001-3765201920180117
http://www.ncbi.nlm.nih.gov/pubmed/31090789
http://doi.org/10.2217/nnm.10.126
http://www.ncbi.nlm.nih.gov/pubmed/21143036
http://doi.org/10.1038/srep42717
http://doi.org/10.3390/ph14020147
http://www.ncbi.nlm.nih.gov/pubmed/33673150
http://doi.org/10.3389/fphar.2021.618411
http://doi.org/10.4103/2141-9248.105671
http://doi.org/10.1002/cmdc.201600182
http://doi.org/10.3390/nu11102412
http://doi.org/10.1021/jf0626819
http://doi.org/10.1093/jn/131.1.66
http://doi.org/10.1177/1091581811419023
http://www.ncbi.nlm.nih.gov/pubmed/21960667
http://doi.org/10.1080/17425255.2021.1865309
http://www.ncbi.nlm.nih.gov/pubmed/33320017

	Introduction 
	The Classical Rules and the Phytochemical Rule (PR) 
	Methodology 
	Data Source Platform: PubChem 
	Data Source Platform: SwissADME 
	Data Source Platform: ChemSpider 

	Results and Discussion 
	Determination of Physicochemical Properties 
	Prediction of GI Absorption for Phytochemicals Using the Phytochemical Rule (PR) 

	Conclusions 
	References

