Transmission Patterns of Clostridioides difficile in a Non-Epidemic Setting Based on WGS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. CDI Diagnosis
2.3. Transmission Analysis
2.4. Molecular Typing and WGS-Based Analysis
2.4.1. PCR-Ribotyping
2.4.2. Whole Genome Sequencing (WGS)
2.5. Epidemiological Link Determination
2.5.1. Hypotheses
2.5.2. Interpretation of the Epidemiological Link
3. Results
3.1. Population
3.2. PCR-Ribotyping
3.3. Analysis of the Clonal Link between Strains
3.4. Analysis of Transmission Routes
3.5. Analysis of Strains from Recurrences by wgMLST and cgSNP Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawley, W.N.; Knetsch, C.W.; MacCannell, D.R.; Harmanus, C.; Du, T.; Mulvey, M.R.; Paulick, A.; Anderson, L.; Kujiper, E.J.; Wilcox, M.H. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS ONE 2015, 10, e0118150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K.A.; Ashwin, H.; Longshaw, C.M.; Burns, D.A.; Davis, G.L.; Wilcox, M.H.; EUCLID Study Group. Diversity of Clostridium difficile PCR ribotypes in Europe: Results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Eurosurveillance 2016, 21, 30294. [Google Scholar] [CrossRef] [PubMed]
- Gateau, C.; Deboscker, S.; Couturier, J.; Vogel, T.; Schmitt, E.; Muller, J.; Ménard, C.; Turcan, B.; Syed Zaidi, R.; Youssouf, A.; et al. Local outbreak of Clostridioides difficile PCR-Ribotype 018 investigated by multi locus variable number tandem repeat analysis, whole genome multi locus sequence typing and core genome single nucleotide polymorphism typing. Anaerobe 2019, 60, 102087. [Google Scholar] [CrossRef]
- Parkhill, J.; Wren, B.W. Bacterial epidemiology and biology—Lessons from genome sequencing. Genome Biol. 2011, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Köser, C.U.; Holden, M.T.; Ellington, M.J.; Cartwright, E.J.; Brown, N.M.; Ogilvy-Stuart, A.L.; Hsu, L.Y.; Chewapreecha, C.; Croucher, N.J.; Harris, S.R.; et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med. 2012, 366, 2267–2275. [Google Scholar] [CrossRef] [Green Version]
- Eyre, D.W.; Fawley, W.N.; Best, E.L.; Griffiths, D.; Stoesser, N.E.; Crook, D.W.; Peto, T.E.A.; Walker, A.S.; Wilcox, M.H. Comparison of multilocus variable-number tandem-repeat analysis and whole-genome sequencing for investigation of Clostridium difficile transmission. J. Clin. Microbiol. 2013, 51, 4141–4149. [Google Scholar] [CrossRef] [Green Version]
- Didelot, X.; Eyre, D.W.; Cule, M.; Ip, C.L.; Ansari, M.A.; Griffiths, D.; Vaughan, A.; O’Connor, L.; Golubchik, T.; Batty, E.M.; et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 2012, 13, R118. [Google Scholar] [CrossRef] [Green Version]
- Eyre, D.W.; Walker, A.S.; Freeman, J.; Baines, S.D.; Fawley, W.N.; Chilton, C.H.; Griffiths, D.; Vaughan, A.; Crook, D.W.; Peto, T.E.A.; et al. Short-term genome stability of serial Clostridium difficile ribotype 027 isolates in an experimental gut model and recurrent human disease. PLoS ONE 2013, 8, e63540. [Google Scholar] [CrossRef]
- Groß, U.; Brzuszkiewicz, E.; Gunka, K.; Starke, J.; Riedel, T.; Bunk, B.; Spröer, C.; Wetzel, D.; Poehlein, A.; Chibani, C.; et al. Comparative genome and phenotypic analysis of three Clostridioides difficile strains isolated from a single patient provide insight into multiple infection of C. difficile. BMC Genom. 2018, 19, 1. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.Y.; Eyre, D.W.; Corbeil, J.; Raymond, F.; Walker, A.S.; Wilcox, M.H.; Crook, D.W.; Michaud, S.; Toye, B.; Frost, E.; et al. Clostridium difficile: Investigating transmission patterns between infected and colonized patients using whole genome sequencing. Clin. Infect. Dis. 2019, 68, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Griffiths, D.; Vaughan, A.; Golubchik, T.; Acharya, M.; O’Connor, L.; Crook, D.W.; Walker, A.S.; Peto, T.E.A. Asymptomatic Clostridium difficile colonisation and onward transmission. PLoS ONE 2013, 8, e78445. [Google Scholar] [CrossRef]
- Eyre, D.W.; Cule, M.L.; Wilson, D.J.; Griffiths, D.; Vaughan, A.; O’Connor, L.; Ip, C.L.C.; Golubchick, T.; Batty, E.M.; Finney, J.M.; et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 2013, 369, 1195–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, D.R.; Riley, T.V. Genomic delineation of zoonotic origins of Clostridium difficile. Front. Public Health 2019, 7, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janezic, S.; Rupnik, M. Development and implementation of whole genome sequencing-based typing schemes for Clostridioides difficile. Front. Public Health 2019, 7, 309. [Google Scholar] [CrossRef] [PubMed]
- Couturier, J.; Franconeri, L.; Janoir, C.; Ferraris, L.; Syed-Zaidi, R.; Youssouf, A.; Gateau, C.; Hoys, S.; Aires, J.; Barbut, F. Characterization of non-toxigenic Clostridioides difficile strains isolated from preterm neonates and in vivo study of their protective effect. J. Clin. Med. 2020, 9, 3650. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Coignard, B.; Dubberke, E.; Song, X.; Horan, T.; Kutty, P.K.; The Ad Hoc Clostridium difficile Surveillance Working Group. Recommendations for surveillance of Clostridium difficile-associated disease. Infect. Control. Hosp. Epidemiol. 2007, 28, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Bidet, P.; Barbut, F.; Lalande, V.; Burghoffer, B.; Petit, J.-C. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol. Lett. 1999, 175, 261–266. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Laboratory Procedures for Diagnosis and Typing of Human Clostridium difficile Infection. LU: Publications Office. 2018. Available online: https://data.europa.eu/doi/10.2900/04291 (accessed on 2 April 2021).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prijibelski, A.V.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Merrigan, M.; Venugopal, A.; Mallozzi, M.; Roxas, B.; Viswanathan, V.K.; Johnson, S.; Gerding, D.N.; Vedantam, G. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J. Bacteriol. 2010, 192, 4904–4911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curry, S.R.; Muto, C.A.; Schlackman, J.L.; Pasculle, A.W.; Shutt, K.A.; Marsh, J.W.; Harrison, L.H. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin. Infect. Dis. 2013, 57, 1094–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
wgMLST | |||||
---|---|---|---|---|---|
Clonal Complex ≤20 Alleles | Genetically Related >20 to ≤200 Alleles | Genetically Not Related >200 Alleles | Total | ||
cgSNP | Clonal complex ≤10 SNPs | 30 | 3 | 0 | 33 (19.5%) |
Genetically related >10 to ≤100 SNPs | 25 | 40 | 0 | 65 (38.5%) | |
Genetically not related >100 SNP | 0 | 13 | 58 | 71 (42%) | |
Total | 55 (32.5%) | 56 (33.1%) | 58 (34.3%) | 169 (100%) |
Epidemiological Link (Type of Transmission) | |||||
---|---|---|---|---|---|
Same Ward | Environmental | Intra-Hospital | Indeterminate or Cryptic | Total Cases | |
wgMLST clonal cases | 0 (0%) | 8 (14.5%) | 9 (16.4%) | 38 (69.1%) | 55 |
cgSNP clonal cases | 0 (0%) | 6 (18.2%) | 2 (6.1%) | 25 (75.8%) | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courbin, V.; Le Neindre, K.; Couturier, J.; Gateau, C.; Zaidi, R.S.; Youssouf, A.; Barbut, F. Transmission Patterns of Clostridioides difficile in a Non-Epidemic Setting Based on WGS Analysis. Microbiol. Res. 2022, 13, 530-538. https://doi.org/10.3390/microbiolres13030037
Courbin V, Le Neindre K, Couturier J, Gateau C, Zaidi RS, Youssouf A, Barbut F. Transmission Patterns of Clostridioides difficile in a Non-Epidemic Setting Based on WGS Analysis. Microbiology Research. 2022; 13(3):530-538. https://doi.org/10.3390/microbiolres13030037
Chicago/Turabian StyleCourbin, Virginie, Killian Le Neindre, Jeanne Couturier, Cécile Gateau, Rabab Syed Zaidi, Anlyata Youssouf, and Frédéric Barbut. 2022. "Transmission Patterns of Clostridioides difficile in a Non-Epidemic Setting Based on WGS Analysis" Microbiology Research 13, no. 3: 530-538. https://doi.org/10.3390/microbiolres13030037
APA StyleCourbin, V., Le Neindre, K., Couturier, J., Gateau, C., Zaidi, R. S., Youssouf, A., & Barbut, F. (2022). Transmission Patterns of Clostridioides difficile in a Non-Epidemic Setting Based on WGS Analysis. Microbiology Research, 13(3), 530-538. https://doi.org/10.3390/microbiolres13030037